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ABSTRACT

A long-period (15 yr) simulation of sea surface salinity (SSS) obtained from a hindcast run of an ocean

general circulation model (OGCM) forced by the NCEP–NCAR daily reanalysis product is analyzed in the

tropical Indian Ocean (TIO). The objective of the study is twofold: assess the capability of the model to

provide realistic simulations of SSS and characterize the SSS variability in view of upcoming satellite salinity

missions. Model fields are evaluated in terms of mean, standard deviation, and characteristic temporal scales

of SSS variability. Results show that the standard deviations range from 0.2 to 1.5 psu, with larger values in

regions with strong seasonal transitions of surface currents (south of India) and along the coast in the Bay of

Bengal (strong Kelvin-wave-induced currents). Comparison of simulated SSS with collocated SSS mea-

surements from the National Oceanographic Data Center and Argo floats resulted in a high correlation of

0.85 and a root-mean-square error (RMSE) of 0.4 psu. The correlations are quite high (.0.75) up to a depth of

300 m. Daily simulations of SSS compare well with a Research Moored Array for African–Asian–Australian

Monsoon Analysis and Prediction (RAMA) buoy in the eastern equatorial Indian Ocean (1.58S, 908E) with an

RMSE of 0.3 psu and a correlation better than 0.6. Model SSS compares well with observations at all time

scales (intraseasonal, seasonal, and interannual). The decorrelation scales computed from model and buoy

SSS suggest that the proposed 10-day sampling of future salinity sensors would be able to resolve much of the

salinity variability at time scales longer than intraseasonal. This inference is significant in view of satellite

salinity sensors, such as Soil Moisture and Ocean Salinity (SMOS) and Aquarius.

1. Introduction

Ocean salinity, along with ocean temperature and

surface wind, controls the dynamic and thermodynamic

behavior of the ocean. It also plays an important role in

controlling the mixed layer depth variations, especially at

low latitudes, in regions of heavy precipitation (Sprintall

and Tomczak 1992; Murtugudde and Busalacchi 1998;

Han et al. 2001). In such regions, with near-surface haline

stratification, salinity is known to influence the evolution

of mixed layer temperature indirectly (Rao and Sanil

Kumar 1991; Rao and Sivakumar 1999; Howden and

Murtugudde 2001). Knowledge of salinity variations is

also vital for understanding the ocean hydrological cycle,

a key component of the climate system (Webster 1994).

Salinity also affects the Indian monsoon. This connec-

tion was first shown by Sanilkumar et al. (1994) from an

analysis of the measurements of surface meteorological

fields and near-surface salinity structure at the head of

the bay during the Monsoon Trough Boundary Layer

Experiment in 1990 (MONTBLEX-90). Masson et al.

(2005) suggested, from a coupled general circulation

model (CGCM) experiment, that there is a link between

the spatial structure of the salinity in the southeastern

Arabian Sea (SEAS) and the onset of the summer

monsoon. In an investigation related to the formation of

the Arabian Sea mini warm pool, Vinayachandran et al.

(2007) showed that the low-salinity water advected from

the Bay of Bengal (BOB) into the SEAS is one of the

reasons for the warming of the SEAS. In more recent

times, Seo et al. (2009) investigated the effect of fresh-

water forcing from river discharge into the Indian Ocean

on oceanic vertical structure and the Indian monsoon

using a regional coupled model. They found that there

is a highly seasonal influence of salinity and barrier layer
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on oceanic vertical stratification, which is in turn linked to

changes in SST, surface winds, and precipitation.

Despite this importance, there have been relatively

few studies on salinity variability in the tropical Indian

Ocean (TIO), covering the area 308S–308N, 408–1008E.

Earlier studies (Sprintall and Tomczak 1992; Donguy

and Meyers 1996; Hareeshkumar and Mathew 1997;

Prasanna Kumar and Prasad 1999) analyzed various

aspects of sea surface salinity (SSS) variability in this re-

gion using scattered datasets. Rao and Sivakumar (2003)

used an extensive database to characterize and explain

the observed seasonal variability of SSS in the northern

Indian Ocean in greater detail. More recently, Delcroix

et al. (2005) have used an exhaustive compilation of

SSS data collected in the three tropical oceans for de-

termining the time and space scales of the data.

Numerical ocean circulation models have the distinct

advantage of generating long time series of salinity at

regular spatial and temporal intervals. With increasing

accuracy of the forcing data obtained from numerical

weather prediction models as well as from satellite ob-

servations, the models have attained a high degree of

sophistication and are able to provide quite realistic

simulations of oceanic parameters including salinity.

Han and McCreary (2001) and Han et al. (2001) simu-

lated the SSS of the TIO and studied the influence of

salinity on dynamics, thermodynamics and mixed layer

physics of the TIO using a 4.5-layer model. The impacts

of various precipitation forcings on salinity variability in

the TIO were studied using the same model (Perigaud

et al. 2003; Sharma et al. 2007). It is also interesting to

study the relative importance of different mechanisms in

producing the observed variability of SSS in the TIO

using an ocean general circulation model (OGCM).

Masson et al. (2004) studied the impact of salinity on an

Indian Ocean dipole event using such a model. More

recently, Thompson et al. (2006) described the vari-

ability of salinity in the TIO along with other circulation

features in a long-period OGCM simulation. However,

they compared their SSS simulations only to climato-

logical variability, and made no attempt to validate the

simulation using in situ observations.

In the present work, our focus is on the study of SSS

variability at interannual and shorter time scales using

an OGCM. A distinctive feature of the study is the

validation of the model simulation with available in situ

observations. An attempt has also been made to provide

insight into the space-based observations, which are

available from the recently launched Soil Moisture and

Ocean Salinity (SMOS) mission and will be available

from the future Aquarius mission. In this way, our study

is similar in spirit to that undertaken by Wang and Chao

(2004) in the tropical Pacific.

The paper is organized in the following manner. Sec-

tion 2 describes the model and data used. Section 3

discusses large-scale features of ocean salinity. Sections

4 and 5 provide detailed comparisons between the model

simulations and observations. Section 6 discusses SSS

variability in relation to space-based observations. Sec-

tion 7 provides a summary of the major findings.

2. The model and data

The model used in the present study is the Modular

Ocean Model (Pacanowski and Griffies 2000) version 3.1

(MOM3.1), which has been set up for the global domain

excluding polar regions (808S–808N), with a horizontal

resolution varying from 0.58 in the Indian Ocean to 28 in

the other oceans. The Indian Ocean resolution is gener-

ally adequate to study SSS variability there, as the zonal

decorrelation scale for SSS is approximately 48–78 at 88–

108N (Delcroix et al. 2005). There are 38 levels in the

vertical, with 8 levels in the upper 40 m. The bottom to-

pography is based on 1/128 3 1/128 resolution data from the

U.S. National Geophysical Data Center. Wind stress is

computed from wind velocity using a wind-dependent,

drag coefficient (Large and Pond 1982).

The model is initialized with climatological tempera-

ture and salinity (Levitus 1982) and is spun up from rest

for 60 yr forced by climatological winds (Hellerman and

Rosenstein 1983) and with restoring boundary condi-

tions for SST and sea surface salinity. Next, the model is

integrated using National Centers for Environmental

Prediction–National Center for Atmospheric Research

(NCEP–NCAR) daily reanalysis (Kalnay et al. 1996)

winds, air temperature, specific humidity, net solar ra-

diation, and net longwave radiation from 1992 to 2006.

Latent and sensible heat flux components are computed

using the model SST. Daily precipitation data are also

from NCEP–NCAR. Monthly climatological river dis-

charge data for 3000 rivers were downloaded from the

United Nations Educational, Scientific and Cultural Or-

ganization (UNESCO) site for use in the model. The river

discharge is distributed as volume transport (m3 s21), and

it is distributed over 2–3 grid points around the river

mouths of major rivers. These data are monthly averaged

river discharge estimates from Vörösmarty et al. (1998).

Salinity from the top model level (2.5 m) is taken to be

SSS. Results are analyzed from 1992 to 2006.

Daily averaged SSS values in the eastern equatorial

Indian Ocean (EEIO) from the Research Moored Array

for African–Asian–Australian Monsoon Analysis and

Prediction (RAMA) buoys are used in the present in-

vestigation. RAMA is a key element of the Indian Ocean

Observing System (IOOS) program and is a basin-

scale moored buoy array. It is designed for studying the
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large-scale ocean–atmosphere interaction, ocean circula-

tion, and mixed layer dynamics. Salinity measured by the

buoy at its shallowest depth (1.5 m) and model salinity at

2.5-m depth are considered as SSS in the present study.

The validation dataset also consists of salinity profiles from

the National Oceanographic Data Center (NODC) and

World Ocean Circulation Experiment (WOCE) databases,

as well as from Argo profiling float (Argo Science Team

2001) measurements collected between January 2004 and

December 2006. Although the Argo data collection be-

gan in 2001, very few profiles were collected in the Indian

Ocean in the initial years. Because of this reason, the

period 2004–06 was selected for comparing model SSS

with Argo data. The accuracy of the Argo salinity data

is of the order of 0.01 psu (Wong et al. 2003). The shal-

lowest salinity measurements in the Argo database (4–9 m)

are considered to be SSS.

3. Large-scale ocean salinity features

We begin our analysis of model SSS with emphasis on

the large-scale features of surface salinity over the north

Indian Ocean (NIO). Figure 1 shows the mean (1992–

2006) and standard deviation of the simulated SSS. Most

of the large-scale features agree with the earlier studies

by Rao and Sivakumar (2003) and Donguy and Meyers

(1996). The contrasting patterns in the Arabian Sea and

Bay of Bengal are quite obvious. In a basin-averaged

sense, there is 3–4-psu difference between the two re-

gions. All along the coast in the Bay of Bengal basin, SSS

is less than 33.5 psu, primarily because of the combined

effect of river discharge and rainfall. Isohaline lines

are more closely spaced as one travels northward in the

Bay of Bengal. Surface salinity in the Arabian Sea is in

excess of 35 psu because of evaporation exceeding pre-

cipitation during most of the year. Toward the eastern

side of the Arabian Sea, isohaline lines are roughly

parallel to the coast with SSS increasing offshore. Along

the equator, the zonal gradient is much stronger with an

east–west gradient of 0.3 3 10 23 psu km21.

The standard deviation distribution exhibits strong

SSS variability in excess of 1 psu in the coastal regions of

the Bay of Bengal, with the variability gradually be-

coming weaker off the coast. This high-variability region

coincides with low mean salinity values. The Bay of

Bengal is historically known for comparatively low sa-

linity values, because of excess precipitation over evap-

oration and also because of heavy river discharge. The

FIG. 1. Simulated (a) mean and (b) standard deviation of SSS (psu) for the TIO. Locations of

buoys used in the study are marked with solid triangles in (a).
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freshwater outflow from rivers is the primary reason for

the large variability of SSS along the coasts. Other fac-

tors contributing to the SSS variability are the East India

Coastal Current (EICC) and coastal Kelvin wave. Another

strong variability center lies south of India, where its value

exceeds 0.6 psu. This region exhibits strong current vari-

ability and wave activity because of the reversing monsoon

winds every year. In the Arabian Sea, a small region of

moderately high variability can be seen in the Red Sea area.

Other parts of the tropical Indian Ocean do not show sig-

nificant variability, with values in the range of 0.2–0.3 psu.

4. Assessing the model SSS with buoy observations

Figure 2 shows simulated and observed daily SSS for

the period 2002–06 at the RAMA buoy locations in the

eastern equatorial Indian Ocean (EEIO). One can see

that there are large gaps in measurement at practically

all the buoys, except for the one located at 1.58S, 908E,

which measured SSS without much gap from 2004 to

2006. For this reason, we selected this buoy and this

particular period for our analyses. Model SSS is in good

agreement with buoy SSS, having an RMSE of 0.3 psu and

a correlation of 0.62. The mean salinity from observations

and model are 34.42 and 34.35 psu, respectively, and the

corresponding standard deviations are 0.35 and 0.31 psu.

The model slightly underestimates the mean and vari-

ability in SSS, and this error could be either due to

a deficiency in the NCEP reanalysis product or to un-

resolved eddy variability.

The RMSE reduces to 0.22 and 0.27 psu for monthly

and 10-day-averaged comparisons, respectively. Both

accuracies are seemingly worse than the Global Ocean

Data Assimilation Experiment (GODAE) requirement

of 0.1 psu. The GODAE requirement, however, applies

to salinities averaged over a grid of 18 in latitude and 28

in longitude. Since the above errors are obtained at

a point location, they will definitely be less when aver-

aged over a 18 3 28 grid. This reduction cannot be con-

firmed, since unlike the Tropical Atmosphere Ocean

FIG. 2. Modeled (dashed) and observed (solid) daily SSS (psu) at the RAMA buoy locations.
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(TAO)/Triangle Trans-Ocean Buoy Network (TRITON)

array in the equatorial Pacific, there is as yet no such

network of buoys in the equatorial Indian Ocean. The

model is able to reproduce the interannual variability

during this period, especially the low salinity associated

with the 2006 dipole event. It is well known that one

manifestation of dipole events is a freshening of the

upper eastern equatorial Indian Ocean in a narrow re-

gion near the Sumatra coast. The observed SSS is less

than 33.8 psu during the fall periods of 2004 and 2006,

and this freshening is remarkably well reproduced by

the model. Though one can see that the model fails to

capture transients (isolated peaks and troughs), model

SSS can nevertheless be considered reasonably accu-

rate, because it is not adjusted to observed SSS in any

way (i.e., by assimilation or relaxation).

Next, we examine the relative effect of precipitation

versus advection in explaining model/data SSS differ-

ences. For this purpose, buoy-measured zonal current

and precipitation data are used. Figure 3 shows the dif-

ference between modeled SSS and observed SSS (DSSS),

along with the difference in precipitation between NCEP

and observation and difference in the observed and

modeled zonal current. There is no consistent bias in

model SSS at this buoy location. It is clear from the figure

that NCEP precipitation is quite weak at this location

during the study period. Since NCEP precipitation is so

severely underestimated (by more than a factor of 2),

local forcing alone would have led to model SSS being far

too salty over the entire record, which is not the case.

Here advection plays a role in making the surface water

less saline than would have been the case if precipitation

were the only governing factor in regulating SSS.

Variability of SSS at the RAMA buoy location is also

controlled by the surface currents at this location, which

are dominated by the strong eastward Wyrtki jets (Wyrtki

1973) that transport high-salinity waters eastward twice

a year (March–April and September–October). Wind is

the major forcing of these surface currents; hence, the

weak wind in the NCEP reanalysis should result in

weaker surface currents. This is apparently what hap-

pened in the model. As a result, there is a weak trans-

port of salty surface water toward the eastern basin;

thus, the surface water at this location remains too fresh,

a property that is visible in Fig. 3.

All the above inferences suggest that it is the com-

bined effect of local (precipitation) and nonlocal (ad-

vection) forcings that control SSS variability at this

FIG. 3. (top) Difference between modeled and observed SSS, (middle) difference between NCEP and buoy rain

rate, and (bottom) difference between model and buoy zonal current. All the differences are shown at the RAMA

buoy locations.
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location. The relative effect of these two forcings in

controlling the SSS variability over the entire tropical

Indian Ocean is discussed later.

We performed a fast Fourier transform analysis on

both observed and modeled SSS computed over the

period 2004–06 to determine whether the model is

able to reproduce the dominant temporal variabilities.

Figure 4 shows our results. Both observed and modeled

SSS exhibit variability on a wide range of temporal scales.

The dominant modes are associated with 90–110 days

(at the far end of the intraseasonal band of 20–90 days)

and 180 days of periodicity. The latter mode is clearly

a manifestation of semiannual periodicity. These peaks

have been found to be significant at the 95% confidence

level, both in the model and observation. Han (2005)

noted that both observed and modeled sea level fields

show a dominant 90-day peak. This peak owes its ori-

gin to the resonance excitation of the second baroclinic

mode waves by the 90-day winds. Shorter-period var-

iability is also captured by the model SSS but with

lower power compared to the observations. One pos-

sible reason for its low power is that it is produced by

precipitation events that are highly localized in space.

Thus, the grid size (0.58) of the model makes the com-

parison of the model low-period SSS variability a difficult

task. Another possibility is that reanalysis precipitation

data are known to have uncertainties and are under-

estimated. In contrast, the high-period SSS variability

at this location is controlled by ocean dynamics (largely

advection) and hence is more faithfully reproduced by

the model.

Another test of the capability of the model to provide

realistic SSS simulations is to compare modeled and ob-

served decorrelation scales Using monthly averaged ship

observations of salinity, Delcroix et al. (2005) found the

temporal decorrelation scale to be less than 3 months in

regions where the seasonal variability is large. In Fig. 5, we

show the result of an autocorrelation analysis computed for

different time lags. The drop-off of autocorrelation with

FIG. 4. Fast Fourier transform of modeled (dashed) and observed (solid) SSS at the RAMA

buoy located at 1.58S, 908E.

FIG. 5. Autocorrelation of SSS at different lags for model (dashed)

and observed (solid) SSS at the RAMA buoy locations.
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time lag is almost the same for both model and observed

SSS, e-folding times of approximately15 days for the ob-

served SSS, and approximately 22 days for model SSS. The

longer decorrelation scale obtained in the model SSS is

possibly due to the model simulation error (because of

errors in forcing parameters, intrinsic model error, etc.).

The decorrelation scale computed at the buoy location

suggests that a 10-day revisit period of a satellite should be

sufficient to resolve much of the SSS variability in the

EEIO region. A similar analysis for the whole tropical In-

dian Ocean is discussed in section 6, to confirm that satellite

missions, such as SMOS, will meet the requirement of the

studies on salinity variability in the Indian Ocean.

In the earlier sections, we saw that model salinity com-

pares favorably with observations on synoptic scales. To

assess further its capability in simulating SSS variability on

other scales (intraseasonal, seasonal, and interannual), we

compared model SSS with RAMA buoy measurements in

three period bands, namely, 10–60 (intraseasonal), 60–360

(seasonal), and greater than 360 days (interannual). For

this purpose a bandpass filter has been used. Figure 6 plots

filtered SSS time series from both model and buoy for all

the three time scales. There is an excellent match between

the model and buoy time series at all the time scales, with

correlations better than 0.95 and RMSE less than 0.03 psu.

The magnitudes of standard deviation at 10–60 and 60–360

days and at interannual time scales are 0.07, 0.15, and

0.24 psu, respectively, for both model and buoy time

series. We conclude that the performance of the model in

simulating salinity at these time scales is quite reasonable.

5. Comparison of model SSS with NODC and Argo
observations

To compare observed and modeled SSS in the entire

NIO, we used SSS data from the National Oceanic and

FIG. 6. Filtered SSS at the RAMA buoy locations from model and observations. The filters are for (a) intraseasonal,

(b) seasonal, and (c) interannual variability.
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Atmospheric Administration (NOAA) and Argo for the

period January 2004–December 2006. Finding collocated

pairs of modeled and observed SSS is always a difficult task

because of the different temporal and spatial sampling of

the two systems. For temporal collocation, the dates of

available observed SSS were examined and SSS from

a specific day (which may be just one snapshot realization)

was paired with the model SSS (daily averaged) of that

day. For spatial collocation, measured profiles falling

within the model grid (0.58) were averaged. This product

accounted for 42 000 collocated model–buoy pairs. The

comparison produced a correlation coefficient of 0.83 and

an RMSE of 0.43 psu. The correlations are quite high

(more than 0.75) up to a depth of 300 m. One possible

cause of the mismatch may be because the in situ obser-

vations are obtained at single points, whereas the model

SSS are gridded values representing spatial averages.

Figure 7 shows the binned means and standard de-

viations of the difference between model and observed

SSS for all 42 000 collocations. The differences are divided

into bins of 0.1 psu, and the mean and standard deviation

are calculated for each bin. It can be seen that the mean

values progressively fall with the increasing salinity values.

They clearly divide the distribution into two regions, with

differences being positive below 34.5 psu and negative

above that value. Thus, the model overestimates SSS for

low values of salinity, whereas it underestimates SSS for

higher values of salinity. It can be clearly seen that model

performance is better for higher salinity values, with the

mean difference values and standard deviations of these

differences being less. The standard deviations are a bit

larger for low-salinity values. These discrepancies could

be due to the uncertainties in the NCEP–NCAR pre-

cipitation estimates, which were used in the freshwater

flux that forced the model. The mean difference of all

the observations taken together is 0.1 psu, and the stan-

dard deviation is 0.42 psu. Figure 8 presents typical scat-

terplots of differences between model and in situ SSS as

a function of measured SSS for different regions, namely,

the Bay of Bengal (108–208N, 808–958E), eastern equatorial

Indian Ocean (108S258N, 70821008E), western equatorial

Indian Ocean (58S–108N, 458–708E), and northern Arabian

Sea (128–228N, 558–758E). Note that the model tends to

be saltier in the Bay of Bengal, with a mean difference of

0.46 and a standard deviation of 0.6 psu. The model biases

are 20.29 and 20.26 psu in the northern Arabian Sea and

western equatorial Indian Ocean, respectively. Standard

deviations in these two regions are 0.41 and 0.32 psu,

respectively, with the model SSS tending to be under-

estimated. In the eastern equatorial Indian Ocean, there

is very little bias (20.01 psu) in the model simulation.

6. SSS variability in the tropical Indian Ocean:
Emphasis on satellite salinity missions

Despite the above-mentioned limitations and errors

in the modeled SSS, the simulations can be considered to

be reasonably good and can be used for understanding

FIG. 7. Binned means of SSS difference as a function of in situ SSS. The outer bars are

61 std dev.
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upper-ocean processes and air–sea interaction. Figure 9

shows decorrelation times for model-simulated SSS over

the entire TIO. Except for a few isolated pockets, the

times are more than 10 days. The absence of regions with

decorrelation scales less than 10 days could be due to a

lack of extreme events and the underestimation of high-

frequency variability in the model. For an exhaustive

investigation of the decorrelation scale over the entire

study region, better high-frequency variability in wind,

rain, and evaporation should be used in the model. How-

ever, as a first approximation, the results of the present

study lead to the conclusion that the 10-day sampling of

the salinity sensors would be able to resolve much of the

SSS variability. We also examined the simulated vari-

ability that would be captured by a satellite sensor with

a 10-day sampling period. Accordingly, we computed

SSS variability over the Indian Ocean by taking mod-

eled SSS every 10 days. The SSS variability (Fig. 10)

ranges between 0.2 and 1.2 psu, with larger variability all

along the Bay of Bengal coast (where it exceeds 1 psu)

and south of Sri Lanka. The pattern of SSS variability as

represented in Fig. 10 essentially matches that shown in

Fig. 1, in which the variability was computed using daily

simulated SSS. This property again suggests that the 10-day

satellite sampling rate is sufficient to resolve most SSS

variability.

Having ascertained the model performance at various

time scales at the RAMA buoy location, we next ex-

amine the distribution of SSS variability in the entire

tropical Indian Ocean (Fig. 11). The magnitude of SSS at

FIG. 8. Scatterplot of SSS differences (model 2 in situ) as a function of observed salinity for different regions: (a) BOB (108–208N,

80–958E), (b) EEIO (108S–58N, 708–1008E), (c) western equatorial Indian Ocean (58S–108N, 458–708E), and (d) northern Arabian Sea

(128–228N, 558–758E).
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intraseasonal scale is small, being on the order of 0.02–

0.06 psu over a large part of the tropical Indian. On the

other hand, the magnitudes of SSS variability at inter-

annual and seasonal scales are large; therefore, they would

be easily detected. The northeastern Bay of Bengal is

the center of high variability on intraseasonal, seasonal,

and interannual time scales. Interestingly, this region

happens to be the region of high-salinity gradients. This

variability center is associated with large freshwater

discharge from various rivers.

On seasonal and interannual time scales, there is high

SSS variability along the periphery of the Bay of Bengal.

This variability is associated with the coastal Kelvin wave,

which, after reflection from the Sumatra coast, propa-

gates all along the coast of the Bay of Bengal. On in-

terannual time scales, regions north and south of equator

FIG. 9. Spatial distribution of the decorrelation temporal scales (days) for SSS over the TIO.

FIG. 10. Model-simulated SSS standard deviation (psu) with a 10-day sampling over the TIO.
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as well as the region close to Sumatra exhibit large vari-

ability (0.2 psu). Along 58N in the central equatorial

region, a large variability center at seasonal time scales

can be seen. This center coincides with the strong sea-

sonally reversing zonal currents in this region. At all

time scales, the Arabian Sea exhibits low variability.

The above inferences suggest that the satellite salinity

missions would be able to detect signals on seasonal

and interannual time scales in large areas of the tropi-

cal Indian Ocean.

7. Summary

The goal of this study is twofold: (i) assess the real-

ism of a simulation of sea surface salinity by an ocean

general circulation model forced by NCEP–NCAR

reanalysis products in the tropical Indian Ocean and

(ii) study its variability with emphasis on satellite salinity

sensors.

The simulated SSS was used to quantify the seasonal

cycles of SSS and its variability on different time scales.

The spatial distribution of SSS was also studied, and re-

gions of strong variability were identified. The contrasting

patterns of SSS in the Arabian Sea and Bay of Bengal were

clearly brought out. In particular, the high variability in

modeled SSS along the east coast of India was due to the

strong East India Coastal Current in combination with

significant coastal Kelvin wave activity.

To assess the realism of the simulation of SSS, the sim-

ulations were compared with observed salinity. A detailed

comparison was carried out using all possible obser-

vations available in the study region. A comparison of

FIG. 11. The standard deviation (psu) of model SSS for 1992–2006 in the entire TIO: (a) 10–60-,

(b) 60–360-, and (c) 360-day low-pass filtered.
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modeled and observed SSS from RAMA buoys and

Argo/NODC data led to RMSEs of 0.30 and 0.42 psu,

respectively. Errors in the model SSS of the order

mentioned above could result from a combination of

inaccurate forcings, inherent model errors, or errors in

collocation. The major forcing for SSS is precipitation.

However, the accuracy of its estimation is known to be

not quite reliable.

Hence, to fully resolve the issue of SSS variability,

a combination of modeled and satellite observed SSS is

desirable. In this connection, special emphasis was laid

on the relevance of the study for spaceborne sea surface

salinity missions. This was done by calculating temporal

decorrelation scales in different regions of the tropical

Indian Ocean. In almost all the regions, these scales

were more than 10 days, suggesting that the 10-day re-

visit period of the recently launched SMOS and future

Aquarius satellites should be sufficient to resolve most

of the SSS variability in the Indian Ocean.

Thus, the designing strategy of the recently launched

SMOS satellite has been confirmed by the results re-

ported in the study. It is clear that satellite salinity ob-

servation will be able to detect the intraannual to

interannual salinity changes. We conclude that, with the

SSS data made available in future from such satellites,

a more accurate reanalyzed field of the surface salinity

can be constructed by blending model simulations and

satellite observations on scales longer than intraseasonal

scales. Needless to say, the modeling ability to simulate

SSS will also be continuously improved once the satel-

lite SSS data are successfully assimilated in the models.

The improved reanalysis fields as well as the improved

modeling ability will definitely be beneficial for climate-

related studies.
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