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[1] On the basis of observational precipitation data at a temporal resolution of 5 min from
six stations in Germany we obtain scaling relations of the probability distributions of
precipitation intensity with temperature and time scale. Each station record contains an
approximately 30 year time series of data. By producing a cascade of averaging intervals,
we obtain the behavior of precipitation intensity from the instantaneous to the daily
resolution. While the intensity distribution of the shortest time scale displays a strict power
law tail, it acquires a more elaborate scaling when temperatures are distinguished or when
precipitation and dry periods are mixed at longer averaging intervals. The coefficient of
increase with temperature is a continuously and strongly varying function of temperature and
percentile and does not show an abrupt increase as noted in previous work. Conversely,
when considering precipitation events, we find that the temperature dependence is reduced
when the amount, not the intensity, of total precipitation produced is considered. As
temperature increases, event duration decreases and reduces the accumulated precipitation
yield. We caution that the Clausius‐Clapeyron relation may not provide an accurate
estimate of the temperature relationship of precipitation at any temporal resolution.
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1. Introduction

[2] Precipitation events that persist throughout different
time scales can lead to substantially different effects such as
local flooding, erosion, and traffic disruptions on the short
scales to large‐scale flooding and water damage on longer
scales. On the one hand, it is a difficult task to make pro-
jections of future precipitation changes due to a suspected
global temperature increase [Allan and Soden, 2008] as a result
of increased greenhouse gases. If the troposphere would warm
at a rate similar to that of the surface, the vertical temperature
gradient would be left relatively unchanged. Researchers
have not converged on predictions of even the sign of pre-
cipitation changes as a consequence of the projected global
warming [Held and Soden, 2006; Solomon et al., 2007].
[3] On the other hand, there is additional debate about

the temperature dependence of precipitation intensity in
present‐day rainfall statistics. The temperature changes we
are concerned with in this paper are caused (mainly) by nat-
ural fluctuations and not by human‐induced climate changes.
Such temperature changes can be brought about, e.g., by the
diurnal and annual cycles of solar irradiation and dynamical
temperature changes. We believe that the difficulty in under-
standing the temperature dependence of precipitation inten-

sity in such data lies partly in the complexity of the temporal
scaling of precipitation.
[4] In general, the process of generating precipitation from

atmospheric moisture is dependent on the upward motion of
moist air and the rate at which the saturation value is reached
in this process. One basic physical principle that has been
discussed in the literature [Allen and Ingram, 2002; Trenberth
et al., 2003; Pall et al., 2007; Emori and Brown, 2005; Allan
and Soden, 2008] is the Clausius‐Clapeyron (C‐C) relation
describing an increase in the atmosphere’s moisture holding
capacity of about 7% for a temperature rise by 1 K. Under
conditions of rather constant relative humidity, precipitable
water would scale with the saturation value. At least extreme
precipitation, where essentially all the water already contained
in the atmosphere is released, could scale with the moisture
storage limit under these assumptions. However, the situation
may be quite different for precipitation means where the large‐
scale dynamics and the atmosphere’s energy budget appear to
play key roles [Allen and Ingram, 2002]. Hence, an analysis of
the entire intensity distribution function is essential.
[5] Furthermore, neither the impact of the averaging period

nor the dependence on percentile becomes apparent from
previous studies as they have been carried out for accumu-
lation intervals of comparably low resolution. The tempera-
ture dependence and scaling across time scales have so far not
been presented in a comprehensive way.
[6] Some recent studies have attempted to investigate

changes in precipitation percentiles more quantitatively by
statistical analyses of high‐resolution data [Lenderink and
van Meijgaard, 2008; Haerter and Berg, 2009; Berg et al.,
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2009]. Lenderink and van Meijgaard [2008] have discovered
that extreme precipitation could increase at a rate twice as
large as that of the C‐C relation for hourly durations. The
authors state several assumptions under which an increase at
the C‐C rate could be expected for the higher percentiles but
find this not to be observed, especially for short time scales.
Haerter and Berg [2009] caution that the strong increase may
be due to statistical effects, and the mechanism leading to
such extreme increases should be investigated further. How-
ever, both studies agree that large discrepancies may appear in
data that are averaged on different time scales and that a critical
inspection of the C‐C comparison is required. In particular,
the period over which precipitation intensity (I) is averaged,
before being analyzed statistically, is of crucial importance.
[7] To address the question of changes of the entire dis-

tribution function both in relation to temperature and to the
time scale, we perform a systematic statistical analysis of
the scaling of temperature‐conditional intensity distributions
across temporal resolutions. The structure of the article is as
follows. We first state the source of the data and our general
statistical methods (section 2). In section 3 we discuss our
results on scaling with temperature and temporal resolution.
Section 4 contains a summary and states the broader implica-
tions of our work.

2. Data and Methods

[8] We have obtained time series for Germany from the
stations Aachen,Göttingen, Hamburg,Kempten, Saarbrücken,
and Schleswig from the German Weather Service (DWD).

Throughout the text, by “precipitation interval” we mean a
temporal interval that is due to the instrument resolution or
averaging period. Original data were initially recorded on a
chart at a resolution of p0 ≡ 0.1 mm during a 5 min interval;
smaller measurements are considered zero precipitation. The
gauge used is of the Hellmann type, consisting of a collecting
funnel of an area of 200 cm2. The data have been quality
assessed by the DWD and checked against daily sums.
“Precipitation event” refers to a contiguous sequence of pre-
cipitation intervals (section 3.4).
[9] The time series from each station contains roughly

30 years of 5 min precipitation measurements and hourly
temperature measurements. The total number of 5 min inter-
vals with p > p0 is 462,467. We have grouped all data into
one long time series of 190 years with a precipitation and
temperature measurement at time t referred to as (pt, Tt).
Hence, the time series from the different stations are taken
to sample from the same statistical distribution function, and
grouping them all together enhances the signal. In the
present study we are not concerned with spatial correlations
between the stations. For a given time scale Dt we obtain
pairs of averages (I, T), with the average taken over all
periods of duration Dt. We define the intensity cutoff I0 ≡
p0/Dt, which is the lowest measurable intensity at a given
time scale Dt. To compute T‐dependent quantities, we have
binned all data into DT ≡ 2 K bins and evaluated statistical
quantities within each bin. To synchronize the time step to
5 min, we assume T to be constant within the hour where
the measurement was taken. This approximation is sufficient
as our temperature bins allow for fluctuations of up to 2 K
during 1 hour. We have checked this assumption by com-
puting the spectrum of temperature changes within 1 hour
periods with and without precipitation. Binning with 4 K
shows comparable results. For testing purposes, we have
computed probability density functions of I for each station
separately and compared the results. We find the results to
vary little from station to station (not shown).
[10] Switching to a cutoff of 0.2 mm showed that the

results discussed in this paper do not depend on the cutoff
used. As far as the measurement precision of small mea-
surements is concerned, we point out that the cumulative
distribution of larger values will remain unchanged if their
binary recording is correct. An external effect that can impact
on measurement precision is strong winds. These generally
impact more heavily on snow measurements, which we do
not focus on in this paper.

3. Results

3.1. Mean Quantities as Function of Temperature

[11] In Figure 1 we present normalized probability density
functions (PDFs) of various quantities. The distribution of
all occurrences with rain (wet periods) w(T) = r(T |I > I0) is
peaked at intermediate temperatures near 10°C. Here r(T ) is
the probability distribution of all temperature measurements,
irrespective of the presence of rain (Figure 1a). The mean
unconditional precipitation rate (i.e., the precipitation rate
averaged over wet and dry intervals) at a given temperature
is given by ptot(T) =

R
0
∞ I ′rT(I ′)dI ′, where

�T ðIÞ ¼ PðI jT �DT=2 < T ′ < T þDT=2Þ ð1Þ

Figure 1. (a) Normalized distributions of various quanti-
ties by temperature: all occurrences r(T), occurrences with
rain w(T), and total precipitation ptot(T) (right vertical axis).
(b) Functions of the normalized distributions: probability
of rain w(T)/r(T), mean precipitation when raining I(T) =
ptot(T)/w(T) (right vertical axis), and mean precipitation
ptot(T)/r(T). Note that I(T) is cut off at T > 22°C as noise
increases because of data scarcity at the highest tempera-
tures and that units (e.g., 1/K) in probability densities are
dropped for ease of presentation when clear from context.
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specifies the normalized conditional probability of the
intensity I given that the corresponding temperature T′ is
within the bin centered at T. The function ptot(T) is a skewed
distribution with a peak near 13°C.
[12] In Figure 1b we show ratios of these distributions.

The probability of rain w(T)/r(T), given a certain tempera-
ture, peaks and declines at lower temperatures than the mean
precipitation ptot(T)/r(T). Conversely, when the mean pre-
cipitation intensity during wet periods I(T) ≡ ptot(T)/w(T) is
considered, its value increases monotonically with temper-
ature without any sign of saturation. The ratio w(T)/r(T)
measures the likelihood of finding saturation of the atmo-
sphere at a given temperature. At the lowest temperatures
(T < 0°C) this likelihood is low, possibly because of the
dominance of dry continental air in the region at such
temperatures. At higher temperatures the contribution of
moist Atlantic air is larger, and evaporation begins to add
to the available moisture while the saturation vapor pressure
increases. When w(T)/r(T) begins to fall (T > 15°C), the
available moisture possibly no longer suffices to reach the
saturation level [Berg et al., 2009], and mean precipitation
(ptot(T)/r(T)) decreases. However, when it does rain, the
intensity is larger (ptot(T)/w(T)). The exact explanation for
the latter is part of the ongoing discussion, but hypotheses
exist, e.g., in terms of avalanche‐like reactions [Peters and
Neelin, 2006].
[13] In summary, the peak in precipitation totals is due to

simultaneously high I and rain probability. At lower (higher)
temperatures ptot falls off because of generally lower inten-
sities (fewer rain events). Conversely, no peak is found in I
as temperature increases. While the change of the probability
of rain is a question by itself, we are here concerned with wet
period precipitation intensity: to which extent do different
percentiles of precipitation intensity depend on temperature,
and how do average intensities depend on the averaging
period?

3.2. Temporal Scaling of Cumulative Distributions

[14] We now direct our attention to the wet day (I > I0)
distribution functions of precipitation within a given tem-
perature bin. We compute the cumulative distribution func-
tions (CDFs)

�T ðIÞ ¼
Z I

I0

dI ′�T ðI ′Þ ð2Þ

at a given time scaleDt. Here rT is defined as in equation (1)
but only for I > I0. The CDF of total precipitation is

�totðIÞ ¼
Z

dTwðTÞ�T ðIÞ; ð3Þ

where the integral is taken over all T. The CDFs in Figure 2a
are computed from the 5 min precipitation time series. For
I > 2 mm/h it is well approximated by a power law gtot(I) /
Ia + const with an exponent a ’ −1.98 over most of the
intensity range. The proximity of a to the integer value −2
is worth mentioning. While this might be a coincidence,
we note that the physical origin of the slope, such as the
mechanisms of stratiform and convective precipitation, should

be investigated further. The power law decay means that the
likelihood of exceeding the intensity I is four times as large
as that of exceeding 2I, which indicates scale‐free behavior.
Hence, in the power law regime there is no “typical” intensity.
This stands in marked contrast to the case of longer aver-
aging intervals, which we discuss below. In this paper, our
intent is not to engage in the ongoing detailed discussion on
the scaling of gtot(I) [Wilks, 2006; Vrac et al., 2007; Bellone
et al., 2000; Katz et al., 2002; Vrac and Naveau, 2007;
Deidda et al., 1999; Veneziano et al., 2006]. Our focus here is
to analyze the behavior of conditional probabilities where
temperature is restricted to a fixed range: while gtot(I) is a
weighted superposition of gT(I) as indicated in equation (3),
the power law behavior breaks down for the functions gT(I)
when temperatures are distinguished. For higher values of T,
the functions gT(I) contribute more strongly to the high per-
centiles of gtot(I).
[15] To show the effect of the averaging process on the

CDFs, we now rearrange our 5 min data into hourly averages.
Such hourly data have been used previously [Lenderink
and van Meijgaard, 2008]. This “coarsening” of the data
already substantially changes the statistics (Figure 2b). Most
strikingly, the CDF of total precipitation is no longer well
approximated by a power law scaling. Furthermore, a strong
shift toward weaker averaged intensities occurs at any given
percentile, and the overall spread of intensities decreases
between different values of T. A similar effect occurs for
daily averages (Figure 2c). We note that a fit of a stretched
exponential

1� �totðIÞ ¼ exp � I=R0ð Þc½ �; ð4Þ

where R0 is the decay constant, to the distribution of gtot(I)
at the daily scale yields a coefficient c ’ 0.722, a value
very close to the prediction of c = 2/3 by Wilson and
Toumi [2005]. Hence, at this longer time scale the scale‐
free character visible at the 5 min scale is lost as the expo-
nential induces a characteristic intensity.
[16] The increase of I with T has recently been heavily

discussed in the literature [Allen and Ingram, 2002; Trenberth
et al., 2003; Emori and Brown, 2005; Pall et al., 2007; Allan
and Soden, 2008; Lenderink and van Meijgaard, 2008; Berg
et al., 2009]. These studies have worked with I averaged on
time scales greater than 1 hour and have only considered
isolated percentiles of I. The role of the time scales involved
and the dependence on percentile have therefore been hard
to reconcile. We now offer an analysis where the tempera-
ture dependence and scaling across time scales are presented
in a comprehensive way. To obtain the relative rate b of
increase of I at a given percentile per degree Kelvin, we
produce numerical derivatives

bðTÞ � @�T
@T

1

�T
’ �TþDT � �T�DT

2DT�T
ð5Þ

for all percentiles. Figure 2d shows b for all T and per-
centiles for the 5 min data. As percentiles approach zero, b
also goes to zero, and it reaches its highest values of ’0.2
for the highest percentiles. Generally, b increases with T,
except for the very highest T and percentiles, where it again
decreases. In Figure 2d we also indicate the increase of 0.07
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that would result for all T if the C‐C relation could be used as
an indicator of precipitation increases. On the hourly scale
(Figure 2e) substantial differences were yielded: the overall
increase with T is much weaker, and the curves of different
T are not as clearly separated. While Lenderink and van
Meijgaard [2008] have argued for abrupt increases of b
to twice the C‐C value at this averaging interval at the
highest percentiles, we note that the increase of b is rather
continuously increasing with T and percentile, except for the
very highest temperatures. On a daily time scale (Figure 2f)
the T dependence of b is now actually reversed with lower T
displaying larger coefficients. Furthermore, most percentiles
show similar values of b between 0 and 0.07.

3.3. Scaling of Percentiles With Temporal Resolution

[17] To better understand Figures 2d–2f, we further inves-
tigate the scaling of percentiles with temporal resolution Dt
for different T (Figure 3). Precipitation intensity strongly
depends on Dt. This is due to two effects: the appearance of
dry intervals during the longer averaging times which sub-
stantially reduce the mean intensities and the mixing of wet
intervals of different intensities within a single event. As a
result, the scaling from 5 min to 1 day cannot be described by
a unique scaling function. A change of scaling occurs near

30 min: at intervals less than 30 min we find a good fit with
exponential scaling (Figure 3a), while at longer periods the
scaling is well described by a power law (Figure 3b).
[18] In a separate analysis we have investigated PDFs

of precipitation event duration using intermittency times
(interrupting dry intervals) ranging from 0 to 180 min; hence,
we have allowed for short interruptions of the contiguous
precipitation sequence. Typically, event durations are 30–
60 min, and events at higher T are generally shorter
(Figure 4b and section 3.4). The behavior at Dt < 30 min
is predominantly due to mixing of precipitation intensities
within a single event (Figure 3). Conceptually, one can
understand this behavior by randomly drawing data from the
colored curves in Figure 2a and averaging them. Collecting
the averages leads to the construction of a new distribution
similar to that in Figure 2b. Such averaging leads to a
decreased range of the resulting intensity values and a con-
vergence towardmean intensity for very long event durations.
However, as the longer averaging interval may also contain
dry intervals, an additional general shift toward lower inten-
sities occurs.
[19] At Dt longer than 30–60 min, the predominant effect

is the inclusion of more and more nonprecipitating intervals.
Hence, the scaling is roughly the trivial I(Dt) = pevent/Dt,

Figure 2. (a) Cumulative distribution function of I conditional on T (colors from blue to red correspond
to increasing T = [1, …, 21]°C) and of total precipitation (gray circles). The latter is fitted by a power law
(solid line), with double log scale chosen to enhance presentation of higher percentiles. (b) Same as
Figure 2a but for hourly averaging of I. (c) Same as Figure 2a but for daily averaging. Fit is a stretched
exponential. (d–f) Corresponding relative change b of distribution function with T. Curves are partial
numerical derivatives with respect to temperature for T = [3, …, 19]°C, and the dotted vertical black lines
show a Clausius‐Clapeyron increase of 0.07/K. Curves in Figures 2e and 2f become more erratic because of
the reduction of data; at g = 0 the cutoff I0 confines curves to zero.
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where pevent is the accumulated event precipitation. Note
that small deviations from the clean 1/Dt occur, possibly
because of the occurrence of additional precipitation events
(separated by dry periods) or less frequent extended events.
The transition between an exponential behavior and the
power law behavior occurs at smaller Dt for higher T. This is
due to the shorter duration of events at higher T (Figure 4b).
[20] By extrapolating the exponential fit

IðDt; T ; �Þ � I instðT ; �Þ exp ½�cðT ; �ÞDt�

to instantaneous time periods (Dt → 0), we are able to
construct the probability distribution of instantaneous pre-
cipitation intensity I inst(T, g) (not shown). The result is
similar to Figure 2a with only a small overall shift toward
higher intensities. When the curve of gtot(I

inst) is considered
in this case, the power law fit is even slightly better than in
the 5 min case. This result may aid in construction of high‐
resolution weather generators. By extracting the coefficient
c(T, g) from the fit, we obtain the decay coefficient as a
function of T and percentile (Figure 4a). Here c(T, g)

describes the rate of decrease of the intensity at a given per-
centile with an increasing averaging interval Dt. There is a
generally faster decay for higher temperatures. This is due
to the shape of the distribution functions where the extremes
increase more strongly with T than the means. Hence, by
approaching the means through the averaging procedure,
the magnitude of the decay coefficient must be larger for
higher T. When lower percentiles are considered, the coeffi-
cient decreases.
[21] In a similar way we can understand the transition

between the time scales shown in Figures 2d–2f. As the
averaging period is increased from Dt to Dt′, several pre-
cipitation intervals are drawn from the distribution corre-
sponding to Dt and a given T (colored curves) and are
averaged. Such averaging weakens (strengthens) increases at
the higher (lower) percentiles. When proceeding beyond the
typical event duration of the chosen temperature, generally
dry periods are mixed in with the average. As high tem-
peratures come with shorter event durations, a reversal of
the order of the temperature curves occurs in Figure 2f. A

Figure 3. Scaling of percentiles with Dt. Symbols corre-
spond to 99th (triangles) and 30th (circles) percentiles, and
colors from blue to red correspond to T = {3, 11, 19}°C.
(a) A log linear plot for the time period 0–60 min. (b) A
log‐log plot for time periods from 5 min to 1 day. Orange
lines are exponential fits to the data points up to 30 min.
Solid symbols at DT = 0 in Figure 3a correspond to extrapo-
lated instantaneous intensities. Dotted black lines are power
law fits to data beyond 30 min.

Figure 4. (a) Decay coefficients extracted from fits in
Figure 3a as a function of temperature T. Colors from green
to blue correspond to 70th to 97th percentiles. (b) Percentiles
and mean of event duration versus event onset temperature T.
Note the logarithmic vertical axis.
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further effect that may contribute to this is an event‐induced
cooling off for long event durations.

3.4. Event‐Based Analysis

[22] In this section we investigate precipitation events, as
opposed to fixed intervals in sections 3.2 and 3.3. An event
is taken as a contiguous sequence of precipitation intervals;
however, a number of interrupting intervals (intermittency)
with p < p0 are allowed [Dunkerley, 2008]. We use inter-
mittency times between 0 and 180 min. The results are sim-
ilar, and we show only plots for an allowed intermittency of
60 min. Such intermittencies are not counted toward event
duration. We reproduce Figures 2a and 2b for the mean event
intensities (Figures 5a and 5b). Clearly, the absolute mag-
nitude of intensities decreases considerably when comparing
to Figure 2a. This is due to the averaging of intensities within
the event as described in section 3.3 and Figure 3a. When
comparing the spread of intensities for the highest and lowest
temperatures, we find only a small decrease of their ratio
compared to the 5 min data (ratio ’ 7). This is also reflected
in the temperature derivatives in Figure 5b.
[23] A rather different picture results when we consider

the statistics of the total precipitation amount produced
throughout the events (Figure 5c). The relative spread of pre-
cipitation amount is now generally much smaller (ratio’ 2.5).
While there is an increase of event precipitation amount with
temperature (Figure 5d), this increase is weaker than for the
mean event intensities, especially for the lower temperatures.
This weakening of the increase with temperature is due to
the temperature dependence of event duration (Figure 4b).
While event duration is rather constant below 6°C, it falls
off to about two thirds of its value near 22°C. The drop may

be caused by a combination of several effects: shorter cloud
lifetime at higher temperatures, smaller cloud size (especially
for convective events), and rapid cloud advection away
from the observer. The first of these explanations is in line
with an argument based on atmospheric moisture avail-
ability presented by Berg et al. [2009]. In that study an
analysis of model data showed that on precipitating days the
moisture amount in the atmospheric column does not increase
as rapidly as the atmosphere’s ability to store moisture. The
resulting discrepancymay then lead to shorter event durations
and even decreases in daily precipitation amount with tem-
perature, e.g., in the midlatitude summer.

4. Discussion and Conclusion

[24] Using long time series of 5 min precipitation data,
we have studied the complex temperature relation of pre-
cipitation intensity distributions as the time scale is varied.
Temporally averaged at the daily time scale, increases in pre-
cipitation intensity generally below the Clausius‐Clapeyron
rate are found with systematically lower increases at higher
temperatures. Conversely, at the 5 min temporal resolution
the increases are muchmore pronounced and depend strongly
on temperature. We note, however, that at the daily scale the
Clausius‐Clapeyron relation may constitute an upper bound
for the increase.
[25] Our results show that precipitation intensity has a

systematic dependence on temperature. However, the under-
taking of drawing simple conclusions for precipitation inten-
sity changes with temperature from the Clausius‐Clapeyron
relation alone can be discouraged as a conclusion of our
analysis. While moisture increases in the atmosphere may be

Figure 5. (a, b) Same as Figure 2 but for mean event precipitation intensity and event onset temperature.
(c, d) Same as Figures 5a and 5b but for total event precipitation amount.
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closely related to temperature increases (assuming constant
relative humidity), we emphasize that such simple relations
do not apply for precipitation. We encourage a thorough
investigation of the origin of the distribution functions of
precipitation intensity gT(I) and their relation to the cloud
water and rain formation process at a given relative humidity.
Such analysis may be aided by combining data from remote
sensing missions with those of ground‐based observations.
[26] Besides thermodynamic effects, dynamical effects

may have important consequences on the distribution func-
tions of precipitation intensity. When precipitation events are
considered, a systematic decrease of event duration with
temperature leads to less dramatic increases of the amount of
precipitation yielded by a single event as compared to the
increases found in the case of the mean event intensity. This
aspect has to be taken into account when deriving risk
assessments from precipitation‐temperature statistics.
[27] Concerning the diurnal cycle, we have found in a

separate analysis that distribution functions constrained to
temperature show increases in extremes during the late after-
noon. We attribute such behavior to the buildup of moisture
and subsequent microphysical processes in clouds throughout
the day. Hence, changes in the diurnal cycle or other pro-
cesses that allow the buildup ofmoisture or convective energy
in a warming climate may be equally as important as the
temperature change alone as far as precipitation intensity is
concerned.
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