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ABSTRACT

To determine return values at various return periods for extreme daily precipitation events over complex

orography, an appropriate threshold value and distribution function are required. The return values are

calculated using the peak-over-threshold approach in which only a reduced sample of precipitation events

exceeding a predefined threshold is analyzed. To fit the distribution function to the sample, the L-moment

method is used. It is found that the deviation between the fitted return values and the plotting positions of the

ranked precipitation events is smaller for the kappa distribution than for the generalized Pareto distribution.

As a second focus, the ability of regional climate models to realistically simulate extreme daily precipitation

events is assessed. For this purpose the return values are derived using precipitation events exceeding the 90th

percentile of the precipitation time series and a fit of a kappa distribution. The results of climate simulations

with two different regional climate models are analyzed for the 30-yr period 1971–2000: the so-called con-

sortium runs performed with the climate version of the Lokal Modell (referred to as the CLM-CR) at 18-km

resolution and the Regional Model (REMO)–Umweltbundesamt (UBA) simulations at 10-km resolution.

It was found that generally the return values are overestimated by both models. Averaged across the region

the overestimation is higher for REMO–UBA compared to CLM-CR.

1. Introduction

Although climate change occurs on the global scale, its

impact varies substantially on local and regional scales

(Good and Lowe 2006). Climate projections studying the

effects of rising greenhouse gas concentrations are typi-

cally provided by global circulation models (GCMs).

Since the resolution of the GCMs is rather coarse, the

results need to be scaled down to a smaller scale with

a higher degree of detail (Giorgi and Mearns 1999). This

transfer can be achieved, for example, by dynamical

downscaling using regional (i.e., limited area) climate

models (RCMs) that are driven by GCMs or by analyzed

meteorological fields at their boundaries. The use of the

latter reduces errors in the RCM simulations induced

by biased boundary conditions from the driving data.

However, for future projections GCM-derived boundary

conditions are indispensable.

During the last decade, studying climate change on

the regional scale was a focal point of several international

projects, for example, the Prediction of Regional Sce-

narios and Uncertainties for Defining European Climate

Change Risks and Effects (PRUDENCE; information

online at http://prudence.dmi.dk) or the European Union’s

ENSEMBLES project (information online at http://www.

ensembles-eu.org). Thus, the number of regional climate

change experiments has grown significantly (Solomon et al.

2007). The typical grid size of such regional simulations is

on the order of 50 km (e.g., Frei et al. 2003, 2006; Kunkel

et al. 2002; Bülow 2010). A validation of such model
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results by Beniston et al. (2007) for southern Germany

shows an adequate representation of the 5-yr return

level of daily precipitation but an underestimation of the

spatial variability, which was probably caused by an un-

realistic representation of orography due to the coarse

model resolution. The hypothesis that increased resolu-

tion improves model results can now be tested since

recently two RCM simulations for Europe have become

available with grid resolutions below 20 km: the so-called

consortium runs (CR) with the climate version of the Lokal

Modell (CLM) (Böhm et al. 2006) and the Regional Model

(REMO)–Umweltbundesamt (UBA) simulations (Jacob

et al. 2008), commissioned by the German Federal Office

for Environment Protection, using the REMO regional

climate model (Jacob 2001; Jacob et al. 2007). We use both

RCM simulations for our analysis to assess the spread of

the results. However, due to several differences in the

configuration of the simulations (domain, resolution,

nesting levels, hydrostatic and nonhydrostatic, etc.), the

analysis does not allow one to address the effects of spe-

cific configuration characteristics.

One main concern with regard to the future climate is

related to the frequency of occurrence and the intensity

of extreme events since very often they have a large

impact on society and considerable potential to cause

damage (van den Brink et al. 2005). An extreme weather

event is defined as an event that is rare, that is, has long

return periods, at a particular place and time of year and

falls below the 10th or exceeds the 90th percentile of the

observed probability density function (Solomon et al.

2007). Investigating the regional impact of extreme pre-

cipitation is of particular importance because of its high

spatial variability as well as implications concerning

droughts, floods, or drainage overflows.

Different methods to derive return values (RVs) for

extreme daily precipitation events exist (e.g., Maraun

et al. 2008; Park and Jung 2002; Casas et al. 2007). An

adequate method for describing these rare events is of-

fered by the peak-over-threshold approach, with the ad-

vantage of analyzing a reduced sample with precipitation

events exceeding a certain threshold only (Wilks 2006).

For this approach the generalized Pareto distribution

(GPD), as well as the kappa distribution (KD), was de-

signed. Both distributions are fitted using the L-moments

method (Hosking and Wallis 1987). We investigated the

impact of GPD and KD and varying threshold values

on the RV. GPD was also employed by Paeth and Hense

(2005) for rainfall extremes in the Mediterranean and by

Li et al. (2005) for events in western Australia. Park and

Jung (2002) and Parida (1999) used KD to estimate

rainfall quantiles in Korea and India, respectively. In

addition we assessed the ability of the two RCMs to re-

alistically simulate regional-scale precipitation extremes

at various return periods. Our analysis is intentionally

restricted to the 30-yr period 1971–2000 and to south-

west Germany because of the complex orography, which

should particularly benefit from the high resolution of the

RCM and the high data availability for that region. An

analysis of the mean precipitation of both RCMs for the

same time period and region can be found in Feldmann

et al. (2008).

In section 2 a brief description of the RCMs used is

given. The high-resolution precipitation climatology is

introduced in section 3. Section 4 describes the statistical

methods applied. Results with respect to the appropriate

threshold and distribution function are presented and

discussed in section 5. Section 6 shows the evaluation

of the return values. We close the paper with a short

summary and some conclusions in section 7.

2. Description of models and experiments

Within this study we use the results of two RCM

simulations: the REMO–UBA simulations (Jacob et al.

2008) (grid resolution: 0.0888 ’ 10 km) commissioned

by the German Federal Environmental Agency with the

hydrostatic RCM REMO (Jacob 2001) and the so-called

consortium runs (CLM-CR) (Hollweg et al. 2008) (res-

olution: 0.1658 ’ 18 km) performed with the non-

hydrostatic RCM CLM (Böhm et al. 2006). Both models

were derived from routine weather prediction models

adapted for climate applications. A brief overview of

the models and the simulation setup is given in Table 1.

The model experiments analyzed are taken from sim-

ulations with forcing for the twentieth century and cover

the period from 1971 to 2000. To estimate the natural

variability of precipitation extremes we compared the

three realizations of CLM-CR, which only differ in the

initial conditions of the large-scale internal variability

provided by the driving GCM. We found that the differ-

ence of the 10-yr return values between realization 1 and

the average of all realizations ranges between 212% and

17% in our domain. Averaged across the region the

difference is 20.3% only. Thus, we conclude that the

30-yr period chosen represents a sufficiently long time

span for the comparison of the simulated precipitation

statistics with observations.

Both models were driven with data from the global

climate model ECHAM5 (Roeckner et al. 2006a,b;

Hagemann et al. 2006). The ECHAM5 simulation

(twentieth-century simulation, realization 1) uses observed

anthropogenic forcing for CO2, CH4, N2O, CFCs, O3,

and sulfate initialized by a preindustrial control simula-

tion. This simulation neglects natural forcing from vol-

canoes and changes of solar activity. The grid resolution is

T63 (1.878 ’ 200 km) with 31 vertical layers. ECHAM5
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is run in a coupled mode with the Max Planck Institute

Ocean Model (MPI-OM). The CLM-CR simulations were

nested directly into the ECHAM5 fields. For REMO–

UBA, a two-step nesting was applied. A coarser REMO

simulation at 0.448 resolution is driven by ECHAM5

and provides the boundary values for the high-resolution

REMO–UBA simulation at 0.0888.

Our study area encompasses the region from 47.58 to

49.88N, 7.58 to 10.58E, and covers the federal state of

Baden-Württemberg, Germany (Fig. 1). The horizontal

extent is about 225 km 3 255 km. This area is charac-

terized by complex topography and includes orographic

features like, for example, the Rhine Valley, the Black

Forest, the Swabian Jura, and the valleys of the Neckar

and the upper Danube. The Black Forest extends ap-

proximately in the north–south direction. Its highest

elevation is the Feldberg at nearly 1500 m AMSL, which

is represented by a grid cell elevation of 1041 m for the

REMO–UBA and 952 m for the CLM-CR resolution.

Freiburg (278 m AMSL) with a grid cell height 406 m

for the REMO–UBA and 370 m for the CLM-CR res-

olution is situated west of the Black Forest, that is, to the

windward side of the mountain range with regard to the

prevailing wind direction. On the other side, Stuttgart

(245 m AMSL with grid cell height 340 m for the

REMO–UBA and 286 m for the CLM-CR resolution) is

situated in the lee of the Black Forest. Adjacent to the

Black Forest is the Rhine River to the south and west,

the Danube River to the southeast, and the Neckar

River to the northeast. The Swabian Jura is a high pla-

teau between the Neckar and the upper Danube with an

altitude up to 1000 m AMSL. South of the Danube are

the northern foothills of the European Alps.

3. Observed climatological precipitation

In this paper we use observed daily precipitation data

for the period 1971–2000 interpolated onto the model

grids of both CLM-CR and REMO–UBA to compare

both simulations with observations at their specific spatial

resolution. We call the observed daily precipitation fields

OBS10 at the REMO–UBA resolution and OBS18 at the

CLM-CR resolution.

To derive OBS10 and OBS18 we make use of the high-

resolution (1.259 ’ 2 km) climatology for the Alpine re-

gion (Schwarb 2001; Schwarb et al. 2001; Frei and Schär

1998), explicitly taking into account topography. It is

therefore especially suitable for the complex orography

in the area of interest. In the northernmost part of the

region, these data are combined with the precipitation

climatology of the German Meteorological Service

(Müller-Westermeier 1995) to derive a comprehensive

observation dataset for the evaluation of the RCMs.

Processing of the climatological and daily precipitation

TABLE 1. Description of the CLM-CR and REMO–UBA model setups.

CLM (nonhydrostatic) REMO (hydrostatic)

Reference Doms and Schättler (2002) Jacob (2001)

Doms et al. (2007)

Böhm et al. (2006)

Based on Lokal Modell (LM) Europa Modell (EM) with

parameterizations from ECHAM4

Expt Consortium runs (CLM-CR) UBA simulations (REMO–UBA)

Resolution 0.1658 (’18 km) 0.0888 (’10 km) nested in

0.448 (’50 km) coarse grid

Grid points 257 3 271 109 3 121

Layers 32 (11 layers below 2000 m) 27 (8 layers below 2000 m)

Model domain

corners

Polar stereographic grid with rotated

pole at 39.258N, 1628W

Polar stereographic grid with

rotated pole at 39.258N, 1628W

inner grid

lower left 24.248N, 7.468W 44.938N, 4.878E,

upper left 62.818N, 40.978W 55.298N, 1.618E

lower right 26.498N, 35.818E 45.768N, 18.318E

upper right 67.658N, 63.958E 56.328N, 18.388E

Coarse grid

lower left 19.828N, 7.538W

upper left 64.228N, 50.518W

lower right 21.698N, 37.878E

upper right 68.588N, 77.708E

Dataset citation CLM-CR REMO-UBA

Lautenschlager et al. (2008) Jacob (2008)
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fields is described in detail in Früh et al. (2006) and Früh

et al. (2007), respectively.

The interpolation of point measurements onto a reg-

ular grid generally leads to a smoothing and thus to a

reduction of the variance in the time series. Specifically,

the averaged annual standard deviation of the observed

precipitation exceeding, for example, the 90th percentile

is 17% and 19% lower at 10- and 18-km resolution, re-

spectively, compared to the point measurements. The

reduction of the variance narrows the probability den-

sity function and, thus, results in lower values for the

extreme precipitation events in the interpolated field

compared to the station measurements.

Uncertainties and errors of the observed climatology

are addressed in Frei et al. (2003), who found that the

bias is slightly lower for high precipitation rates than for

lower rates because the rain gauge undercatch depends

on hydrometeor size and hence on precipitation inten-

sity. In winter and at altitudes between 600 and 1500 m

(with a high percentage of snowfall), the undercatch can

be up to 212%, depending on the exposure of the mea-

surement site. The precipitation data employed (OBS10

and OBS18) were not corrected for these errors due to

the lack of information on the exposure of the stations

within the network.

The observed annual cycle of mean precipitation in

southwest Germany (Feldmann et al. 2008) exhibits

higher precipitation in summer than in winter except in

the Black Forest where two maxima exists: one in sum-

mer and a higher one in winter. This enhanced winter

precipitation is caused by orographic lifting mainly on the

western side, which is exposed to the dominant south-

westerly flow regime during this season. The annual

precipitation amount ranges from ;550 mm in the Rhine

Valley to 2000 mm in the Black Forest. There is also

a pronounced lee effect to the east of the Black Forest

with reduced precipitation. For the Rhine, Danube, and

Neckar region the typical annual precipitation amount

range between 600 and 1000 mm and for the Swabian

Jura between 900 and 1400 mm. The seasonal pre-

cipitation sums averaged over the region of interest are

226 mm in March–May (MAM), 285 mm in June–August

(JJA), 228 mm in September–November (SON), and

214 mm in December–February (DJF).

4. Analysis method

a. Peak-over-threshold approach

For the analysis of extreme values, statistical distri-

butions need to be derived that closely fit the climate

parameter in the upper tail of the distribution. For heavy

precipitation events the peak-over-threshold approach

(Wilks 2006) (partial-duration series in hydrology),

which analyzes precipitation events exceeding a suffi-

ciently high threshold only, seems to be most suitable

(Brabson and Palutikof 2000). This approach is an al-

ternative to the classical approach that typically uses

annual or seasonal maximum values.

To fit daily extreme precipitation events a number of

specific theoretical distributions have been proposed.

While the Wakeby and generalized extreme value distri-

butions (Gumbel, Fréchet or Weibull distribution) (Wilks

(2006) refer to the classical extreme value theory (Kharin

and Zwiers 2000), the three-parameter generalized Pareto

distribution (GPD) is especially designed for the peak-

over-threshold approach (Hosking and Wallis 1987). The

cumulative distribution function of the GPD for the

sample x is given by

F
GPD

(x) 5 1� 1�
k

GPD
(x� j

GPD
)

a
GPD

� �1/kGPD

. (1)

Its quantile function (xGPD(F )), which is the inverse of

FGPD(x), is given by

x
GPD

(F) 5 j
GPD

1 a
GPD

1� (1� F
GPD

)kGPD

k
GPD

. (2)

The three parameters of the GPD describe the location

(jGPD) that coincides with the threshold chosen, the

scale (aGPD) as a measure for the dispersion, and the

shape (kGPD).

FIG. 1. Map of the orography of southwest Germany at 10-km

resolution.
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The GPD may be regarded as a special case of the

four-parameter kappa distribution (KD) (Hosking 1994).

The cumulative distribution function of the KD is

given by

F
KD

(x) 5 1� h
KD

1�
k

KD
(x� j

KD
)

a
KD

� �1/kKD

" #1/hKD

(3)

with the quantile function (xKD(F )),

x
KD

(F) 5 j
KD

1
a

KD

k
KD

1� 1� FhKD

h
KD

� �kKD

" #
. (4)

The KD is specified by four parameters: jKD describes

the location, aKD the scale, and kKD and hKD the shape

of the distribution. For hKD 5 1, KD becomes the GPD.

A detailed discussion on the characteristics of GPD and

KD can be found in Hosking and Wallis (1987) and

Hosking (1994).

b. Percentiles

To investigate the impact of different thresholds on

the return values we extract precipitation events ex-

ceeding the 83th, 85th, 90th, 95th, and 97th percentiles

for all days (including the dry ones) and, thus, obtain

a fixed sample size (Nthr) for each grid point and per-

centile. The different samples are called Pthr 5 P83, P85,

P90, P95, and P97. To make sure that the exceedances in

our sample are mutually independent, that is, that they

do not belong to the same precipitation event, we re-

quire that the precipitation events are separated by at

least two dry days. Dry days are defined as days with less

than 1 mm precipitation. This requirement leads to a

smaller total sample size (nindep) and, thus, a smaller

threshold for the particular percentile. For the sample

that is finally used to fit the distribution functions we

selected the largest independent precipitation events

at each grid point where the sample size (Nthr) only

depends on the season (90 for DJF and 92 for JJA) and

percentile (Pthr) considered.

Figure 2 shows the number of independent pre-

cipitation events for JJA and DJF. In JJA short-term

convective precipitation events dominate, especially over

the northern foothills of the Alps. Thus, the number of

independent precipitation events exceeding 1 mm day21

(nindep) is high, especially over the southeast of the do-

main (Fig. 2a). The maximum and minimum nindep yields

620 and 410 events in JJA of 1971–2000. In DJF nindep is

distinctly lower with a maximum and minimum of 500

and 326 since synoptic-scale precipitation events usually

tend to last several days (Fig. 2b). The spatial pattern of

nindep mainly reflects the orography. The maximum nindep

can be found over the ridge of the Black Forest.

In Fig. 2 we also see that, when a threshold of P83 or

P85 is chosen, nindep is lower than the necessary number

Nthr for the peak-over-threshold approach at some grid

points. These grid cells can be identified in Fig. 2 by the

light gray (first) color for P85 and, additionally, the

slightly darker gray (second) color for P83. In DJF nindep

falls below Nthr very often. In these cases the sample is

filled up to the fixed Nthr with precipitation days with

very low intensities.

c. L-moments

Usually, sample moment statistics is used to fit

an observed sample to a postulated distribution. The

FIG. 2. Map of the number of independent precipitation events exceeding 1 mm day21 for

(a) JJA and (b) DJF.

1 MAY 2010 F R Ü H E T A L . 2261



disadvantages of moment statistics are that it is bounded

with limits depending on the sample size and that, in

many small or moderate samples, skewness and kurtosis

rarely take values anywhere near the population values

(Hosking and Wallis 1997). Thus, the estimated pa-

rameters of the distributions fitted by the method of

moments are often markedly less accurate than those

obtainable by other estimation procedures such as the

method of maximum likelihood (Hosking 1990), which

picks the values of the model parameters that make the

data most likely for a fixed set of data and the selected

distribution function. As a further approach, we use the

method of L-moments because the required computa-

tional effort is quite small compared to other traditional

techniques, such as maximum likelihood, and because

L-moment estimators have better sampling properties

than the method of maximum likelihood or the method

of conventional moments (Zwiers and Kharin 1998).

Hosking and Wallis (1997) showed that L-moments are

efficient in estimating parameters of a wide range of

distributions from small samples. The main advantage of

L-moments is that, being a linear combination of data,

they are less influenced by outliers.

The L-moments are in some way analogous to the

traditional moments of a distribution describing the

mean, variance, skewness, and kurtosis of a statistical

distribution. The estimation of the sample L-moments

is based on a sample of size Nthr, arranged in ascending

order. Let x1 # x2 # � � � # xNthr
be the ordered sample

time series. At first an estimator for the probability

weighted moment is determined via

b
0

5
1

N
thr

�
Nthr

k51
x

k
;

b
r
5

1

N
thr

�
Nthr

k5r11

(k� 1) (k� 2) . . . (k� r)

(N
thr
� 1) (N

thr
� 2) . . . (N

thr
� r)

x
k
,

r . 0. (5)

The first four sample L-moments are defined by

l
1

5 b
0

l
2

5 2b
1
� b

0

l
3

5 6b
2
� 6b

1
1 b

0

l
4

5 20b
3
� 30b

2
1 12b

1
� b

0
. (6)

The parameter estimates for the distribution functions

are obtained by equating the first p sample L-moments

to the corresponding distribution quantity. Such ex-

pressions have been obtained for many standard distri-

butions (Hosking and Wallis 1997) including the GPD

and KD.

To ensure the existence [Eqs. (7a) and (7b)] and

uniqueness [Eqs. (7c) and (7d)] of the L-moments for

KD, the following requirements must be fulfilled

(Hosking 1994):

(a) k
KD

.�1

(b) h
KD

k
KD

,�1 if h , 0

(c) h
KD

.�1

(d) k
KD

1 0.725h
KD

.�1.

(7a--d)

The L-moments for GPD are defined for kGPD . 21

(Hosking and Wallis 1997).

d. Return values

To determine the return value (RV) of the time series

(xk, k 5 1, . . . , Nthr) for the return period (T ), we first

define the crossing rate (l) as the expected number

of events exceeding the threshold per year or season

(Brabson and Palutikof 2000):

l 5
N

thr

n
years

. (8)

The number of exceedances in t years can then be cal-

culated via

l
x

5 lt(1� F(x)), (9)

with F(x) from Eq. (1) or Eq. (3). The RVs are defined

as the precipitation intensity that is exceeded by one

annual or seasonal extreme with a probability of 1/T.

Therefore, lx in Eq. (9) can be set to unity, x to RV, and

t to T:

1� F(RV) 5
1

lT
. (10)

Note that the relation between F(RV) and T depends on

Nthr. Inserting Eq. (10) into Eq. (2), the quantile func-

tion for GPD becomes

RV
GPD

5 j
GPD

1 a
GPD

1� (lT)�kGPD

k
GPD

(11)

TABLE 2. Percentiles F(RV)(%) assigned to the return periods (T )

for P90 in JJA/DJF.

JJA/DJF T(yr)

89.13/88.89 1.00

97.83/97.78 5.00

98.91/98.89 10.00

99.78/99.78 50.00

99.89/99.89 100.00
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and for KD:

RV
KD

5 j
KD

1
a

KD

k
KD

1� 1� (1� 1/lT)hKD

h
KD

" #kKD

8<
:

9=
;.

(12)

The cumulative probability values for a given return

period (T) calculated for P90 of the JJA and DJF sam-

ples are listed in Table 2. Inserting Eq. (8) into Eq. (10)

allows one to compute the percentiles as the cumulative

distribution function (F(RV)). Since the number of ex-

ceedances (l) is higher for JJA than for DJF, the per-

centiles belonging to the respective return periods are

also higher.

Here F(RV) can be estimated empirically for each of

the observed precipitation time series (xk, k 5 1, . . . ,

Nthr) by simply ordering the data from the smallest (x1)

to the largest (xNthr
), and calculating an empirical value

of F(xk) from the ranked position of xk (Palutikof et al.

1999). These estimates are known as the plotting posi-

tions, which can be calculated (Gumbel 1958; Makkonen

2007) via

F(x
k
) 5

rank(x
k
)

N
thr

1 1
. (13)

Since the sample xk is in ascending order, rank(xk) 5 k.

The corresponding return period, T̂k, can be calculated

from Eq. (13) using Eq. (10):

T̂
k

5
1

l(1� F(x
k
))

5
N

thr
1 1

l(N
thr

1 1� k)
. (14)

FIG. 3. Gumbel plots for two different grid cells close to the cities of (a),(c) Stuttgart and (b),(d) Freiburg

for (a),(b) JJA and (c),(d) DJF. The blue (red) curves depict the return values of the KD (GPD). The solid (dotted,

dashed) lines refer to the P90 (P85, P95) threshold. The black dots display the plotting positions of the ranked data.

FIG. 4. Domain-averaged RMSE between the plotting positions

of the ranked data and the fitted RV for P83, P85, P90, P95, and

P97 for KD (dark gray or cross hatched) and GPD (light gray or

hatched) in JJA (solid) and DJF (hatched).

1 MAY 2010 F R Ü H E T A L . 2263



To estimate the sampling uncertainty with respect to

the RV, we follow a practical approach using a para-

metric bootstrap method (Zwiers and Kharin 1998) with

500 synthetic samples. The 5th and 95th percentiles of

the resulting collection of RV estimates are then used as

lower and upper 90% confidence bounds for the true

RV. This procedure accounts for the uncertainty due to

the short-term natural variability (Kendon et al. 2008).

The presence of variability on longer time scales (e.g.,

multidecadal) could lead to an additional uncertainty.

In addition, we compute the signal-to-noise ratio,

which is the ratio of the synthetical mean return value

divided by the 90% confidence interval. If the ratio is

small, then the estimation of the RV is uncertain.

5. Results for an appropriate threshold and
distribution function

In this section we investigate the dependence of the

return value on the choice of the threshold and distri-

bution function (see section 4). For this purpose we

compare the fitted RV for several thresholds and the two

distribution functions with the plotting positions of the

ranked precipitation events. These investigations are

performed employing the OBS10 dataset.

a. Gumbel plots for Stuttgart and Freiburg

Figure 3 displays the Gumbel plots for two grid points

close to Stuttgart and Freiburg for JJA and DJF. The

geographic positions of these cities are indicated in Fig. 1.

The percentiles and probabilities assigned to the return

period (T) on the abscissa are listed in Table 2 for the P90

sample.

The fitted RV for the thresholds displayed are very

similar for T shorter than about 5 yr. Only for longer

T do the thresholds have a noticeable effect on the re-

sulting RV. The fitted RV and their variability due to the

different thresholds and distribution functions are higher

in JJA than in DJF. The variability of the RV is larger in

FIG. 5. Map of the RMSE between the plotting position and the fitted RV for P90 for (a),(c) KD

and (b),(d) GPD in (a),(d) JJA and (c),(d) DJF.
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Stuttgart, in the lee of the Black Forest, than in Freiburg

in its luff. In Stuttgart, especially, the P95 threshold leads

to very high RV for long T from the GPD in JJA. This

heavy tail is caused by the very low value for the shape

parameter (kGPD 5 20.24) for this sample fit.

The fitted RV for P90 are higher for KD than for GPD

for T longer than about 2 yr. The difference between the

return values of KD and GPD increases with increas-

ing T. Averaged across the region, the deviation between

the RV resulting from KD and GPD is low, especially

for T shorter than about 10 yr (,65%). The difference

in the spatial distribution of the RV between both dis-

tributions is also very low (not shown).

b. Root-mean-square deviation of the return values to
the plotting positions

However, from these figures it is difficult to decide

which threshold and distribution function best fits the

plotting positions. To investigate this deviation systemat-

ically we calculated the root-mean-square error (RMSE)

between the plotting position of the ranked data and the

return values resulting from the fitted distribution func-

tions for each threshold and distribution function at each

grid cell. For this purpose the RMSE is calculated for

the 3% (’80) largest precipitation events to ensure the

comparability between the different thresholds chosen.

Since the RMSE is based on the square of the difference,

it is very sensitive to large deviations.

Figure 4 shows the RMSEs between the plotting po-

sition of the ranked data and the fitted RV for P83, P85,

P90, P95, and P97 averaged across the region for KD and

GPD in JJA and DJF.

In general, the RMSE is relatively low (,2 mm day21).

Here KD yields a lower RMSE than GPD except for the

high thresholds P95 and P97 in DJF. In JJA, KD yields the

lowest RMSE for P83 and GPD for P85.

The higher RMSE for higher thresholds can be ex-

plained by the smaller sample size and thus a higher

weight for a single event fitting the distribution function.

A small change in the number of events per class has

a large impact on the resulting shape of the distribution

function and, thus, a considerable influence on the dif-

ference between the fitted RV and the ranked obser-

vations. In addition, at the far end of the distribution

very often only one event per class exists. This discrete

character of the binned dataset cannot be represented

by any distribution function. By chance, in case of a small

sample the fourth parameter of KD can even worsen the

fit since the weight of a single event increases with the

number of free distribution parameters.

On the other hand, a low threshold leads to a dataset

with many moderate events affecting the fit of the dis-

tribution function. This fit, which also includes more

moderate events, leads to an increased RMSE in the

case of GPD on the one hand but a decreased RMSE

in the case of KD on the other since the additional

parameter of KD enables a better fit to the binned data.

This higher flexibility exhibits an advantage of KD

over GPD.

The RMSE is smaller in JJA than in DJF except for

GPD at P83 and P85.

The spatial variability of the RMSE for P90 can be

inferred from Fig. 5. The maximum RMSE is situated in

the region around Karlsruhe and in the southeast of the

domain. The lowest RMSE can be found in the Neckar

region in DJF. The largest spatial variability occurs for

GPD with 0.21–3.7 mm day21 in DJF (Fig. 5d). The

maximum RMSE for KD amounts to 2.7 mm day21 in

DJF (Fig. 5c). In JJA the maximum RMSE is lower for

both distribution functions with values of 3.3 mm day21

for GPD and 2.2 mm day21 for KD.

c. Confidence intervals for the 10-yr return value

Figure 6 shows the width of the confidence interval at

the 90% significance level for the 10-yr return value

(RVT510) for P83, P85, P90, P95, and P97 averaged

across the region for KD and GPD in JJA and DJF. As

could be expected, the width of the confidence interval

and thus the uncertainty increases with an increasing

threshold (decreasing sample size) except for KD at P97.

The width of the confidence interval of GPD is smaller

than that of KD. This can be explained by the higher

degree of freedom in the case of the kappa distribution

with four parameters. For the three-parameter GPD

only two parameters are fitted to the data. The third

parameter is fixed by the threshold chosen. The higher

degree of freedom increases the uncertainty for KD.

FIG. 6. Domain-averaged width of the confidence interval at the

90% significance level for the RVT510 for P83, P85, P90, P95, and

P97 for KD (dark gray or cross hatched) and GPD (light gray or

hatched) in JJA (solid) and DJF (hatched).
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The increase of the width with increasing threshold is

stronger for GPD than for KD. For high thresholds (P95

and P97), that is, small sample sizes, the width of the

confidence interval of GPD is almost as large as for KD.

The width of the confidence interval is smaller for shorter

return periods compared to longer ones (not shown).

Figure 7 shows a map of the width of the confidence

interval at the 90% significance level for the RVT510 for

the P90 sample for KD (panels a and c) and GPD

(panels b and d) in JJA (panels a and b) and DJF (panels

c and d). The spatial pattern of the width of the confi-

dence interval partly reflects the number of independent

precipitation events, which is displayed in Fig. 2.

Comparing Fig. 7 with Fig. 2 (and also Figs. 9 and 10),

it becomes apparent that the confidence interval is wid-

est in regions with many independent events (nindep) and

large RVT510. Investigating the correlation between

nindep and the RVT510 obtained from the sample, we

found that the minimum RVT510 of the sample is largest

in the mountainous areas of the Black Forest and the

alpine foreland in summer as well as winter. In addition,

we found that the range of the sample (maximum minus

minimum sample RVT510), that is, the spread of the

RVT510, is largest in areas where nindep is largest.

To conclude, the RV of both distributions do not

differ significantly from the RV of the undistributed,

ranked data. Although there is no large difference be-

tween the RV of the two distributions, we choose to base

our further analysis on the KD with the P90 threshold

since the RMSE between the fitted RV and the plotting

positions is lower for KD than for GPD and KD is more

flexible than GPD. The choice of threshold becomes

important only for long return periods.

d. Signal-to-noise ratio

Figure 8 shows the regional averaged signal-to-noise

ratio of OBS10 for the total region in JJA and DJF. In

FIG. 7. Map of the width of the confidence interval at the 90% significance level for the RV
T510

for P90 for (a),(c) KD and (b),(d) GPD in (a),(b) JJA and (c),(d) DJF.
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general, the signal-to-noise ratio decreases with in-

creasing return period. The higher uncertainty for rarer

events is a consequence of their smaller sample size.

Because of the high uncertainty of the RV for long T, we

analyze return values with return periods up to 10 yr. In

this case our samples have an uncertainty less than about

one-third of the RVT510, which we consider acceptable.

6. Evaluation of return values

Figure 9 shows the map of the 10-yr return value

(RVT510) of OBS10 (panels a and c) and REMO–UBA

(panels b and d) for JJA (panels a and b) and DJF

(panels d and e). The corresponding maps for the CLM-

CR simulation in comparison with OBS18 are given in

Fig. 10. For REMO–UBA and CLM-CR a running 3 3 3

average is applied to the RVT510 to account for the ef-

fective model resolution, which is known to be coarser

than the numerical grid size.

The spatial pattern of RVT510 is very similar for both

models and the observations. REMO–UBA simulates

a more distinct rise of RVT510 on the western side of

the Black Forest and the northern foothills of the Alps

compared to OBS10 or the coarser resolved fields of

CLM-CR and OBS18. This pattern can partly be ex-

plained by the higher resolution of REMO–UBA com-

pared to CLM-CR. Another part has to be attributed to

the formulation of those processes in REMO that affect

the redistribution of the atmospheric water. It originates

from excess precipitation on the windward side of oro-

graphic slopes and a comparable deficit in their lee. This

characteristic of the REMO–UBA simulation persists

throughout the seasons and return periods. It was also

found for the mean precipitation (Feldmann et al. 2008).

This orographically induced misplacement becomes

particularly apparent when considering the cross section

through the map of RVT510, for example, at 48.58N,

displayed in Fig. 11. Figure 11a refers to the REMO–

UBA resolution. The black columns, corresponding to

the right ordinate, show the elevation of the grid cells.

The simulated RVT510 is indicated by the blue lines

(JJA: solid, DJF: dashed) and the observed RVT510 by

the green lines. Obviously, REMO–UBA simulates the

maximum RVT510 west of the mountain ridge, whereas

it is observed on its top. This pattern is also present,

though attenuated, at the Swabian Jura especially in

DJF. The same pattern evolves for the CLM-CR simu-

lation (Fig. 11b, red lines) but with a distinctly weaker

amplitude than for REMO–UBA.

The high RVT510 over the mountainous regions leads

to a broader simulated spreading of RVT510 in the

REMO–UBA simulation than in the CLM-CR simula-

tion (Table 3). The observed RVT510 of OBS10 and

OBS18 is very similar and its variation throughout the

region is even lower than for CLM-CR. The intensity

of the simulated RVT510 is distinctly higher due to a

general overestimation of precipitation by both regional

models. The overestimation of the domain-averaged

mean precipitation amounts to 19% and 15% in JJA

and to 120% and 148% in DJF, respectively (Feldmann

et al. 2008). On average, RVT510 is lower in DJF than

in JJA but the simulated spreading within the region is

much larger in DJF than in JJA. This is due to the very

high RVT510 in the Black Forest.

The difference between OBS10 and OBS18 is small.

Estimating the areal reduction factor (ARF) relating

RVT510 at station observations (245 measuring sites)

to the corresponding grid cell values for OBS10 and

OBS18 leads to an ARF of 0.896 for 100 km2 and 0.883

for 324 km2, respectively, that is, a reduction of about

1.5% on average. This result is consistent with the

reduction given by NERC (1975) from ARF 5 0.94

at 100 km2 and ARF 5 0.92 at 300 km2 (22%). The

minimum RVT510 within the region is slightly lower

for OBS10 compared to OBS18. The regional maxima

of OBS10 and OBS18 are almost identical in JJA but

higher for OBS10 than for OBS18 in DJF. The small

FIG. 8. Domain-averaged signal-to-noise ratio as a function of

the return period (T ) of OBS10 in JJA (solid) and DJF (dashed).

The gray horizontal line depicts the signal-to-noise value of three.

TABLE 3. Regional averaged (avg), minimum (min) and maximum

(max) RVT510 (mm day21) in JJA and DJF.

JJA DJF

Avg Min Max Avg Min Max

REMO-UBA 63 41 179 45 17 188

CLM-CR 54 32 88 41 18 118

OBS10 44 27 78 36 17 82

OBS18 44 28 78 36 18 77
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difference in the RVT510 may be caused by the relatively

small difference between the resolutions for OBS10

and OBS18: 10 and 18 km, respectively. Neither of

the resolutions resolve the scale of convection—just

the major topographical scales. A stronger dependence

of the RVT510 field on the resolution can be expected

for much higher or coarser resolutions that can resolve

convection or use a broader averaging across the

orography. Additionally, the interpolation scheme re-

duces the standard deviation of the time series at each

grid point and, thus, smoothes the RV regionally. Be-

cause of the small difference between OBS10 and

OBS18, we conclude that the different resolution is

responsible for only a minor part of the difference be-

tween the two RCM simulations. The larger part is

caused by the differences induced by differences in the

RCMs themselves.

Figure 12 shows the percentage deviation of the sim-

ulated to the observed RVT510 of REMO–UBA to

OBS10 (panels a and c) and CLM-CR to OBS18

(panels b and d) for JJA (panels a and b) and DJF

(panels c and d).

In JJA, REMO–UBA and CLM-CR generally over-

estimate the observed RV
T510

on average by 145%

(range: 26% to 1141%) and 124% (range: 25% to

152%), respectively. For coarser resolution extreme pre-

cipitation is usually underestimated. This is in part caused

by insufficient representation of the orography and in-

terrelated processes. Frei et al. (2003, 2006) found that

the extreme rainfall in the alpine region is generally

underestimated by models at 50-km resolution. For that

study simulation results of both REMO and CLM (there

named GKSS for the Forschungszentrum Geesthacht Re-

search Center) are analyzed. Semmler and Jacob (2004)

also found that REMO version 5.1, driven by the global

climate model HadAM3H at 0.58 resolution, shows

a tendency to underestimate the 10-yr and 20-yr RV in

southern Germany. In contrast, the overestimation at

FIG. 9. Map of RVT510 for (a),(c) OBS10 and (b),(d) REMO–UBA for (a),(b) JJA and

(c),(d) DJF.
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higher resolutions may be due to inappropriate pa-

rameterizations in the RCMs.

The highest deviation of REMO–UBA to OBS10 is

located at the western slope of the Black Forest. The

deviation pattern of CLM-CR is not as strongly corre-

lated with the orography as REMO–UBA. As visualized

in Fig. 11, REMO–UBA overemphasizes the orographic

influence in DJF even stronger than in JJA (average

deviation 131%, range 268% to 1342%). Again, this

effect is distinctly weaker for CLM-CR (average de-

viation 113%, range, 239% to 1205%).

The seasonal RV
T510

of OBS10, REMO–UBA, and

CLM-CR averaged across the total region is displayed in

Fig. 13a. The percentage deviation of REMO–UBA to

OBS10 and of CLM-CR to OBS18 is shown in Fig. 13b.

Averaged across the total region OBS10, REMO–

UBA, and CLM-CR simulate the maximum RVT510 in

JJA, followed by SON and DJF, and the minimum

RV
T510

in MAM. The simulated annual cycle of RV
T510

has a distinctly larger amplitude than the observations.

REMO–UBA and CLM-CR overestimate the seasonal

RV
T510

in all seasons except MAM. The overestimation

of REMO–UBA in JJA, SON, and DJF is more distinct

than that of CLM-CR. The underestimation in MAM is

larger for CLM-CR than for REMO–UBA. The maxi-

mum deviation of the simulated RVT510 can be found

in JJA with an overestimation of more than 140% by

REMO–UBA and about 120% by CLM-CR. In the

other seasons the deviation is much smaller.

Figure 14 shows the domain-averaged RV of OBS10,

REMO–UBA, and CLM-CR as a function of T between

0.5 and 100 yr (panel a) and the percentage deviation of

the REMO–UBA (blue) and CLM-CR (red) to the ob-

served RV Obviously, both REMO–UBA and CLM-CR

overestimate the observed RV in JJA as well as in DJF.

In JJA the deviation to the observed RV increases

with increasing T. That means the accordance between

REMO–UBA and OBS10 or CLM-CR and OBS18 is

FIG. 10. Map of RVT510 for (a),(c) OBS18 and (b),(d) CLM-CR for (a),(b) JJA and

(c),(d) DJF.
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higher for frequent events with low intensities than for

rare events with high intensities. Here, CLM-CR results

in better agreement than REMO-UBA. In DJF the in-

crease of the deviation with increasing T is lower than in

JJA. Even a decreasing relation is found for CLM-CR.

The reasons for this overestimation might be manifold.

1) The mean precipitation is also distinctly overestimated

by both REMO–UBA and CLM-CR (Feldmann et al.

2008). 2) One part of the distinctly high deviation in the

Rhine Valley especially for REMO–UBA is induced by

the misplacement of the orographically induced pre-

cipitation in the western Black Forest (Fig. 11). 3) The

systematic undercatch of the rain gauge measurements,

especially in DJF, results in a lower observed precipi-

tation amount than really fell. This causes a seeming

overestimation of the simulated precipitation. 4) The

spatial interpolation of the observations also leads to

a smoothing of the rainfall, especially for the extreme

events, and thus to possibly lower values in the in-

terpolated field compared to the ‘‘true’’ intensities. 5)

The stronger overestimation of REMO–UBA compared

to CLM-CR may, to some extent, be caused by the

higher resolution of REMO–UBA since a coarser

resolution smoothes extreme events.

7. Summary and conclusions

We discussed the ability of the peak-over-threshold

approach to derive return values (RVs) for extreme daily

precipitation events. The advantage of this approach is

the focus of the analysis on heavy precipitation events

since the sample is reduced to events exceeding a certain

threshold. To analyze the same number of independent

precipitation events across all grid points we applied a

relative threshold. However, in some regions this leads

to a sample not only containing heavy but also moderate

precipitation events, particularly in winter. For the peak-

over-threshold approach several distribution functions

like the generalized Pareto distribution (GPD) and the

more general kappa distribution (KD) were designed to

represent the frequency of occurrence of the sample. To

fit these distribution functions to the sample we used the

L-moment method. Because of the complex orography,

which particularly benefits from the high resolution of the

RCM and the high data availability, we performed our

analysis for southwest Germany for the 30-yr period

1971–2000.

We investigated the sensitivity of the RVs at various

return periods on several threshold values and the dis-

tribution functions GPD and KD. We found that 1) the

number of independent precipitation events larger than

1 mm day21 is at some grid points too low to allow a

threshold below the 90th percentile (e.g., P83 and P85),

2) the deviation between the fitted return values and the

plotting position of the ranked precipitation events is

smaller for the KD than for the GPD, 3) with increasing

threshold (i.e., decreasing sample size) the deviation in-

creases, 4) the width of the confidence interval is smaller

for the GPD than for the KD due to the lower number of

free parameters at GPD, and 5) the width of the confi-

dence interval increases with increasing threshold. This

means that the KD yields RVs closer to the ranked data at

the expense of a higher uncertainty. This especially holds

for low threshold values up to the 90th percentile. We

conclude that it is not necessary for the KD to reduce the

sample to the very small amount of the extreme events as

required for the GPD to yield high accuracy (in terms of

RMSE). This advantage can be ascribed to the additional

parameter of the KD. Thus, we decided that the KD with

a 90th percentile threshold is most appropriate to derive

extreme daily precipitation properties in orographically

structured regions like southwest Germany.

FIG. 11. Cross section through the map of RV
T510

for (a) REMO–UBA and (b) CLM-CR at 48.58N.
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The second focus of this paper is the evaluation of

simulated return values. We assessed the ability of re-

gional climate models to realistically simulate the ex-

treme daily precipitation. We compared the results of

present-day climate simulations for 1971–2000 resulting

from two different RCMs with observations. The RCMs

employed are the so-called consortium runs performed

with the CLM at 18-km horizontal resolution and the

FIG. 12. Map of the percentage deviation of the simulated to the observed RVT510 of (a),(c)

REMO–UBA and (b),(d) CLM-CR for (a),(b) JJA and (c),(d) DJF.

FIG. 13. (a) Domain-averaged seasonal RV
T510

of OBS10 (gray), REMO–UBA (cross hatched), and CLM-CR

(hatched) and (b) the percentage deviations of REMO–UBA to OBS10 and CLM-CR to OBS18.
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REMO–UBA simulations at 10-km horizontal resolu-

tion. We found that the 10-yr RVs are generally over-

estimated by both models. The highest deviation for

REMO–UBA is located at the western slope of the

Black Forest due to a misplacement of the orographic

precipitation. This pattern exists also to a lesser extent in

the more coarsely resolved CLM-CR simulations.

Averaged across the total region both model results

agree with the observations and we find the annual

maximum of the 10-yr return value RVT510 in JJA and

the minimum in MAM. The simulated annual cycle

of RV
T510

has a distinctly larger amplitude than the

observed one. Both models overestimate the seasonal

RV
T510

in all seasons except MAM. The overestima-

tion of REMO–UBA is more pronounced than that of

CLM-CR. The underestimation in MAM is larger for

CLM-CR than for REMO–UBA.

Furthermore, we found that all area-averaged return

values RV are overestimated by both REMO–UBA and

CLM-CR in JJA as well as in DJF. This is in part due to

the general overestimation of the simulated precipitation.

In JJA the deviation from the observed RV increases

with increasing T, which means the agreement between

the simulation results and the observations is higher for

frequent events with low intensities than for rare events

with high intensities. In DJF the increase of the deviation

with increasing T is less than in JJA for REMO–UBA.

Even a decreasing relation is found for CLM-CR.

The regional climate models reproduce the charac-

teristics of the annual cycle and the spatial distribution

well. However, they have some difficulties in producing

realistic return values, especially for longer return pe-

riods. In contrast to coarser-resolved simulations (Frei

et al. 2003) higher resolution leads to an overestimation

of the return values. Thus, more sensitivity studies and

larger ensembles are necessary to reduce uncertainty of

the model results and to obtain more reliable climate

change information on the regional scale.
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