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Global assessment of AMSR‐E and MODIS cloud liquid water
path retrievals in warm oceanic clouds
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[1] We compared 1 year of Advanced Microwave Scanning Radiometer‐EOS (AMSR‐E)
Wentz and Moderate Resolution Imaging Spectroradiometer (MODIS) cloud liquid water
path estimates in warm marine clouds. In broken scenes AMSR‐E increasingly
overestimated MODIS, and retrievals became uncorrelated as cloud fraction decreased,
while in overcast scenes the techniques showed generally better agreement, but with a
MODIS overestimation. We found microwave and visible near‐infrared retrievals being
most consistent in extensive marine Sc clouds with correlations up to 0.95 and typical
RMS differences of 15 g m−2. The overall MODIS high bias in overcast domains could be
removed, in a global mean sense, by adiabatic correction; however, large regional
differences remained. Most notably, MODIS showed strong overestimations at high
latitudes, which we traced to 3‐D effects in plane‐parallel visible‐near‐infrared retrievals
over heterogeneous clouds at low Sun. In the tropics or subtropics, AMSR‐E‐MODIS
differences also depended on cloud type, with MODIS overestimating in stratiform
clouds and underestimating in cumuliform clouds, resulting in large‐scale coherent bias
patterns where marine Sc transitioned into trade wind Cu. We noted similar geographic
variations in Wentz cloud temperature errors and MODIS 1.6–3.7 mm droplet effective
radius differences, suggesting that microwave retrieval errors due to cloud absorption
uncertainties, and visible near‐infrared retrieval errors due to cloud vertical stratification
might have contributed to the observed liquid water path bias patterns. Finally, cloud‐rain
partitioning was found to introduce a systematic low bias in Wentz retrievals above
180 g m−2 as the microwave algorithm erroneously assigned an increasing portion of the
liquid water content of thicker nonprecipitating clouds to rain.
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1. Introduction

[2] The weakest link in climate simulations is the poor
representation of clouds, particularly of marine boundary
layer clouds, which constitute the main source of uncertainty
in modeled cloud feedbacks [Bony and Dufresne, 2005].
The dominant part of predicted global cloud forcing change
is produced by these ubiquitous warm clouds, the radiative
fluxes of which are very sensitive to their vertically inte-
grated liquid water content or liquid water path (LWP)
[Turner et al., 2007]. Therefore, climate‐modeling efforts
would greatly benefit from accurate cloud LWP measure-
ments with well‐established error characteristics.
[3] The longest global climatologies of cloud LWP have

been derived from spaceborne passive microwave and visible
near‐infrared (VNIR) observations. The microwave record
now spans 20+ years and comprises Special Sensor
Microwave/Imager (SSM/I), Tropical Rainfall Measurement

Mission Microwave Imager (TMI), and Advanced Micro-
wave Scanning Radiometer for Earth Observing System
(AMSR‐E) measurements. High‐quality VNIR LWP esti-
mates, however, have only been available since the launch
of the Moderate Resolution Imaging Spectroradiometer
(MODIS) a decade ago.
[4] The de facto microwave retrieval standard is the

Wentz algorithm developed by Remote Sensing Systems
(RSS) [Wentz, 1997; Wentz and Spencer, 1998; Wentz and
Meissner, 2000; Hilburn and Wentz, 2008]. RSS derives
cloud liquid water path directly from brightness tempera-
tures using essentially the same multichannel algorithm for
SSM/I, TMI, and AMSR‐E. VNIR LWPs, on the other
hand, represent indirect estimates being parameterized from
cloud optical thickness and droplet effective radius, which
are retrieved from solar reflectances. The current state‐of‐
the‐art MODIS algorithm [Platnick et al., 2003] is an
updated version of the classic Nakajima and King [1990]
bispectral method.
[5] Unfortunately, neither satellite technique has been

comprehensively validated. Comparisons with in situ and
ground‐based measurements, although useful in case studies,
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suffer from representativeness and sample size issues as well
as from significant biases in surface microwave retrievals
[Turner et al., 2007]. An alternative to episodic validation
campaigns is the evaluation of the two fully independent
satellite methods against each other using a large set of
coincident retrievals. Several such studies have assessed
Wentz and MODIS LWPs recently.
[6] In broken cloud fields the Wentz algorithm has been

found to increasingly overestimate MODIS with decreasing
cloud fraction [Bennartz, 2007; Horváth and Davies, 2007].
Analysis of cloud‐free scenes has also indicated a Wentz
overestimation, the magnitude of which decreases with
surface wind speed and increases with column water vapor
[Greenwald et al., 2007; Horváth and Gentemann, 2007].
Taken together, these findings have strongly suggested
potential beam‐filling, surface emission, and gaseous
absorption errors in the Wentz algorithm, although signifi-
cant heterogeneity errors in MODIS retrievals could not be
ruled out either.
[7] The techniques have been found considerably better

correlated in overcast scenes, but with the opposite tendency
of MODIS overestimations. Borg and Bennartz [2007] have
shown that this positive MODIS bias could be eliminated, at
least in a global mean sense, by replacing the operational
vertically homogeneous cloud model with an adiabatically
stratified one. However, even after adiabatic corrections,
systematic differences remain, with AMSR‐E increasingly
underestimating MODIS for cloud optical thicknesses above
∼20 [Wilcox et al., 2009]. Some of these discrepancies
might be due to assumptions about the partitioning of cloud
water and rainwater in the Wentz algorithm, as pointed out
by Horváth and Davies [2007] and O’Dell et al. [2008].
[8] These are important results, but more robust compar-

isons are needed because all previous studies had serious
temporal or regional limitations. In this work, we performed
a systematic global comparison of AMSR‐E and MODIS
LWP estimates from 1 year of data. Section 2 describes our
satellite data sets and analysis methodology. Section 3 gives
a detailed account of microwave‐VNIR differences. Section 4
then discusses potential first‐order error sources that might
explain the observed biases. Finally, section 5 summarizes
our findings.

2. Data and Methodology

[9] Our data set comprised cloud retrievals from AMSR‐E
and MODIS on the Aqua satellite, and near‐simultaneous
aerosol observations from the Ozone Monitoring Instrument
(OMI) aboard the Aura platform, covering the period
December 2006 to November 2007. Only high‐quality
retrievals were used from the latest available products:
version 5 for AMSR‐E, collection 5 for MODIS, and
version 3 for OMI. In the following, we summarize the
relevant aspects of each algorithm.

2.1. AMSR‐E Wentz Cloud Liquid Water Path

[10] The Wentz algorithm is an absorption‐emission‐
based method sequentially retrieving sea surface tempera-
ture (SST), surface wind speed (W), water vapor path (V),
liquid water path (LWP), and rain rate (R), both day and
night but only over the ocean. Our primary interest, LWP, is
derived from 37 GHz observations at a resolution of 13 km,

but here we used the 0.25° gridded daytime product. These
microwave LWPs can be interpreted as gridbox means
(averages over clear sky and cloud) because the relationship
between the 37 GHz retrievals and subfield‐of‐view cloud
amount is nearly linear [Greenwald et al., 1997; Lafont and
Guillemet, 2004]. First, a preliminary value is computed
assuming the atmospheric column contains only cloud liquid
but no rain. Then, rain retrieval is performed for preliminary
LWPs above a fixed rain‐threshold of 180 g m−2. Although
this step concerns only ∼5% of all data, it is a source of
systematic error due to its built‐in assumptions; therefore, it
warrants a more detailed discussion.
[11] The simultaneous presence of cloud liquid and rain

poses a fundamental challenge to all microwave methods
and not only to the Wentz algorithm because the component
signals cannot be separated from brightness temperatures
alone. The basic microwave observable is total liquid water
columnar attenuation AL37. In the first pass through data, no
rain is assumed and a preliminary LWP proportional to AL37

is retrieved. For a preliminary LWP > 180 g m−2, however,
precipitation is diagnosed and the governing equation
becomes [Hilburn and Wentz, 2008]

AL37 ¼ a37 1� b37�Tð ÞLWPR � 10�3 þ c37 1þ d37�Tð ÞH Re37

ð1aÞ

�T ¼ TL � 283 K: ð1bÞ

[12] Here a37, b37, c37, d37, and e37 are coefficients
derived using the Marshall‐Palmer raindrop size distribu-
tion, TL is liquid cloud temperature in kelvins, H is rain
column height in kilometers, R is column‐average rain rate
in millimeters per hour, and LWPR is the rain‐adjusted cloud
liquid water path in millimeters. Cloud temperature is
parameterized from SST and water vapor, while rain column
height is fitted to freezing level heights from reanalysis data
and varies linearly with SST from 0.46 km at 0°C to 5.26 km
at 30°C. In order to solve equation (1) with two unknowns,
LWPR and R, the Wentz algorithm further assumes that cloud
liquid water scales as the square root of rain rate [Hilburn and
Wentz, 2008]

LWPR ¼ � 1þ
ffiffiffiffiffiffiffi
HR

p� �
; ð2Þ

where a = 180 g m−2 is the rain threshold LWP. With
equation (2) and the above parameterizations, equation (1)
can now be solved for R. The resulting rain rate is then sub-
stituted back in equation (2) in order to obtain the final rain‐
adjusted cloud liquid water path replacing the preliminary
rain‐free value.
[13] This specific cloud‐rain partitioning was derived from

a study of northeast Pacific extratropical cyclones. Changing
equation (2) or even the assumed raindrop size distribution
would result in a different cloud‐rain partitioning. The value
of a = 180 g m−2 was chosen because it yields good
agreement between Wentz and other rain climatologies
[Hilburn and Wentz, 2008]. From the perspective of LWP
retrievals, however, use of a relatively low and globally
fixed cloud‐rain threshold entails underestimations when-
ever nonraining clouds with LWPs exceeding the threshold
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are encountered because some of the cloud water is errone-
ously assigned to precipitation. As we show in section 4.5,
this negative bias explains some of the observed dis-
crepancies between Wentz and MODIS LWPs.

2.2. MODIS Cloud Liquid Water Path

[14] Here, cloud LWP is indirectly estimated from cloud
optical thickness (t) and droplet effective radius (re),
themselves inferred from bispectral solar reflectances at
1 km resolution (MYD06 product). Over the ocean, MODIS
uses the 0.86 mm visible band containing optical thickness
information, in conjunction with one of three water‐
absorbing near‐infrared bands located at 1.6, 2.2, and
3.7 mm, which are sensitive to the droplet effective radius.
Although all three near‐infrared channels generally observe
the upper portion of clouds, vertical sampling of droplets
becomes progressively deeper from 3.7 to 1.6 mm due to
decreasing absorption [Platnick, 2000]. The operational
LWP parameterization relies on the 2.2 mmband and assumes
no vertical variation in cloud droplet size, leading to

LWP ¼ 4�w
3Qe

� re;2:2; ð3Þ

where Qe ≈ 2 is the extinction efficiency at visible wave-
lengths and rw = 1 g cm−3 is water density. (Note that LWP is
only estimated when both t and re retrievals are successful;
the latter often fail in thin clouds leading to fewer LWP
retrievals than cloudy pixels.) Presumed vertical homogene-
ity in combination with cloud top effective radius retrievals
can lead to LWP biases of both signs depending on the actual
droplet profile. For example, in the absence of t and re
retrieval errors, equation (3) would be an overestimate in
marine Sc clouds, where the effective radius often increases
linearly from cloud base to top. For such boundary layer
clouds, an adiabatic model has been proposed based on cloud
top effective radius re,top [Wood and Hartmann, 2006]

LWP ¼ 10�w
9Qe

� re;top: ð4Þ

[15] Theoretically, re,3.7 is closest to re,top; however, re,3.7
has an unexplained low bias (see section 4.3). In practice,
therefore, re,2.2 is used in equation (4) as well, which
reduces equation (3) by a factor of 5/6 or 17%. Because this
model does not consider entrainment mixing, it represents
only a first‐order LWP correction in mostly subadiabatic
marine Sc. In addition, when re decreases with height, which
might occur in drizzling or raining clouds, equation (4)
could even exacerbate the underestimation of equation (3).
At least in theory, a better approach would be to estimate the
droplet‐size profile on a case‐by‐case basis from the three
effective radii. Unfortunately, vertical weighting functions
of the three MODIS near‐infrared channels are quite similar
and correlated, rendering droplet profile inversion question-
able [Platnick, 2000]. Nevertheless, we show in section 4.3
that in certain geographic regions large‐scale variations
of microwave‐VNIR LWP bias appear correlated with a
1.6–3.7 mm effective radius difference.
[16] Another significant error source in MODIS LWP

estimates is the potential breakdown of the 1‐D plane‐

parallel radiative transfer used in the calculations [Horváth
and Davies, 2004]. The impact of heterogeneity (3‐D)
effects on 1‐D cloud optical thickness has been extensively
studied, but that on the 1‐D droplet effective radius has only
been recently considered and is still rather uncertain
[Marshak et al., 2006]. Possible 3‐D errors in VNIR LWP
are also poorly known; we investigate such errors in section
4.1 by analyzing AMSR‐E‐MODIS retrieval differences as
a function of horizontal cloud heterogeneity.

2.3. OMI Aerosol Index

[17] Because absorbing aerosols can apparently reduce
MODIS LWP [Haywood et al., 2004], we used the OMI
ultraviolet Aerosol Index (AI) to identify areas affected by
biomass smoke or desert dust, and estimated the resulting
LWP retrieval bias in section 4.4. OMI AI represents the
deviation of the measured 354 nm radiance from model
calculations in a purely molecular atmosphere bounded by a
Lambertian surface, and has the unique ability to detect
aerosols above clouds [Torres et al., 2007]. Specifically, we
used the daily Level‐2 gridded product (OMAERUVG)
with values above 1 indicating substantial amounts of
absorbing particles.

2.4. Comparison Methodology

[18] In this study, all higher‐resolution retrievals were
averaged down to the 0.25° scale of the regular AMSR‐E
grid. Performing the analysis on a microwave footprint‐level
as done by Greenwald et al. [2007] would have offered
slightly more detailed error information; however, at the
cost of a greatly increased computational burden and
reduced data volume. Our choice was further motivated by
climate model diagnostics strongly favoring the gridded
Wentz product.
[19] Because microwave LWPs represented gridbox

means but MODIS LWPs were in‐cloud retrievals, the latter
were multiplied by the gridbox‐mean fraction of successful
MODIS retrievals, henceforth referred to as “cloud fraction.”
The presence of cloud top ice generally makes comparisons
ambiguous due to different instrument sensitivities [Horváth
and Davies, 2007]; therefore, we restricted our analysis to
ice‐free gridboxes as identified by the MODIS cloud phase
product. In addition, we only considered nonprecipitating
clouds with zero AMSR‐E rain rates; the sole exception was
section 4.5 discussing cloud‐rain partitioning issues.

3. Bias Analysis

3.1. Clear‐Sky Wentz Bias

[20] Before analyzing cloudy scenes we evaluated Wentz
LWP retrievals in clear‐sky conditions in order to gain some
measure of their uncertainties. We only considered domains
where all MODIS pixels were classified as confident clear,
still obtaining more than three million samples. The global
annual mean clear‐sky LWP bias was ∼12 g m−2 in good
agreement with the 12–15 g m−2 found by Horváth and
Gentemann [2007] and Bennartz [2007], but higher than
either the 7 g m−2 obtained by Greenwald et al. [2007] or
the 5 g m−2 estimated by Wentz [1997]. Seasonal and
hemispheric variations were small (1–2 g m−2), which
was in contrast to Greenwald et al. [2007], whose results
exhibited considerably larger hemispheric differences of
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12 g m−2 for the north and 4 g m−2 for the south; however,
they only analyzed a 3 week period in July 2002, which
might explain these discrepancies.
[21] Geographic variations were far more significant in

our data set, as shown in Figure 1 for annual means. (Sea-
sonal bias patterns were very similar.) We found the smal-
lest clear‐sky biases below 7 g m−2 in extensive marine Sc
regions as well as in the Mediterranean, Black Sea, Red Sea,
and Persian Gulf. Warmer tropical or subtropical oceanic
areas, on the other hand, exhibited the largest biases up to
20 g m−2. These clear‐sky biases most likely corresponded
to uncertainties in the sea surface emissivity and water vapor
and oxygen absorption models; however, cloud detection
errors could not be ruled out. The global performance of the
MODIS cloud mask is unknown, but in trade wind cumuli it
has been shown to agree with a 15 m resolution cloud mask
only 62% of the time [Zhao and Di Girolamo, 2006]. Thus,

cloud contamination might partly explain larger “clear‐sky”
LWPs in regions with frequent popcorn Cu.
[22] Cloud detection errors aside, one would prefer

microwave‐derived parameters to be independent of one
another. Unfortunately, this is not the case, as demonstrated
in Figure 2, where we plotted the mean clear‐sky LWP bias
binned according to surface wind speed, water vapor, and
SST. We found a negative correlation with wind in all
seasons and latitude bands, whereby the LWP bias
decreased from 15 to 16 g m−2 to 2–3 g m−2 as wind
increased from 0 to 15 m/s. Dependence on water vapor was
generally weaker and more variable. In drier conditions
(V < 22 mm) the LWP bias increased, while in wetter
conditions (V > 22 mm) decreased or leveled off with vapor
amount. The influence of SST was even more variable and
was overall the weakest, except maybe in the warmest
regions above 28°C, where the bias rapidly decreased.

Figure 1. Geographic distribution of annual mean Advanced Microwave Scanning Radiometer‐EOS
(AMSR‐E) clear‐sky liquid water path (LWP) bias. In this and subsequent maps, black indicates no data.

Figure 2. Annual mean AMSR‐E clear‐sky LWP bias binned according to (a) surface wind and column
water vapor and (b) surface wind and sea surface temperature (SST). Solid black lines are LWP bias con-
tours at 1 g m−2 intervals, while dashed white lines indicate data frequency (×105).

SEETHALA AND HORVÁTH: AMSR-E AND MODIS CLOUD LIQUID WATER PATH D13202D13202

4 of 19



[23] These results were qualitatively consistent with
findings by Greenwald et al. [2007] and indicated possible
shortcomings in the surface emission and gaseous absorp-
tion models of the Wentz algorithm. We emphasize that
while these clear‐sky uncertainties might also be represen-
tative of low cloud fraction scenes, it is not obvious how
they relate to retrieval errors in highly cloudy domains.
Undoubtedly, more work is needed to understand and remove
these unwanted interdependencies in clear‐sky observations.
Henceforth, we focus on cloud retrievals.

3.2. Global Annual Mean Statistics

[24] Annual statistics of AMSR‐E and MODIS LWPs in
ice‐ and rain‐free domains, totaling more than 60 million
retrievals, are summarized in Table 1. When all liquid cloud
fractions (LCFs) were considered, AMSR‐E overestimated
MODIS by 18 g m−2 with respective means of 58 and
40 g m−2. The data sets were moderately correlated with a
coefficient of 0.74 and root‐mean square (RMS) difference
of 41 g m−2, which was larger than the 25 g m−2 random
error estimated by Wentz [1997] for microwave retrievals.
Adiabatic correction made the overall comparison worse by
further reducing MODIS LWPs and increasing the bias to
25 g m−2.
[25] In overcast domains, defined as LCF = 95%–100%

and constituting 18% of all samples, LWP was significantly
higher with means of 91 and 109 g m−2 for AMSR‐E and
MODIS, respectively. However, the bias was of opposite
sign, as MODIS overestimated AMSR‐E by 18 g m−2. The
agreement between the techniques was considerably tighter
with an increased correlation of 0.83. Adiabatic correction
almost completely removed the MODIS overestimation
resulting in a bias of only 1 g m−2 and RMS difference of
31 g m−2. This corroborated Bennartz [2007] that the adia-
batic cloud model is superior to the operational vertically
homogeneous one, at least in a global mean sense.
[26] The above results suggested significantly higher

microwave LWPs in broken clouds, which was confirmed
by statistics for clear‐sky dominated regions with LCF <
50%. In this category, constituting 59% of all samples,
AMSR‐E and MODIS estimates were rather poorly corre-
lated at 0.45 and showed the largest biases of 31–33 g m−2

due mostly to a steep drop in the MODIS mean. Obviously,
adiabatic corrections made matters worse for such broken
scenes. Motivated by these findings, we further investigated
the cloud fraction dependence of microwave‐VNIR con-
sistency in section 3.4. First, however, we discuss seasonal
variations in global mean LWP.

3.3. Seasonal Variations in Global Means

[27] The month‐to‐month variation of AMSR‐E and
MODIS global mean LWPs is shown in Figure 3. Here
black corresponds to AMSR‐E, while red and green refer to
standard and adiabatic MODIS, respectively. When all
domains were considered, AMSR‐E systematically over-
estimatedMODIS similarly to the annual mean. The AMSR‐E
seasonal cycle had a minimum in December (54 g m−2) and
a single maximum in August (63 g m−2). Standard MODIS
also had a minimum in December (38 g m−2); however, it
had double maxima in March (42 g m−2) and August
(41 g m−2). The resulting bias varied from 15 to 22 g m−2

with a minimum in March and a maximum in August. (The
bias increased by a further ∼7 g m−2 for adiabatic MODIS
values.)
[28] By contrast, overcast means showed standard

MODIS overestimation in all months. Here, seasonal cycles
were in better qualitative agreement with both data sets
having a minimum in December (102 vs. 86 g m−2) and
double maxima in April (120 vs. 94 g m−2) and August
(110 vs. 95 g m−2). For MODIS, however, the relative
strengths of maxima were markedly different, and the
amplitude of the seasonal cycle was larger. Adiabatic cor-
rection lowered MODIS values to within 5 g m−2 (or 6%) of

Table 1. Global Annual Statistics of AMSR‐E Wentz and MODIS LWP Retrievals in Warm Nonprecipitating Marine Clouds for Three
Liquid Cloud Fraction Rangesa

All Domains (LCF = 0%–100%) Overcast Domains (LCF = 95%–100%) Broken Domains (LCF = 0%–50%)

Standard Adiabatic Standard Adiabatic Standard Adiabatic

AMSR‐E mean 58 58 91 91 44 44
MODIS mean 40 33 109 90 13 11
Bias 18 25 −18 1 31 33
Rms 41 36 38 31 35 35
Correlation 0.74 0.72 0.83 0.83 0.45 0.45
Sample number 6.1E+7 1.1E+7 3.6E+7

aMeans, biases (AMSR‐E‐MODIS), and RMS differences are given in g m−2.

Figure 3. Seasonal variation of AMSR‐E and Moderate
Resolution Imaging Spectroradiometer (MODIS) global
mean cloud LWP in warm nonprecipitating marine clouds
for all domains (circles) and overcast domains (diamonds).
Black, red, and green correspond to AMSR‐E, standard
(std.) MODIS, and adiabatic (adb.) MODIS, respectively.
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AMSR‐E estimates, confirming its overall validity on
monthly time scales as well.

3.4. Cloud Fraction Dependence

[29] Here we further investigate the strong dependence of
microwave‐VNIR comparison on scene brokenness. Mean
AMSR‐E and MODIS cloud LWPs are plotted for 5% wide
liquid cloud fraction bins in Figure 4a. Standard MODIS
means rapidly increased from 2 to 108 g m−2, while AMSR‐E
means, varying from 33 to 91 g m−2, were usually higher
and showed a slower increase with cloud fraction. The
corresponding bias steadily increased from −17 to +35 g m−2

as cloud fraction decreased, changing sign at an LCF of
∼80% (see Figure 4b). Simultaneously, the correlation
quickly dropped from 0.83 to 0.27, indicating poor corre-
spondence between the techniques in highly broken scenes.
(Similar results were obtained regardless of view zenith
angle or potential sunglint contamination.) These findings
qualitatively agreed with Horváth and Davies [2007] and
Horváth and Gentemann [2007] and showed adiabatic
improvement only for cloud fractions above 90%.
[30] What could possibly cause such behavior? Plane‐

parallel MODIS retrievals are certainly subject to 3‐D
effects in broken clouds; however, the resulting biases in
1‐D optical thickness and droplet effective radius are often
of opposite sign, leading to partial cancellation of errors in
1‐D LWP. Overall, shadowing dominates brightening,
producing substantial re overestimations and somewhat
smaller t underestimations and hence a positive LWP bias
[Marshak et al., 2006; Evans et al., 2008]. Indeed, Cornet et
al. [2005] has found MODIS domain‐mean LWP over-
estimating the 3‐D value by 15% in a broken Sc scene off
California. These studies suggest that 3‐D errors in MODIS
retrievals would go the wrong way in explaining the
observed LWP bias in broken clouds.
[31] Another possibility is microwave beam‐filling effects.

The Wentz algorithm does not apply beam‐filling correc-
tions to rain‐free observations, but we made an equivalent
first‐order correction by scaling MODIS LWPs with the
successful cloud‐retrieval fraction. This could lead to a
MODIS low bias if cloud amounts were systematically
underestimated in broken scenes. Although the MODIS

cloud mask is designed to screen conservatively, the find-
ings of Zhao and Di Girolamo [2006] have indicated that it
tends to overestimate cloud fraction in scattered clouds. On
the other hand, the fraction of successful MODIS LWP
retrievals is usually less than the cloud fraction due to failed
re retrievals, especially at low LWP. Therefore, uncertainties
in cloud‐amount scaling can potentially contribute to the
observed biases.
[32] A more likely explanation, however, is reduced

microwave sensitivity to low LWPs at 37 GHz, which
makes retrievals in broken clouds rather susceptible to water
vapor absorption and surface emission uncertainties. In
section 3.1, we found a residual microwave clear‐sky bias
negatively correlated with surface wind and positively with
water vapor. Cloud LWP bias showed similar dependencies,
particularly at lower cloud amounts: AMSR‐E overestima-
tion decreased with wind speed and increased with water
vapor. In addition, the older gaseous absorption and liquid
dielectric models of the Wentz algorithm have been shown
by Zuidema et al. [2005] to cause LWP overestimations
compared to more recent models. All this suggests that
updated surface emission and atmospheric absorption para-
meterizations might reduce the disagreement between
Wentz and MODIS LWPs at the low end of the distribution;
however, improved MODIS cloud fraction estimates might
also have a positive impact.

3.5. Zonal Means

[33] Henceforward, we focus on overcast clouds because
in broken cloud scenes the dominant AMSR‐E overesti-
mation makes analysis of other error sources difficult.
Figure 5 plots the zonal variation of AMSR‐E and MODIS
LWP (Figures 5a–5c), and that of the resulting bias
(Figures 5d–5f), separately for annual, boreal summer, and
boreal winter periods. Annual results showed the LWP peak
of the Intertropical Convergence Zone (ITCZ) in both data
sets, somewhat more strongly in AMSR‐E than MODIS.
Microwave zonal means had additional midlatitude maxima,
more markedly in the Southern Hemisphere. The most
striking difference between the techniques occurred pole-
ward of 40°, where AMSR‐E LWP generally decreased but
MODIS LWP strongly increased. Overall, standard MODIS

Figure 4. Liquid cloud fraction dependence of (a) AMSR‐E and MODIS LWP and (b) the
corresponding AMSR‐E‐MODIS bias and correlation for warm nonprecipitating marine clouds. The
cross indicates the clear‐sky background bias in AMSR‐E LWP.
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overestimated AMSR‐E in most regions and increasingly so
toward the poles, with the exception of northern equatorial
areas, where AMSR‐E was slightly larger. The results also
indicated that the negligible global mean bias between
microwave and adiabatic VNIR estimates was due to can-
cellation of errors: adiabatic MODIS underestimated
AMSR‐E between 45°S and 45°N and overestimated it at
higher latitudes.
[34] Comparing seasonal results yielded some clues

regarding the cause of the strong poleward increase in
MODIS LWP. In boreal summer, the qualitative agreement
between AMSR‐E and MODIS was reasonably good in the
Northern Hemisphere, including middle to high latitudes.
However, in the Southern Hemisphere MODIS showed a
very rapid increase poleward of 30°S in contrast to AMSR‐E.
The situation was approximately reversed in boreal winter,
when the largest MODIS overestimations occurred in the
Northern Hemisphere poleward of 30°N, although biases
were rather large in the Southern Hemisphere as well. In
sum, the largest zonal differences occurred at high latitudes
in the winter hemisphere.
[35] These large discrepancies cannot be explained by

AMSR‐E LWP biases caused by Wentz cloud temperature
errors, as shown by the orange lines in Figures 5d–5f (see also
section 4.2). However, in section 4.1 we offer evidence that
they were the likely result of MODIS LWP overestimations
due to 3‐D retrieval errors in heterogeneous clouds at low Sun.

3.6. Global Distribution of Bias

[36] Because zonal means can mask large regional dif-
ferences, we extended the bias analysis to the full globe.

Geographic variation of annual mean AMSR‐E‐standard
MODIS LWP bias is mapped in Figure 6a for overcast
domains. The strong zonal variation of the bias was evident
here as well (compare Figure 5d). Poleward of 40°, MODIS
consistently and increasingly overestimated AMSR‐E at all
longitudes. In the tropics/subtropics (30°S–30°N), however,
large regional differences occurred corresponding to varying
cloud regimes. In extensive marine Sc regions, MODIS
showed significantly higher values, while in areas where
cumuliform clouds were more frequent, AMSR‐E LWPs
were larger. This produced large‐scale coherent bias gra-
dients wherever marine Sc transitioned into mostly con-
vective cloud regimes, with the two most notable areas
being the tropical eastern/southeast Pacific and Gulf of
Guinea/southeast Atlantic.
[37] In the first region, marine Sc forming over the cold

Peru Current showed AMSR‐E—standard MODIS LWP
biases of −15 to −30 g m−2. This region of negative bias also
included the Pacific Cold Tongue. Parallel to its northern
edge ran an equally narrow band of positive LWP biases (up
to +30 g m−2), producing sharp zonal gradients in this
region. A similar but more extensive LWP bias pattern
occurred in the southeast Atlantic off the African coast. Here
higher standard MODIS LWPs in marine Sc developing
over the cold Benguela Current smoothly transitioned into
higher AMSR‐E LWPs in the more cumuliform clouds of
the Gulf of Guinea.
[38] The bias map for adiabatically corrected MODIS is

plotted in Figure 6b. Adiabatic correction reduced the bias
wherever standard MODIS overestimation was higher than
8%. (The black line delineates the border between adiabatic

Figure 5. (a–c) Annual, boreal summer, and boreal winter zonal mean AMSR‐E LWP (black), standard
MODIS LWP (red), and adiabatic MODIS LWP (green) in overcast domains of warm nonprecipitating
marine clouds. Dashed orange line is solar zenith angle (SZA). (d–f) Corresponding AMSR‐E‐MODIS
LWP bias. Orange line indicates estimated AMSR‐E LWP bias due to cloud temperature errors assuming
a 3%/K sensitivity (see Figure 9). Bars depict the standard error of the mean.
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improvement and deterioration.) These areas were primarily
mid‐ to high‐latitude oceans poleward of 40° but also
included low‐latitude marine Sc regions. Within the tropics/
subtropics, however, adiabatic correction mostly increased
the AMSR‐E‐MODIS LWP bias. Overall, we found that
adiabatic LWP was an improvement over standard LWP in
75% of individual MODIS retrievals. In this data subset, the
standard MODIS high bias of 23 g m−2 reduced to 5 g m−2

after the correction. In the remaining quarter of data, on the
other hand, the AMSR‐E high bias increased from ∼0 to
16 g m−2. When averaging over all data, this eliminated
the global mean standard MODIS high bias of 18 g m−2

(see Table 1).
[39] Finally, we investigated geographic variations in the

correlation and RMS difference between AMSR‐E and
MODIS LWPs, as illustrated in Figure 7. Overall, the data
sets were correlated at 0.83 with an RMS of 38 g m−2 but
regional differences were nonnegligible. The lowest corre-
lations (down to 0.75) and largest RMS differences (up to
and above 55 g m−2) were found mostly at high latitudes
above 55°–60°, especially in the Northern Hemisphere, for

example, Hudson Bay, James Bay, and the areas surrounding
the Labrador Peninsula and Newfoundland. Encouragingly,
the correspondence between the techniques was excellent in
marine Sc regions with correlations up to 0.95 and typical
RMS differences of only 10–20 g m−2, albeit with a sys-
tematic MODIS overestimation as shown before.

4. Potential Error Sources

4.1. Heterogeneity Effects in MODIS LWP

[40] As shown previously, a strong feature of AMSR‐E‐
MODIS LWP differences was an increasing MODIS
overestimation at higher latitudes poleward of 40°. These
latitudes are generally observed at lower Sun (see Figure 5)
suggesting that different solar zenith angle (SZA) depen-
dencies of microwave and VNIR retrievals might contribute
to the observed discrepancies. Indeed, previous studies
found systematic SZA‐dependent biases in 1‐D plane‐
parallel cloud optical thickness retrievals. Based on Earth
Radiation Budget Satellite observations, Loeb and Davies
[1996] noted an increasing overestimation in nadir‐view

Figure 6. Annual AMSR‐E‐MODIS LWP bias map in overcast situations for (a) standard and
(b) adiabatic visible near‐infrared (VNIR) model. The black line marks the boundary between adiabatic
improvement and deterioration.
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cloud optical thickness at higher SZAs, particularly above
60°. Loeb and Coakley [1998] obtained similar results in
advanced very high‐resolution radiometer (AVHRR) mea-
surements even for marine Sc, which is arguably the closest
to being plane‐parallel.
[41] The strong increase in optical thickness was traced

back to the fact that plane‐parallel model reflectances, on
average, decreased with SZA, while observed reflectances
increased. The hypothesis that this discrepancy was due to
neglected 3‐D effects, such as cloud side illumination and
bumpy cloud tops, was later confirmed through Monte Carlo
simulations by Loeb et al. [1998] and Várnai and Marshak
[2001]. The above studies only considered near‐nadir views;
however, Várnai and Marshak [2007] found similarly
strong SZA‐dependent increases in MODIS cloud optical
thickness at all view angles.
[42] Motivated by these findings, we analyzed AMSR‐E

and MODIS LWPs as a function of SZA and scene hetero-
geneity. Heterogeneity of a 0.25° domain was characterized
by Cahalan et al.’s [1994] c parameter, defined as the ratio

of the logarithmic and linear average of 1 km cloud optical
thicknesses. In general, c varies from 0 to 1, with larger
values indicating less heterogeneity; for the overcast domains
considered in our analysis it ranged from 0.7 to 1.0. A
detailed analysis of cloud heterogeneity from MODIS is
deferred to Oreopoulos and Cahalan [2005]; however, two
caveats are worth noting here. First, the c parameter cannot
distinguish if heterogeneity is due primarily to cloud top
height or cloud extinction variations. Second, it measures
“apparent” cloud heterogeneity because it is calculated from
plane‐parallel retrievals, which are themselves affected
by 3‐D effects. Consequently, c may overestimate “true”
heterogeneity in cases with significant shadowing and side
illumination.
[43] The SZA dependence of AMSR‐E and MODIS LWP

is shown in Figures 8a and 8b for four c bins of increasing
homogeneity (red, green, and blue in Figure 8a and orange
in Figure 8b). Up to a SZA of ∼35°, microwave and VNIR
estimates were in relatively good agreement, both exhibiting
modest increases, which most likely represented zonal var-

Figure 7. (a) Annual AMSR‐E versus standard MODIS LWP correlation and (b) RMS difference map
for overcast domains. Shown results are above the 99% confidence limit.
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iations in LWP. At higher SZAs, however, they showed
strikingly different behavior. While AMSR‐E LWP leveled
off or even slightly decreased with SZA, MODIS LWP
rapidly increased. The MODIS LWP increase was largest
and nonlinear in SZA for the most heterogeneous scenes. As
homogeneity increased, the MODIS LWP rise gradually
became smaller and more linear with SZA. Only in the most
homogeneous clouds (c = 0.99 − 1.00) did MODIS LWP
level off with SZA, qualitatively similarly to AMSR‐E
LWP; these clouds were overwhelmingly marine Sc; thus,
adiabatic correction to MODIS also resulted in good quan-
titative agreement between VNIR and microwave estimates
(orange curve in Figure 8b). The SZA dependencies of mean
LWPs averaged over all c bins are given by the magenta
curves in Figure 8b. As before, AMSR‐E and MODIS LWPs
started to diverge for SZA > 35°, reaching a maximum
MODIS overestimation of ∼80 g m−2, or ∼90% of the
AMSR‐E value, at the most oblique Sun. (Restricting the
analysis to fixed geographic locations, thereby eliminating
zonal variations, yielded similar differences betweenAMSR‐E
and MODIS SZA dependencies.)

[44] Our calculations confirmed optical thickness as the
primary driver of the MODIS LWP rise with SZA. Up to a
SZA of 35°, cloud optical thickness retrievals remained
remarkably consistent irrespective of scene heterogeneity.
At higher SZAs, however, optical thickness rapidly
increased, especially in heterogeneous scenes. For example,
between overhead and oblique Sun, t varied from 11 to 16
in the most homogeneous clouds and from 11 to 28 in the
most heterogeneous clouds. Droplet effective radius, on
the other hand, showed a considerably smaller increase in
the 11–13.5 mm range.
[45] Figure 8a also indicated a general decrease in both

MODIS and AMSR‐E LWP with increasing homogeneity,
which we investigated in more detail. The variation of
MODIS t with homogeneity is plotted in Figure 8c for
different SZA ranges. In accordance with our previous
findings, t systematically increased with SZA for all
homogeneity values. However, at high Sun cloud optical
thickness varied relatively weakly with c, while at oblique
Sun retrievals became very sensitive to scene heterogeneity.
An interesting general pattern emerged whereby cloud

Figure 8. (a–b) SZA dependence of MODIS and AMSR‐E LWP for various homogeneity classes,
(c) MODIS cloud optical thickness versus scene homogeneity for (c) different SZA ranges and (d) mean
(average over all SZAs) MODIS and AMSR‐E LWP versus scene homogeneity. Results are for warm
nonprecipitating overcast domains with c calculated at the 0.25° scale.
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optical thickness first decreased with increasing homoge-
neity, reaching a minimum value at c ≈ 0.93, then it started
to increase for even more homogeneous clouds. In essence,
this figure summarizes our findings, which are as follows
(1) heterogeneity effects are most important at oblique Sun
(maybe above a SZA of 50°) and (2) the increase in optical
thickness with SZA is significantly larger for heterogeneous
than for homogeneous clouds.
[46] Finally, Figure 8d depicts the overall variation of

AMSR‐E and MODIS LWP with cloud homogeneity,
averaged for all Sun elevations. Both LWP estimates
exhibited qualitatively similar behavior, suggesting that the
general t‐c dependence in Figure 8c was due to the nature
of clouds and not 3‐D effects. However, MODIS retrievals
were significantly more sensitive to scene heterogeneity
than AMSR‐E retrievals. In addition, standard MODIS
overestimated AMSR‐E by an increasing amount as het-
erogeneity increased. We found that in relatively homoge-
neous scenes, adiabatic correction could remove the mean
MODIS overestimation almost entirely, resulting in excel-
lent agreement between microwave and VNIR estimates for
c > 0.87. Although the adiabatic model reduced VNIR LWP
biases in more heterogeneous clouds as well, here correc-
tions exceeding adiabatic would have been needed to fully
compensate for the large MODIS 3‐D‐effect overestimations
at low solar elevations.

4.2. Cloud Temperature Errors in AMSR‐E LWP

[47] AMSR‐E LWPs are sensitive to the assumed liquid
temperature because microwave absorption is stronger in
colder than in warmer clouds. Therefore, underestimation of

cloud temperature, that is, overestimation of absorption,
implies an underestimation in microwave LWP, and vice
versa. Earlier versions of the Wentz algorithm specified
liquid cloud temperature TL simply as the mean temperature
between the sea surface and the freezing level, the current
algorithm, however, uses a parameterization based on col-
umn water vapor and SST [Wentz and Meissner, 2000;
Hilburn and Wentz, 2008]. O’Dell et al. [2008] investigated
the errors in TL by using temperature and cloud profiles
from the European Centre for Medium‐Range Weather
Forecasts (ECMWF) global model. Compared to this model,
they found a negative global mean bias of −1°C and an
RMS error of 5°C in the Wentz parameterization, which,
they estimated, would translate to an LWP low bias and
RMS error of ∼3% and ∼13%, respectively.
[48] In this work, we evaluated the Wentz TL param-

eterization against MODIS cloud top temperature (CTT)
retrievals. In good agreement with O’Dell et al. [2008], we
found a global annual mean temperature bias of −1.5°C and
an RMS error of 5°–6°C in TL. The bias was somewhat
smaller in boreal winter (−1.2°C) and spring (−1.2°C), and
larger in boreal summer (−2.0°C) and fall (−1.8°C), with an
absolute minimum in March (−1°C) and maximum in July
(−2°C). Although these global mean biases were relatively
small, they resulted from partial cancellation of significantly
larger regional differences as demonstrated in Figure 9 for
annual results. Over cold oceans, AMSR‐E cloud tempera-
ture was generally underestimated with the largest errors, up
to and beyond −6°C, occurring in marine Sc regions; this
indicated that the current TL parameterization did not ade-
quately account for the temperature inversion associated with

Figure 9. Annual bias between AMSR‐E liquid cloud temperature (TL) parameterization and MODIS
cloud top temperature (CTT) measurements for warm nonprecipitating overcast domains. The relationship
between LWP bias and cloud temperature bias in the four marked subregions is plotted in Figure 10.
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these clouds. In contrast, AMSR‐E cloud temperature was
overestimated by a similar amount above warm ocean cur-
rents (Kuroshio and Brazil Current, Gulf Stream), reflecting
the SST dependence of the Wentz parameterization.
[49] Comparison of Figures 6 and 9 suggested that large‐

scale LWP bias variations might have been partly related to
similar variations in cloud temperature error, particularly in
marine Sc transition regions. In order to demonstrate this,
we selected four such areas marked by black boxes in
Figure 9: Africa (25°S–5°N, 15°W–15°E), South America
(20°S–10°N, 110°W–80°W), North America (5°N–35°N,
145°W–115°W), and Australia (40°S–10°S, 80°E–110°E).
Fortunately, the strong SZA‐dependent MODIS overesti-
mation, which was the dominant bias at higher latitudes/
SZAs, was reduced in these low‐latitude/SZA areas. Scat-
terplots of 1° annual mean AMSR‐E, standard MODIS
LWP bias versus AMSR‐E TL, and MODIS CTT bias are
given in Figure 10.
[50] In all four regions, LWP bias and cloud temperature

bias showed moderately strong positive correlations. The
relationship was tightest in North America and Africa,
the latter even suggesting a nonlinear relationship between
the quantities, as indicated by a considerably higher rank
correlation of 0.91. Everything else being equal, a negative

liquid temperature bias should cause a negative microwave
LWP bias and vice versa. In broad agreement with this
expectation, AMSR‐E LWP mostly underestimated/over-
estimated MODIS LWP below/above a cloud temperature
error of −1°C/0°C, but clearly additional effects were at play
as well. The absolute LWP biases in Figure 10 corresponded
to relative biases of ±20%. If one uses O’Dell et al.’s [2008]
sensitivity estimate of ∼3%/°C, temperature errors of ±6°C
would yield relative AMSR‐E LWP errors of similar
magnitude. The actual temperature sensitivity of operational
Wentz LWPs will be quantified in a future study, by
replacing the existing TL parameterization with MODIS
cloud top temperatures.

4.3. Cloud Vertical Stratification in MODIS LWP

[51] A potentially significant error source in VNIR LWP
retrievals is neglecting cloud vertical stratification. As
explained in section 2.2, the standard MODIS parameteri-
zation assumes a constant re throughout the cloud. Because
the water‐absorbing MODIS channels favorably sample
toward cloud top, this might lead to both negative and
positive LWP biases depending on the actual effective
radius profile. The adiabatic parameterization constitutes a
first‐order correction in marine Sc often characterized by re

Figure 10. AMSR‐E‐standard MODIS LWP bias versus AMSR‐E TL‐MODIS CTT bias in the four
marked regions of Figure 9. Data are 1° annual means in warm nonprecipitating overcast clouds, and
the correlation coefficients and dashed lines correspond to linear fits.
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increasing from cloud base to top but exacerbates micro-
wave‐VNIR LWP differences when the droplet profile is
neutral or decreasing with height.
[52] In theory, a better approach would be to estimate

droplet profile on a case‐by‐case basis from the three near‐
infrared MODIS size retrievals. Platnick [2000], however,
expressed serious doubts regarding the possibility of such an
inversion due to the relatively little difference in the infor-
mation content of the 1.6 and 2.2 mm bands. Nevertheless,
Chen et al. [2007] made an attempt to derive linear re
profiles in a data set limited to 1 day and claimed a small but
systematic improvement of ∼10% in corresponding VNIR
LWPs compared to AMSR‐E. Chen et al. [2008] further
applied this method to data from the East Pacific Investi-
gation of Climate (EPIC) Stratocumulus Study and found
that re vertically increased in nondrizzling clouds but often
decreased in drizzling cases.
[53] Here we only investigated if large‐scale LWP bias

variations in Figure 6 might be related to variations in cloud
vertical stratification but did not derive VNIR LWP cor-
rections. To this effect, we analyzed the geographical dis-
tribution of MODIS effective radius differences focusing
primarily on the least noisy 1.6–3.7 mm discrepancies.
However, in the regional analysis off the Namibian coast we
relied on 2.2–3.7 mm differences in order to minimize
absorbing aerosol effects, which introduced the largest
negative biases in 1.6 mm re retrievals [Haywood et al.,
2004]. Nominally, negative/positive 1.6–3.7 mm or 2.2–
3.7 mm re differences would indicate drop sizes increasing/
decreasing from cloud base to top.
[54] Annual mean results, given in Figure 11, indicated

that the geographic distribution of Dre was not random; in
the tropics/subtropics it appeared to broadly vary with cloud

type. Marine Sc was characterized by small negative/positive
values, which systematically increased to larger positive
values in cumuliform cloud regimes. The southern oceans
and Arctic regions also showed large positive values, sug-
gesting that undetected cloud top ice might be partially
responsible for the observed spatial pattern. In order to
reduce possible ice effects, we also made calculations
restricted to cloud top temperatures above 273 and 278 K. In
both cases, spatial variations were very similar to Figure 11
showing the sharp transitions in the tropics/subtropics.
[55] Contrary to expectations, annual mean Dre tended to

be mostly positive, even in marine Sc, suggesting a decrease
in drop size from cloud base to top. In Sc areas, Dre was
mostly negative up to −1 mm in boreal summer; in boreal
winter, however, it shifted to larger positive values, resulting
in small positive annual means. Consequently, although
LWP bias was better correlated with Dre than with micro-
wave cloud temperature error, the sign of Dre could not
generally differentiate between MODIS LWP overestima-
tion and underestimation. This is clearly demonstrated in
Figure 12, plotting LWP bias as a function of effective
radius difference for 1° annual means in our four selected
transition regions. As shown, LWP bias switched sign at a
positive Dre between 0.5 and 1.5 mm instead of near zero.
Boreal summer and boreal winter scatterplots were similar
but with the former shifted to lower Dre by 0.5–1 mm and
the latter to larger Dre by ∼0.5 mm. As a result, the sign of
Dre was indicative of that of LWP bias only in boreal
summer.
[56] At this point, we do not have an explanation for this

puzzling result and can only list a number of potential
causes. Although the 3.7 mm band is well calibrated, the
complicated separation of thermal and solar components

Figure 11. Annual mean effective radius difference between the 1.6 and 3.7 mm MODIS channels for
warm nonprecipitating overcast domains. The relationship between LWP bias and effective radius differ-
ence in the four marked subregions is plotted in Figure 12.
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might introduce re retrieval errors. Another possibility is that
positive vertical drop size gradients tend to be larger than
negative ones, leading to mostly positive average values
[Chang and Li, 2003]. Cloud top entrainment might also
play a role. Both in situ measurements and large eddy
simulations show that a sharp decrease in liquid water
content and effective radius could occur in the topmost few
dozen meters of Sc clouds due to mixing with drier ambient
air [Stevens, 2005]. This drop‐off might reduce effective
radius retrievals particularly in the 3.7 mm band as its
weighting function peaks closest to cloud top.
[57] Concerning entrainment effects, we note that Polari-

zation and Directionality of the Earth’s Reflectances
(POLDER) drop size estimates in Sc also showed a low bias
of ∼2 mm compared to MODIS 2.2 mm values [Bréon and
Doutriaux‐Boucher, 2005]. Because the polarization tech-
nique is based on single scattering, it is probably even more
sensitive to cloud top than the 3.7 mm MODIS channel.
Although a satisfactory explanation was not found for the
POLDER‐MODIS re bias either, entrainment mixing was
offered as a possible contributing factor. The impact of this
effect on MODIS drop size retrievals will have to be

quantified by recalculating near‐infrared weighting func-
tions using more realistic vertical profiles than the ones
considered by Platnick [2000], which ignored the cloud top
drop‐off.
[58] As a final note, we warn against overinterpreting the

above results. Instantaneous retrievals are noisy and subject
to a multitude of possible errors, making it difficult to gauge
the exact information content of near‐infrared channels
regarding cloud stratification. What can be said with some
certainty is that in the tropics/subtropics, large‐scale varia-
tions of AMSR‐E‐MODIS LWP bias appear associated with
Sc to Cu transition, and so do variations of effective radius
difference. However, more detailed algorithm sensitivity
studies will be needed to establish if this correlation is
fortuitous or indeed physical.

4.4. Absorbing Aerosol Effects in MODIS LWP

[59] In this section, we estimate the effect of absorbing
aerosols, which can introduce a negative bias in both droplet
effective radius and optical thickness, and hence in MODIS
LWP, when they reside above low‐level clouds. This neg-
ative bias in the baseline 2.2 mm effective radius is usually

Figure 12. AMSR‐E‐standard MODIS LWP bias versus MODIS effective radius difference in the four
marked regions of Figure 11. Effective radius difference is between the 2.2 and 3.7 mm channels for
Africa in order to minimize absorbing aerosol effects; everywhere else it is between the 1.6 and 3.7 mm
channels. Data are 1° annual means in warm nonprecipitating overcast clouds, and the correlation
coefficients and dashed lines correspond to linear fits.
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less than 1 mm; however, it can be up to 30% in optical
thickness according to calculations by Haywood et al.
[2004]. Bennartz [2007] noted a systematic MODIS LWP
underestimation in Sc off southern Africa during the
biomass‐burning season, which was attributed to overlying
absorbing aerosols by Bennartz and Harshvardhan [2007].
In the same region and season, Wilcox et al. [2009] esti-
mated a domain‐mean absorbing aerosol effect of 5.6 g m−2,
defined as AMSR‐E‐MODIS LWP bias for all samples
minus that for unpolluted/weakly polluted samples with
OMI AI ≤ 1.
[60] Using this definition, we first estimated the annual

global mean absorbing aerosol effect in our data and found it
a trivial −1 g m−2. This was not surprising considering that
absorbing aerosols are highly seasonal and cover only a
small portion of oceans at any given time. Next, we made
calculations for the period July–August–September in the
study area of Wilcox et al. [2009] (20°S–0°, 10°W–15°E),
which was a subset of our previously defined Africa
domain. As shown in Figure 6, this region is characterized
by a marked south‐north LWP bias gradient, in all seasons
and independently of the presence of smoke aerosols.
Neglecting this underlying LWP bias pattern could distort
estimates of aerosol effect because different AI bins sample
different parts of the domain, as demonstrated in Figure 13a
for 2007. Here the unpolluted background bias was calcu-
lated from cases with AI ≤ 1, and the contour lines
encompass 67% of observations in the given AI bins. The
smallest AI bin mostly sampled the southern portion of the
domain further out at sea, but as AI increased, sampling
moved north and east, closer to shore (the source region).
Similar results were obtained for the biomass burning sea-
sons in 2005 and 2006 considered by Wilcox et al. [2009],
with AI bin locations showing some interannual variations.
[61] The resulting sampling effect is depicted in Figure 13b,

which plots domain‐mean AMSR‐E‐standard MODIS LWP
bias for AI values 1–5, corresponding to MODIS aerosol

optical depths between 0.1 and 2.1. The black curve shows
retrievals actually affected by smoke, while the red curve is
the sampling artifact estimated as the average background
(unpolluted) LWP bias at the locations of AI measurements
in a particular bin. For weakly polluted cases with AI ≤ 1,
the LWP bias was very close to zero due to cancellation of
errors between the southern and northern parts of the domain.
At higher aerosol loads, however, MODIS increasingly
underestimated AMSR‐E as a result of reduced cloud optical
thickness. (TheMODIS LWP underestimation increased with
optical thickness in agreement with Haywood et al. [2004]
and Wilcox et al. [2009].) As indicated by the red curve,
part of the apparent absorbing aerosol bias was, in fact, caused
by larger AI values preferably occurring in areas where
MODIS generally underestimated AMSR‐E. Neglecting
such sampling artifacts, as byWilcox et al. [2009], could lead
to overestimating absorbing aerosol effects by 30%–40% at
larger AI values.
[62] As shown above, absorbing aerosols can introduce

significant VNIR LWP biases at the highest aerosol loads;
however, most of our data in Figure 13b were only weakly
polluted, resulting in a rather small mean effect. For
example, the apparent reduction in domain‐mean MODIS
LWP during the 2007 biomass burning season was only
∼3 g m−2 (average of black curve), which further reduced to
slightly below 2 g m−2 after sampling issues were accounted
for (average of the difference between the black and red
curves). The apparent and corrected MODIS under-
estimations for the 2005–2006 biomass burning season were
4–5 g m−2 (in reasonable agreement with Wilcox et al.
[2009]) and 2–3 g m−2, respectively.

4.5. Cloud‐Rain Partitioning Issues in AMSR‐E LWP

[63] Up to this point, we only considered nonraining
clouds in our comparison. In this section, we extend the
analysis to rain flagged cases; however, still excluding
broken or ice‐contaminated scenes. These criteria yielded a

Figure 13. (a) Geographic distribution of AMSR‐E‐standard MODIS LWP bias in the African biomass
smoke region calculated for warm nonprecipitating overcast clouds with Ozone Monitoring Instrument
(OMI) Aerosol Index (AI) ≤ 1 and averaged over July–August–September 2007. Contour lines encompass
67% of observations in the given AI bins. (b) LWP bias as a function of aerosol index with bars depicting
the standard error of the mean. The black curve represents smoke‐affected retrievals, while the red curve
is the spatial sampling bias obtained from Figure 13a. Note for the red (“unpolluted”) curve, OMI AI
indicates geographic location within the region, rather than actual aerosol load.
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further 1.4 million samples but limited rain rates to below
5 mm/hr because higher values were associated with the
presence of ice. As explained in section 2.1, rain seriously
complicates any microwave retrieval technique because it
requires a priori partitioning of total water into cloud and
rain components. Specifically, the Wentz algorithm uses a
globally fixed rain threshold of 180 g m−2 and parameterizes
LWP in precipitating clouds as proportional to the square
root of rain rate.
[64] In order to gain some insight into the validity of these

assumptions, we evaluated AMSR‐E LWP as a function of
MODIS adiabatic LWP for the combined (rain‐free plus rain
flagged) data set. (We used adiabatic MODIS retrievals as
reference here because they are unbiased compared to
AMSR‐E in a global mean sense.) Annual results are plotted
in Figure 14 by the solid red curve, showing quite good
agreement between microwave and VNIR estimates up
to the rain threshold, above which, however, AMSR‐E
increasingly underestimated MODIS. The mean underesti-
mation reached ∼150 g m−2 (or 30%) at the largest MODIS
LWPs.
[65] What could cause these discrepancies? As noted

earlier, MODIS increasingly overestimated AMSR‐E at
larger solar zenith angles, particularly in heterogeneous
clouds, which could produce qualitatively similar results.
Prompted by this, we made separate calculations for the
most heterogeneous and most homogeneous third of clouds.
In heterogeneous cases, retrievals started to diverge at a
slightly smaller LWP, while in homogeneous cases the
divergence occurred at a somewhat larger LWP; otherwise
results were comparable and stayed within ±30 g m−2 of the
overall average (red curve). Furthermore, Wilcox et al.
[2009] found similar AMSR‐E underestimations at lower
latitudes as well, where MODIS heterogeneity effects were
generally reduced. These findings suggested that VNIR

heterogeneity effects alone could not explain the observed
discrepancies.
[66] The fact that microwave and VNIR estimates started

to diverge above the rain threshold LWP pointed to possible
cloud‐rain partitioning issues in AMSR‐E retrievals. A
relatively low precipitation threshold means that part of the
water content of thicker rain‐free clouds might be errone-
ously assigned to rain. In fact, CloudSat retrievals indicate
only ∼30% probability of precipitation in warm clouds at an
LWP of 180–200 g m−2 [Lebsock et al., 2008]. This sug-
gests that a significant portion of rain flagged AMSR‐E
retrievals might actually be rain‐free, and as such, subject to
the above error. (It should be noted, however, that a large
number of low‐level liquid clouds are below the detection
limit of the CloudSat radar or are otherwise missed due to
surface contamination.)
[67] We investigated the effect of rain removal by esti-

mating what LWP the operational AMSR‐E algorithm
would retrieve in rain‐free clouds above the precipitation
threshold (see gold diamonds in Figure 14). These estimates
were derived from the governing equations in section 2.1
and confirmed the observed biases: an increasing portion
of the water content of thicker rain‐free clouds was assigned
to precipitation. Obviously, a fraction of clouds with LWP
between 180 and 500 g m−2 bound to precipitate; thus, the
excellent fit between rain‐free cloud estimates and actual
observations must also have been due to the presence of
additional biases (liquid temperature error, heterogeneity
effects, etc.). Nevertheless, these results demonstrated the
general effect of cloud‐rain partitioning errors.
[68] As a further step, Remote Sensing Systems reprocessed

our boreal summer and boreal winter data with rain removal
completely turned off. These modified AMSR‐E LWPs,
indicated by the dashed blue line, compared considerably
better with MODIS LWPs but now exhibited slight over-
estimations. We found the best agreement between micro-
wave and VNIR estimates when rain removal was only
turned off for rain rates below 1.5 mm/hr, as shown by the
solid blue line. Taken together, these findings suggested that
the 180 g m−2 precipitation threshold was too low, at least in
a global mean sense.
[69] Finally, we note that the Wentz algorithm is tuned to

produce reasonable rain rates and rain coverage in com-
parison with other well‐known precipitation climatologies.
It might be impossible to optimize the algorithm simulta-
neously for LWP and rain. However, a separate product
specifically minimizing discrepancies with MODIS LWPs
could be introduced. Alternatively, rain removal could be
turned off entirely in order to retrieve total (cloud plus rain)
water path, which is the quantity microwave techniques are
ultimately sensitive to. This could facilitate more straight-
forward comparisons with climate models by eliminating
differences due to dissimilar cloud‐rain partitioning in models
and satellite retrievals.

5. Summary

[70] We analyzed 1 year of AMSR‐E Wentz and MODIS
cloud liquid water path estimates, representing the current
state of the art in microwave and VNIR retrievals. The
comparison was made over the global oceans on a quarter‐
degree scale and only included warm clouds in order to

Figure 14. Cloud‐rain partitioning effects on AMSR‐E‐
adiabatic MODIS LWP comparison. The solid red curve
corresponds to actual retrievals with the operational Wentz
rain algorithm. Gold diamonds are estimates of what the rain
algorithm would retrieve in rain‐free clouds. The blue
curves are modified Wentz retrievals with rain removal
turned off (1) completely (dashed curve) and (2) only for
rain rates below 1.5 mm/hr (solid curve).
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avoid ambiguities due to ice; however, both standard (ver-
tically homogeneous) and adiabatically stratified MODIS
LWPs were evaluated. Our goal was to characterize
microwave‐VNIR LWP differences in a statistically robust
data set and identify their potential causes for future studies.
Main findings are summarized as follows.
[71] When all scenes were considered, AMSR‐E over-

estimated MODIS by 45% on average, and retrievals were
only moderately correlated, with a coefficient of 0.74 and
RMS difference of 41 g m−2. However, we found the
microwave‐VNIR comparison to be strongly dependent on
cloud fraction and geographic location. In overcast scenes,
estimates were generally better correlated at 0.83, but with
significant regional variations. The relationship between the
techniques was loosest at high latitudes above 55° and
tightest in marine Sc regions with correlations up to 0.95
and typical RMS differences of 10–20 g m−2. Overcast
domains were also characterized by a MODIS high bias. In
broken scenes, on the other hand, AMSR‐E increasingly
overestimated MODIS and retrievals became gradually
uncorrelated as cloud fraction decreased below 80%.
[72] Although we could not fully explain this microwave

high bias at low cloud fractions, we noted a global mean
AMSR‐E LWP bias of 12 g m−2 in cloud‐free scenes as
well. This clear‐sky microwave bias showed systematic
geographic variations, being smallest in colder marine Sc
regions and largest over warm oceans. In addition, the
AMSR‐E clear‐sky bias and low‐cloud‐fraction bias both
had similar dependencies: a negative correlation with sur-
face wind speed and a weaker positive correlation with
water vapor. These results suggested that uncertainties in
surface emission and gaseous absorption models were partly
responsible for Wentz overestimation in thin broken clouds.
[73] The remainder of the study focused exclusively on

overcast domains. In this subset, the global annual mean
MODIS overestimation of ∼17% could be almost com-
pletely eliminated by adiabatic correction, which worked
equally well on monthly time scales, with MODIS global
means being within 5 g m−2 (or 6%) of AMSR‐E means.
However, the excellent mean performance of the adiabatic
model masked significant regional differences. Zonal means
showed AMSR‐E overestimation between 45°S–45°N, and
rapidly increasing MODIS overestimation at higher lati-
tudes, particularly in the winter hemisphere. This was the
result of strikingly different latitudinal variations in LWP,
whereby AMSR‐E generally decreased but MODIS increased
toward the poles.
[74] In the tropics/subtropics, the AMSR‐E‐MODIS LWP

bias also showed systematic variations with cloud regimes.
In marine Sc regions, MODIS overestimated AMSR‐E,
while in areas frequented by cumuliform clouds, the reverse
was true. This resulted in large‐scale coherent spatial pat-
terns in LWP bias wherever Sc transitioned into trade wind
Cu. Most notably, there were marked zonal LWP bias gra-
dients at the Pacific Cold Tongue and in an extensive area
stretching from the Namibian coast to the Gulf of Guinea.
[75] Prompted by the existence of systematic LWP bias

variations in the African Sc region, generally regarded
as a test bed of aerosol‐cloud interactions, we estimated
absorbing aerosol effects on VNIR retrievals. In a global
annual mean sense, absorbing aerosols introduced a trivial
(−1 g m−2) low bias in MODIS LWPs. The regional‐mean

bias during the biomass‐burning season was only slightly
larger at −3 to −5 g m−2, although locally it could be as high
as −30 g m−2 in heavily polluted areas. However, 30%–40%
of the apparent absorbing aerosol bias could be attributed to
sampling artifacts due to systematic zonal variations in
AMSR‐E‐MODIS LWP difference. These results implied
that neglecting persistent geographic variations in the
background (unpolluted) microwave‐VNIR LWP bias could
lead to overestimating aerosol effects in VNIR retrievals.
[76] In pursuit of an explanation for the increasing

MODIS overestimation at high latitudes, we analyzed the
solar zenith angle dependence of microwave and VNIR
retrievals. Up to a SZA of 35° the techniques showed good
agreement; at lower Sun, however, they diverged: AMSR‐E
leveled off, but MODIS rapidly increased with SZA driven
by an increase in cloud optical thickness. In addition, while
the SZA dependence of microwave estimates was relatively
insensitive to scene type, the increase in MODIS LWPs with
SZA was significantly larger in heterogeneous than in
homogeneous clouds. Only in the most homogeneous
clouds did VNIR LWPs show SZA dependence qualitatively
similar to microwave LWPs. These findings suggested that
microwave‐VNIR differences at high latitudes were largely
due to 3‐D effects in 1‐D MODIS retrievals over hetero-
geneous clouds at low Sun.
[77] Such heterogeneity effects were significantly reduced

at lower latitudes; hence, they were unlikely to play a major
role in the emergence of the coherent tropical LWP bias
patterns. A more likely candidate was systematic errors in
the Wentz cloud temperature parameterization, which we
evaluated against MODIS cloud top temperatures. Although
the global mean cloud temperature bias was only −1.5°C,
regional errors were as high as ±6°C and showed geographic
variations similar to LWP bias variations. In marine Sc (over
colder oceans) the Wentz parameterization underestimated,
while in cumuliform clouds (over warmer oceans) over-
estimated liquid temperature, resulting in moderately strong
(R = 0.6–0.8) large‐scale correlations between temperature
error and LWP bias in Sc transition regions.
[78] Systematic errors in standard MODIS LWP due to

geographic variations in vertical cloud stratification might
have also contributed to the tropical LWP bias patterns.
Although the adiabatic model removed the MODIS high
bias in a global mean sense, regionally it represented an
improvement in marine Sc only, while exacerbated differ-
ences in cumuliform clouds where standard MODIS gen-
erally underestimated AMSR‐E. Motivated by this, we
investigated if MODIS effective radius difference offered
some clues about vertical cloud stratification. We found that
relative variations in 1.6–3.7 mm effective radius difference
also showed similar large‐scale patterns as microwave‐
VNIR LWP bias, resulting in significant correlations (R =
0.7–0.9) between the quantities. However, effective radius
difference was mostly positive; thus, its sign was generally a
poor indicator of the sign of LWP bias. We realize that
interpreting the information content of MODIS near‐
infrared channels is rather ambiguous; nevertheless, we
believe these apparent large‐scale correlations do warrant
further study.
[79] Finally, we investigated cloud‐rain partitioning

uncertainties in Wentz retrievals, prompted by the fact that
AMSR‐E increasingly underestimated MODIS at LWPs
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above the microwave precipitation threshold. The fixed rain
threshold of only 180 g m−2 resulted in a significant number
of rain‐free clouds being processed as raining clouds. We
found that the AMSR‐E low bias could be well explained by
the Wentz algorithm erroneously assigning an increasing
portion of the liquid water content of such clouds to pre-
cipitation. In fact, when rain retrieval was completely turned
off, AMSR‐E LWPs compared significantly better with
MODIS values, but now exhibited slight overestimations.
The agreement between microwave and VNIR estimates
was best when rain removal was only turned off for rain
rates below 1.5 mm/hr. Taken together, these findings
indicated that the Wentz precipitation threshold was too low.
[80] Of the potential error sources listed above, the ones

affecting microwave retrievals appear somewhat easier to
tackle. The sensitivity of Wentz LWPs to cloud temperature
uncertainties could be straightforwardly evaluated by repla-
cing the current parameterization with MODIS cloud top
temperatures. Some progress could also be made in deriving
a more realistic cloud‐rain partitioning formulation, either
from CloudSat retrievals or cloud‐resolving models. Quan-
tifying and correcting for VNIR retrieval errors due to het-
erogeneity effects or cloud vertical stratification remain
significantly more challenging. Perhaps a statistical inver-
sion technique utilizing 3‐D radiative transfer calculations in
a large number of simulated cloud fields offers the best hope
to handle such errors in an operational context.
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