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[1] Uncertainty in climate sensitivity is a fundamental
problem for projections of the future climate. Equilibrium
climate sensitivity is defined as the asymptotic response of
global-mean surface air temperature to a doubling of the
atmospheric CO2 concentration from the preindustrial level
(�280 ppm). In spite of various efforts to estimate its value,
climate sensitivity is still not well constrained. Here we show
that the probability of high climate sensitivity is higher than
previously thought because uncertainty in historical radiative
forcing has not been sufficiently considered. The greater the
uncertainty that is considered for radiative forcing, the more
difficult it is to rule out high climate sensitivity, although low
climate sensitivity (<2�C) remains unlikely. We call for
further research on how best to represent forcing uncertainty.
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1. Introduction

[2] Atmosphere-Ocean General Circulation Models
(AOGCMs) used in the IPCC Fourth Assessment Report
show different equilibrium climate sensitivity ranging from
2.1�C to 4.4�C [Intergovernmental Panel on Climate Change
(IPCC), 2007, p.631]. Perturbing parameters in AOGCMs
reports wider ranges in sensitivity – Murphy et al. [2004]
find values up to 7�C and Stainforth et al. [2005] up to 11�C.
[3] Climate sensitivity can also be estimated by an inver-

sion approach using historical observations over various
periods and time scales. The uncertainty range of these
estimates is dominated by uncertainties in reconstructions
of historical surface air temperature. Uncertainty in historical
radiative forcing has received less attention and has not been
sufficiently treated. Previous studies [e.g., Andronova and
Schlesinger, 2001; Gregory et al., 2002; Knutti et al., 2002;
Forest et al., 2006] express this forcing uncertainty by intro-
ducing an additional parameter to scale a presumed time-
evolution of the aerosol forcing, with the exception of a few
studies [Hegerl et al., 2006;Meinshausen et al., 2009; Prather
et al., 2009]. Hegerl et al. [2006] uses different realizations
of volcanic and solar forcing. Meinshausen et al. [2009] and
Prather et al. [2009] introduce a variety of parameters to
individual forcing terms. The forcing scaling approach does
not fully capture radiative forcing uncertainty because it does

not consider the uncertainty in the temporal structure of
aerosol forcing, the uncertainty in other forcing terms, and
radiative forcing that is not well represented in the model.
[4] We investigate the effect of radiative forcing uncer-

tainty on the estimation of climate sensitivity using an in-
version setup of the Aggregated Carbon Cycle, Atmospheric
Chemistry, and Climate model (ACC2) version 3.1 [Tanaka,
2008]. In Section 2, we discuss the model ACC2, its
inversion estimation, and the experimental setup. The results
are discussed in Section 3. The paper is concluded in
Section 4. This paper is accompanied by auxiliary material
that shows a few sensitivity analyses for the main results.5

2. Methodology
2.1. Model ACC2

[5] ACC2 is a global-annual-mean Earth system model
comprising carbon cycle, atmospheric chemistry, and climate
components [Tanaka et al., 2007; Tanaka, 2008; Tanaka et
al., 2009]. Directly relevant to this study is the climate
component, the Diffusion Ocean Energy balance CLIMate
model (DOECLIM) [Kriegler, 2005]. DOECLIM is a land-
ocean energy balance model that comprises essentially two
boxes: 1) land coupled with the troposphere over land and
2) ocean coupled with the troposphere over the ocean.
Coupled to the ocean box is a heat diffusion model that
describes heat transfer to the deep ocean. DOECLIM is
used to calculate surface air temperature prescribing total
radiative forcing, which is the sum of individual forcing
terms calculated in the carbon cycle and atmospheric chem-
istry components. The ocean and land carbon cycle processes
are represented by the respective four-reservoir box models
tuned to Impulse Response Function models [Joos et al.,
1996; Hooss et al., 2001]. ACC2 incorporates parameter-
izations of atmospheric chemistry processes [Joos et al.,
2001] involving direct radiative forcing agents (CO2, CH4,
N2O, O3, SF6, 29 species of halocarbons, sulfate aerosols
(direct effect), carbonaceous aerosols (direct effect), all
aerosols (indirect effect), and stratospheric H2O) and indirect
radiative forcing agents (OH, NOx, CO, and VOC).

2.2. Inversion for ACC2

[6] In the inverse estimation using ACC2, we obtain a
best estimate of uncertain parameters corresponding to the
minimum of the following cost function:
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5Auxiliary materials are available in the HTML. doi:10.1029/
2009GL039642.
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gi(m) is the forward model projection for data i based on a
set of parameterm. a and b are the total numbers of data and
parameters, respectively. dmes,i and mprior,j denote measure-
ment i and prior estimate of parameter j, respectively. mj is
parameter j, the value of which is determined such that the
cost function S(m) is minimized. sd,i and sm, j are one-sigma
uncertainty ranges for measurement i and for prior estimate
of parameter j, respectively. Examples of parameters are
climate sensitivity and beta factor (parameterization for CO2

fertilization). Data include atmospheric concentrations of
CO2, CH4, and N2O and global-mean surface air tempera-
ture change each year (from year 1750 to 2000). All the
parameters and data used in the ACC2 inversion are listed in
Tables S1 and S2 of the auxiliary material. The period of
our inverse estimation is year 1750–2000.
[7] The cost function (equation (1)) is derived based on

the probabilistic inverse estimation theory [Tarantola,
2005]. The cost function is the negative of the argument
of the exponential function expressing the joint posterior
Probability Density Function (PDF) for all the parameters
[Tanaka, 2008, equation (3.2.12)]. This indicates that a low
value in cost function corresponds to a large value in PDF
and also that these two quantities have an inverse exponen-
tial relationship. We assume normal distributions for all the
prior uncertainties of the parameters and data. All the
parameters and data in the ACC2 inversions are treated
independently, implying that fits for time series having strong
autocorrelations are over-emphasized. Autoregressive mod-
els are not used due to the absence of data to estimate
autoregressive propagators for the parameters and data in
time series. Implications of the independent error assumption
are discussed in section S5 of Text S1.
[8] Our optimization approach is in contrast to previous

studies which compute the PDF of climate sensitivity.
Calculating a PDF can be done for a problem addressing
a small number of uncertainties but is infeasible for our
approach, which considers more than one thousand uncer-
tain parameters (Table S2 of the auxiliary material).
[9] In ACC2, the carbon cycle, atmospheric chemistry,

and the climate system are linked via feedbacks and there-
fore jointly affect the estimation of various uncertain
parameters in each of these components. In this study,
inversion results in the climate component are not sensitive
to those in the carbon cycle and atmospheric chemistry
components because we do not consider climate-carbon
cycle feedbacks in order to focus on the effect of radiative
forcing uncertainty (Table S3 of the auxiliary material).
[10] Inverse calculations are performed using the local

optimization solver CONOPT3 [Drud, 2006] implemented
in the software package GAMS (http://www.gams.com/)
[Tanaka, 2008, pp. 263–266]. The solutions for inversions
are confirmed by performing the same inversions from
different initial points.

2.3. Radiative Forcing in ACC2

[11] How radiative forcing is modeled in ACC2 requires
clarification for this study. Radiative forcing is represented
as the sum of three types of forcing: calculated radiative
forcing subject to uncertainties (CO2, CH4, andN2O forcing),
prescribed/parameterized radiative forcing without uncer-
tainties (other greenhouse gas, aerosol, volcanic [Ammann

et al., 2003], and solar [Krivova et al., 2007] forcing), and
‘‘missing forcing.’’
[12] Missing forcing is treated as an independent param-

eter in each year. The missing forcing term accounts for the
uncertainty in the prescribed/parameterized radiative forcing
and also represents forcings that are not included in other
forcing terms in ACC2 (e.g., albedo forcing and mineral
dust forcing). Furthermore, it reflects the interannual and
decadal variability in the temperature records, which arises
from the non-linear dynamics of the atmosphere and ocean
(except for the ENSO-induced change after 1930, which is
accounted for based on a regression analysis using the SOI
index [Kriegler, 2005, pp. 32–33]. We account for temper-
ature variability from the forcing side because uncertainty in
temperature observations is well-defined relative to the
uncertainty in radiative forcing. The missing forcing term
can express the temporal structure of forcing uncertainty that
cannot be captured by the conventional forcing scaling
approach.

2.4. Experimental Design

[13] We compare the standard ACC2 inversion (i.e.,
expressing radiative forcing uncertainty as missing forcing)
with two other ACC2 inversions with alternative representa-
tions of radiative forcing uncertainty: one in which, similar to
previous studies, it is expressed by an uncertain forcing
scaling factor applied to the aerosol forcing, and a second
that assumes no forcing uncertainty at all. For all setups, we
calculate the relationship between the minimum value of the
cost function and the value of climate sensitivity by
performing a series of inversions in which climate sensitivity
is fixed at values between 1�C and 10�C at intervals of
0.25�C (a total of 111 optimizations). The shape of this
relationship indicates both the best estimate of climate
sensitivity and the uncertainty of such an estimate. Only
the climate sensitivity and the forcing uncertainty are essen-
tially modified from one point in a cost function to another,
although the optimization is performed for the entire model
(including the carbon cycle component) each time. The
inversion in the carbon cycle component is not sensitive to
that in the climate component because we assume no climate-
carbon cycle feedbacks.

3. Results and Discussion

[14] Figure 1 shows the cost function values for the set
of simulations. As these values are clearly elevated for a
climate sensitivity of less than 2�C, such a low climate
sensitivity is unlikely, in line with the results of the PDF
studies. More importantly, if the forcing uncertainty is fully
addressed as missing forcing, the cost function curve is
almost completely flat at values of climate sensitivity above
about 2�C. In this case, the inversion indicates little prefer-
ence for any value of climate sensitivity in the range 2�C–
10�C. In contrast, if the forcing uncertainty is represented as
an uncertain scaling factor applied to a fixed temporal trend
of aerosol forcing as in the PDF studies, the climate sensi-
tivity appears far better constrained, particularly at high
values. It is even better constrained if the uncertainty in the
radiative forcing is not considered at all.
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[15] Therefore, our analysis suggests that the well-defined
peak of the PDF of climate sensitivity in former studies is a
consequence of insufficient treatment of the historical devel-
opment of radiative forcing uncertainty. Including these
uncertainties implies that climate sensitivity is less con-
strained at the high end than previously thought. Our study
adds onGregory et al. [2002] that emphasizes the importance
of aerosol forcing uncertainty in estimating climate sensi-
tivity. We go one step further by saying that the conventional
way of scaling aerosol forcing evolution is not sufficient. The
insufficiency of the conventional approach is indicated from

the magnitudes of error terms. In the forcing scaling-based
inversion, the temperature error term accounts for 69% of
the total cost function while in the missing forcing-based
inversion, it accounts for only 31% (Table S3 of the auxiliary
material). Such a large temperature error term shifts the cost
function curve based on the forcing scaling approach sub-
stantially higher than the cost function curve based on the
missing forcing approach. This study does not aim to support
the conclusion of Roe and Baker [2007] that high climate
sensitivity cannot be constrained due to its asymmetric
influence from positive feedbacks – we rather demonstrate
the importance of representing forcing uncertainty in con-
straining high climate sensitivity.
[16] We can draw this conclusion even though our results

are not expressed as PDFs as in previous studies. According
to probabilistic inverse estimation theory [Tarantola, 2005],
our best estimate for climate sensitivity can be interpreted as
the peak of the joint posterior PDF for all the parameters.
On the other hand, what previous studies have presented
corresponds to the marginal posterior PDF for climate
sensitivity (obtained by integrating the joint posterior PDF
with respect to parameters other than climate sensitivity).
Thus, the two approaches reduce the joint posterior PDF
differently. Nevertheless, in our case, differences in the value
of the cost function qualitatively indicate differences in
relative likelihood because the cost function changes
monotonically with respect to parameters (section S2 of
Text S1). In other words, flatter cost function curves mean
less constrained PDFs.
[17] More in detail, Figure 2 presents radiative forcing

and temperature time series resulting from missing forcing-
and forcing scaling-based inversions. Figure 2 (top) shows
that low climate sensitivity is not supported even with the
missing forcing approach because the missing forcing goes
beyond its 2s uncertainty range to explain the warming in
the late 20th century. Figure 2 (bottom) demonstrates that
high climate sensitivity is not acceptable with the forcing
scaling approach, which results in excessively strong cooling
after large volcanic eruptions in the 19th century. Such
results indicate that the forcing scaling approach is too inflex-
ible to deal with the complexity in forcing uncertainty.
[18] Some insights are provided from the estimates of

missing forcing (Figure 2, top). The missing forcing is
punctuated by large spikes corresponding to volcanic erup-
tions. In the cases of climate sensitivity of 3, 5, and 10�C,
most of these spikes are positive and some others negative,
depending on the mismatches between the volcanic forcing
and the reconstructed temperature (Figure 2, bottom). The
missing forcing after 1900 is highly variable, reflecting the
interannual variability of the temperature records. The fluc-

Figure 1. Cost function in the ACC2 inversions under
different treatments to radiative forcing uncertainty. Final
values of the cost function are computed by optimizations
with climate sensitivity fixed at values between 1�C and
10�C at intervals of 0.25�C. Each plot represents a unique
inversion result. In square brackets, degrees of freedom for
forcing uncertainty and best estimates of climate sensitivity
are shown.

Figure 2. (top and bottom) Comparison of the results of ACC2 inversions using missing forcing- and forcing scaling-
approach. Figures 2 (top) and 2 (bottom) show the inversion results from using the missing forcing- and forcing scaling-
approach with climate sensitivity of 1, 3, 5, and 10�C. The forcing scaling factor is estimated to be 0.045, 0.999, 1.214, and
1.398 in the forcing scaling-based inversions with climate sensitivity of 1, 3, 5, and 10�C, respectively. Measurements in
Figure 2 (bottom) are compilation of temperature reconstruction [Jones et al., 1998;Mann and Jones, 2003] and instrumental
records [Jones et al., 2006]. Insert of Figure 2 (bottom) shows the ‘‘residuals,’’ i.e., the difference between prior and posterior
values. The residuals are calculated such that the mean measurement during the period 1961–1990 is equal to the
corresponding posterior mean. Measurements shown in the main figure are for the missing forcing-based inversion with
climate sensitivity of 3�C.
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Figure 2
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tuation becomes larger toward present as the prior tempera-
ture uncertainty gets smaller with an extensive observation
network put into place and also as the prior uncertainty of the
missing forcing becomes larger to reflect aerosol forcing
uncertainty. This results in an increasingly good fit of the
temperature observations toward the end of the simulation.
The average missing forcing over the last 50 years is small
negative, an indication that the aerosol forcing used in ACC2
(total aerosol forcing is �1.3 W/m2 in year 2000) is slightly
underestimated in magnitude.
[19] We do not use a statisticalc2 test (designed to evaluate

the size of residuals) to validate the inversion results because
of the nonlinearity of the model and a large number of auto-
correlations. Overall, the inversion results can be meaning-
fully interpreted [Tanaka, 2008, chapter 4 and Appendix A],
supporting the validity of the inversion results. We assume
a fixed estimate for the ocean diffusivity (0.55 cm2/s based
on Kriegler [2005]), because constraining the ocean diffu-
sivity requires oceanic heat diffusion processes, which are
not explicitly modeled in ACC2. A sensitivity analysis
(section S4 of Text S1) shows our conclusion is not
influenced by different assumptions for ocean diffusivity.
We use only one possible prior range of climate sensitivity
(mean of 3.5�C with 2s range of 0.5–6.5�C). There is an
argument not to include prior beliefs in inverse estimation
[Allen et al., 2006], but our results are not sensitive to prior
climate sensitivity because other time series terms in the
cost function are dominant. A sensitivity analysis of the
prior uncertainty range of missing forcing is provided in
section S3 of Text S1.

4. Concluding Remarks

[20] Our ACC2 inversion approach has indicated that by
including more uncertainty in radiative forcing, the proba-
bility of high climate sensitivity becomes higher, although
low climate sensitivity (<2�C) remains very unlikely. Thus
in order to quantify the uncertainty in high climate sensi-
tivity, it is of paramount importance to represent forcing
uncertainty correctly, neither as restrictive as in the forcing
scaling approach (as in previous studies) nor as free as in
the missing forcing approach. Estimating the autocorrela-
tion structure of missing forcing is still an issue in the
missing forcing approach. We qualitatively demonstrate the
importance of forcing uncertainty in estimating climate
sensitivity – however, the question is still open as to how
to appropriately represent the forcing uncertainty.
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