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ABSTRACT: A theoretical and numerical small-scale study of the evaporative cooling phenomenon that might appear in
the stratocumulus-topped boundary layers is presented. An ideal configuration of a cloud-top mixing layer is considered
as defined by two non-turbulent horizontal layers, stably stratified and with buoyancy reversal within a certain range of
mixture fractions due to the evaporative cooling. Linear stability analysis of the shear-free configuration is employed to
provide a new interpretation of the buoyancy reversal parameter, namely in terms of a time-scale ratio between the stable
and the unstable modes of the system. An incompressible high-order numerical algorithm to perform direct numerical
simulation of the configuration is described and two-dimensional simulations of single-mode perturbations are presented.
These simulations confirm the role of the different parameters identified in the linear stability analysis and show that
convoluted flow patterns can be generated by the evaporative cooling even for the low levels of buoyancy reversal found
in stratocumulus clouds. They also show that there is no enhancement of turbulent entrainment of upper-layer fluid in
the shear-free configuration, and turbulent mixing enhancement by the evaporative cooling is restricted to the lower layer.
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1. Introduction

The physical phenomena occuring at the stratocumulus
top of the planetary boundary layer are well recognised
as poorly understood (Stevens, 2002). This region
normally separates a lower layer of turbulent flow from
an upper layer of subsiding air that is approximately
laminar, giving rise to turbulent entrainment, external
intermittency and a turbulent/non-turbulent transition
region, the so-called turbulence interface. This problem
by itself, without any consideration of the cloud physics,
is still a matter of basic research in the field of free tur-
bulent flows, in spite of its importance and long-standing
recognition (Corrsin and Kistler, 1955; Fernando, 1991;
Dimotakis, 2005; Hunt et al., 2006). When the idiosyn-
crasies of the cloud, in this case stratocumulus, are added
to it, the difficulty of the problem is almost overwhelm-
ing. However, accurate models of related quantities,
like an entrainment rate or the subgrid-scale terms in
large-eddy simulations, are necessary due to the role that
these stratocumulus-top regions, of the order of metres or
tens of metres (Caughey et al., 1982), play in larger-scale
dynamics. In addition to the physical complexity of
the problem, the range of scales it embodies confounds
brute-force attempts to numerically explore the interplay
between turbulent processes at the cloud top and those
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within the turbulent layer as a whole. Stevens (2002)
reviews these issues and, as a part of the conclusion,
advocates for the study of smaller-scale, simplified and
more specific problems that would allow us to gain
insight into the more general and more complex system.
The authors adopt this approach in this paper and study in
detail one aspect of the cloud-top mixing, namely, the role
of latent heat effects in an infinite two-layer configuration.

Latent heat effects are expected to be important because
of the evaporative cooling caused by the mixing between
the lower cooler and saturated (and condensate-laden)
layer and the upper warmer and unsaturated layer, which
in some cases can lead to buoyancy reversal. The pos-
sibility of a resulting instability, the so-called cloud-top
entrainment instability, which would ultimately break the
cloud deck, remains an important and largely unresolved
question (Randall, 1980; Deardorff, 1980; Kuo and Schu-
bert, 1988; Grabowski, 1995; Wunsch, 2003; Yamaguchi
and Randall, 2008).

Among the great number of studies focused on
buoyancy reversal in cloud-topped layers, the series
of papers by Shy and Breidenthal (1990), Siems et al.
(1990) and Siems and Bretherton (1992) merit special
attention. Shy and Breidenthal (1990) explore the effects
of buoyancy reversal in a laboratory system (tank) con-
sisting of methanol, ethylene glycol, salt and water, and
characterized by two parameters: D, which measures the
ratio of the maximum density change of the mixture to
the density difference of the unmixed fluids; and s, the
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mixture fraction at which that maximum density occurs.
Siems et al. (1990) present two-dimensional numerical
simulations of this two-layer configuration without
explicit subgrid-scale modelling using a second-order
algorithm. The evolution of the system is then described
in terms of the stream function and the mixture fraction
x for the case of discrete initial perturbations in the
form of a buoyancy anomaly. Although their low-order
scheme is too dissipative and the Reynolds number
affordable at that time possibly too small (which leads to
an almost laminar structure of the reversing system for
the case D = 0.05 representative of real stratocumulus),
their study was the first to recognize the applicability of
direct numerical simulation (DNS) to this problem, as
only DNS attempts to explicitly represent mixing pro-
cesses and hence the scales at which latent heat effects
are realized. These numerical studies were extended by
Siems and Bretherton (1992) who tried to span the range
between the laboratory scale, comparing with Shy and
Breidenthal (1990) by using single-vortex initial condi-
tions, and the atmospheric scale, using multiple-vortices
initialization. A principal finding of these studies is the
identification of a critical buoyancy reversal parameter
D of order unity beyond which a qualitative change of
the flow (a runaway in the entrainment of dry fluid from
the upper layer or a sustained increase of kinetic energy
despite the viscous dissipation) becomes evident. Actual
cloud-top conditions typically have D < 1, which leads
them to conclude that buoyancy reversal alone is not
likely to destabilize the cloud layer as a whole.

In this study we build on the results of this previous
work by exploring two open questions. First, although the
parameter D can be easily introduced based on dimen-
sional analysis, does it lend itself to a deeper physical
interpretation? This is the topic of section 3, where a
linear stability analysis is presented and used to inter-
pret the buoyancy reversal parameter D in terms of a
ratio between the growth rates of the unstable and sta-
ble modes. Second, to what extent is the argument that
small values of D do not destabilize the system as a
whole, an artifact of the stabilizing influence of the low-
order numerics used by Siems et al. (1990) and Siems
and Bretherton (1992)? To answer this question, a high-
order numerical algorithm based on sixth-order compact
schemes in space and a fourth-order five-step Runge—
Kutta in time is proposed in section 4. Two-dimensional
simulations are discussed in section 5 to extend the pre-
vious linear study into the nonlinear regime, showing the
complicated pattern of mixing introduced by the buoy-
ancy reversal — even for values D ~ 0.05. At the same
time, these simulations are used to validate the numerical
algorithm and to further study the flow for the geophysi-
cally interesting case of 0 < D « 1; in particular, statis-
tics related to the mixture fraction, the energy budget
and entrainment are presented and discussed. It merits
emphasis that the goal of the paper is not to derive
results directly applicable to the real stratocumulus-
topped boundary layer (of the order of 10° m), but
rather to investigate some elementary issues related to this
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question so as to gain insight to the phenomena occurring
on a small scale (of the order of 10 m) at the cloud top.

2. Formulation

The geometry considered is an unbounded two-layer sys-
tem with the upper non-turbulent layer warmer and unsat-
urated and the lower one, also non-turbulent, cooler and
supersaturated, gravity acting downwards. It is distin-
guished from (and simpler than) the stratocumulus-topped
boundary layer (Lilly, 1968; Stevens, 2002) in which the
finite-size bottom layer is turbulent. It is therefore an
idealized problem and will be referred to as the cloud-
top mixing layer, being shear-driven if Kelvin—Helmholtz
instability dominates, buoyancy-driven if buoyancy rever-
sal instability dominates, or a mixture of both. Only the
shear-free configuration will be discussed in this paper.

Assuming that the liquid water phase can be rep-
resented as a continuum with the same diffusivity as
the vapour, for low Mach number conditions the trans-
port equations for the total-water specific humidity and
the enthalpy reduce to the advection-diffusion equation.
Given equal thermal and mass diffusivities and with
appropriate boundary and initial conditions, the calcula-
tion of both can be represented in terms of the evolution
of a single conserved scalar field, the mixture fraction
X (x, t), satisfying the same advection-diffusion equation.
In a two-layer system as we have here, the mixture frac-
tion can be chosen to indicate the relative amount of mass
of the fluid particle that originates from the upper layer.
If thermodynamic equilibrium is assumed, the value of x
at each point and time determines completely the thermo-
dynamic state of the fluid particle; in particular it provides
the density as p(x, t) = p®(x(x,t)) for a function p°(x)
to be given.

In the Boussinesq limit with constant transport coeffi-
cients, the governing equations are then

a
a—:—f—V-(V@v) = —Vp—f—szv—i-bk,
Vv = 0, (1)
a
L ivon = «Vx.
ot
where the buoyancy is
po— P
b= g 2
L0

In the equations above, p is a modified pressure divided
by the reference density, v is the kinematic viscosity, «

is the scalar diffusivity and g represents the magnitude
of the gravity acceleration, which is assumed constant
and acting downwards along the vertical direction Oz,
i.e. g = —gk. Flow variables from the upper layer, where
x = 1, will be denoted by the subscript 1, and subscript O
will denote the lower layer, where x = 0. The parameter

(po — p1)
=—8
L0
quantifies the strength of the stable inversion. Positively
buoyant means b > 0 and the volumetric force is then
directed upward along k.
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The function 5°(y), or equivalently p®(x), remains to
be characterized to obtain the volumetric force from the
relation b(x, t) = b®(x (x, t)). The first parameter enter-
ing is the density difference across the layer pg — pj,
which is equivalent to a buoyancy value b, already intro-
duced above. If the density were a linear function of
the scalar, i.e. p = pg + x (o1 — po), then b(x) = b1 x.
When a phase change occurs and buoyancy reversal is
present, linear thermodynamic analysis for a small den-
sity difference py — p; shows that this function can be
well approximated by a piecewise-linear profile, charac-
terized by a maximum density ps at a particular mixture
fraction value x that is fixed by the initial data. This
maximum density is introduced in the problem through
the non-dimensional buoyancy reversal parameter (Shy
and Breidenthal, 1990)

D_'OS_'OO:_E‘
by

_,00—,01

3)

Figure 1 shows the function b®(x)/b; for the cases
described in Table I (to be discussed later in section 5),
the exact equilibrium solution given by a polynomial fit
to the vapour pressure function (Flatau et al, 1992).
The approximate piecewise-linear behaviour is clearly
revealed in that figure.

The discontinuity in the derivative observed in those
curves at xs, which corresponds to just saturation con-
ditions, needs to be smoothed if the high-order schemes
normally employed in DNS and later described are to be
used, since they are not monotone and the derivative of
the momentum equation is needed for the pressure equa-
tion. Therefore, the buoyancy function is approximated
as

by Xs
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Figure 1. Non-dimensional buoyancy mixing function for data in

Table I: exact thermodynamic equilibrium (dashed), and approximation

from Equation (4) (solid). Parameters D, xs and x. are shown for case
A3.
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which corresponds to the profile of the derivative db®/dy
following a hyperbolic tangent between two different lev-
els and centred at s (Figure 1). Mixture fractions smaller
than . = (xs + D)/(1 + D) are negatively buoyant.
Numerical studies performed to calculate the influence
of §; on growth rates are presented in section 5.2 and
show that a smoothing parameter defined by §; = x;/16
leads to small enough deviations.

The equations are to be solved in a rectangular domain
assuming periodicity in the horizontal directions Ox and
Oy. The boundary conditions imposed at the top and
the bottom are zero normal velocity and zero normal
derivative of the horizontal velocities and the scalar field
x. The Neumann boundary conditions for the Poisson
equation for the pressure at the top and the bottom are
then (Gresho, 1991)

ap 02w

P A b
where the boundary conditions on the velocity have
been already applied and w is the vertical velocity.
Additionally, one reference value of p (irrelevant for the
flow) has to be given at one point.

If there is a velocity-scale Uy externally imposed (e.g.
from a mean shear or from a turbulent state in one of the
layers) with a length-scale L, then dimensional analysis
shows that the general solution can be written in the form

)

v(x, 1) x tUy . a &6
= f _1—;Re9 Pr’ Rl’ XS’ D,_,— )
Uo Lo Lo Lo Lo
x tU )
X(th) = f* 7 —O;ReypraRi7XS7Daia_ 5
Ly Ly Lo Lo

where the reference Reynolds and Richardson numbers
are Re = LoUy/v and Ri = blLo/Ug, respectively, and
the Prandtl number is Pr = v/k. An amplitude a of the
initial perturbation of the interface has been assumed
along with a initial thickness § of the mean scalar profile
of x.

If there is no velocity-scale externally imposed, then
by and Ly can be used to write

X bl a 1)

= f —7t —;Gr9Pr1X81Ds_s_ )
Ly Ly Lo Lo
b 1)

f* ivt _1;Gr7PraXS7D5ia_ 5
Lo Lo Ly Lo

(6)

as the general solution to the non-dimensional equations

v(X, 1)

~/Lob;

x (X, 1)

av

V2vy + bk,
ot

)

+V-(V® V) —Vp+

Vv = 0,
ix L

v. - V2,
8t+ V) Grizpr X

which introduce the reference Grashof number (common
in free convection flows, e.g. Tritton, 1988) as Gr =

Gri/2
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Lgbl /v2. Other combinations of these non-dimensional
groups might be preferable for different particular con-
figurations, as will be done in section 5.

The unperturbed initial condition is assumed to corre-
spond to the enthalpy and total specific humidity follow-
ing an error function profile, which is a solution of the
purely diffusive equations. This is imposed in the cur-
rent formulation by prescribing the mixture fraction at
the initial time as

xi(2) = % [1 + erf(;—a)] .

The origin of the coordinate system is taken at the
interface, and the thickness of this interface in terms of x
is parametrized by 8. Evaporative cooling (Equation (4)
and Figure 1) implies then a three-layer structure in
the density field, with a middle heavier layer of an
approximate thickness of order §y.. The effect of a
perturbation of magnitude a to this configuration is
further explored in the following sections.

(®)

3. Linear stability analysis

This section discusses the linear stability analysis of a
three-layer density field without mean shear. The ini-
tial perturbation a is assumed to be small enough, i.e.
a/(8x.) < 1; stronger perturbations falling outside this
linear regime will be considered in section 5 via numer-
ical simulations. The basic configuration is depicted in
Figure 2. It represents an idealized buoyancy reversal
system, substituting the smooth density variation by a
stepwise profile. The analysis is done assuming constant
density in each of the three layers and irrotational flow.
This problem, for the case of a two-layer system, is
described in many textbooks (e.g. Turner, 1973) and the
general multilayer case has been also discussed in the
literature (Yang and Zhang, 1993). A three-layer system
like the one here has received less attention; experimen-
tal investigations have been reported (Sutherland, 2002;
Mehta et al., 2002; Jacobs and Dalziel, 2005), but all of
them with a stratification different from the one consid-
ered here. It is therefore of interest to study this three-
layer system in detail.

Let us denote with ¢; the velocity potential in each
of the layers, which satisfies the Laplace equation, and

p
! o1, P == €)py,
N
A z=h
0z B P "o 8
z=0
Lo ¢0’ Po= (1 - €O)IOm

Figure 2. Vertical density profile (left) and three-layer idealized
configuration (right) representing the buoyancy reversal state by a
density p,, greater than pp and p;.
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with 19 and n; the displacement of each interface with
respect to the reference position, separated by a distance
h (Figure 2). The boundary conditions for the linearized
problem consist of the kinematic condition,

%0 _ 3w _ 9o —0
0z 0z ot ’
0 0 d

¥ _m _Om

0z 0z - dt

and the dynamic condition of continuity of pressure at
the interfaces,

d
E(pm(pm — poPo) + (om — o) Mo =0 at z=0,

0
5(101451 — Pm®m) + (01 — o) gm =0 at z=h,

having used the linearized Bernoulli equation in each
of the three layers p;d¢;/0t + p; + pjgz = G;, with
suitable functions G (¢).

Solutions are sought in the form

©))

The boundary condition on the normal velocity at the
interfaces implies that ng = Agexp(ikx + ot) and simi-
larly for n;, along with relations between f'(z) at those
interfaces. Applying these results to the solutions of the
Laplace equations satisfied by ¢;, we obtain

¢; = fj(z) exp(ikx +ot) , j=0,m,1.

fo 0 Bo
fu | = am [+ Bu ],
h o 0

where the integration constants can be expressed in terms
of Ago/k and A o/k to write

0 —ekz
JJ:O _ oA cosh(kz) _ o Ao cosh[k(h—z)]
m - k sinh(kh) k sinh(kh)
fi —ekth—2) 0

Substituting these results in the boundary conditions for
the pressure, we obtain a homogeneous linear system for
the variables Ay and A, with the characteristic second-
order polynomial for o2

k
o2 =[sinh(kh>{%<pm — po)— ,00} — P cosh(kh)}

k
X[sinh(kh){%(m = Pm)— m} = Pm cosh(kh)}.

The eigenvalue is defined as the square of the growth
rate, 0. There are two eigenvalues and therefore two
normal modes for each given wavenumber k (Yang and
Zhang, 1993).

Let us now introduce the ratios €y and €;, such that

pm(l - 61) 5
Pm (1 —€o) .

P =
po =

(10)
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Then, the characteristic polynomial becomes

k
1 =e** — & sinh(kh) [60 te+ e - 61):|
o

) gk 2
+ €p€q sinh“(kh) [ 1 — — .
o

For the case €pe; # 0, the quadratic equation leads to

an

o? _€€] 1 — e 2kh
gk (e1—€) 1£A '
€0€1 —2kh
A=1+4+4—"91 (] e
(€1 — €0)?

{0-9)0-9)- e
2 2 4

In the Boussinesq limit, O (ep), O(€1) < 1 and the pre-
vious equation simplifies to

o? €0€] 1 — e~ 2kh

gk~ (e1 — ) 1 j:\/l +4ﬁ(1 _e—zkh)'

12)

In our particular case, 0 < €y < €1, and there is always
one unstable solution oy, corresponding to the positive
sign in front of the square root, and one stable solution
o (two dispersive waves), corresponding to the negative
sign. The physical system has therefore two time-scales,
low|™' and |os|”!. Depending on the ratio |oy|/|os,
the system will have fewer or more oscillations before
the unstable mode is appreciated. The ratio between
the unstable and stable eigenvalues is always less than
1, increasing with €p/€; as shown in Figure 3. The
dependence on the thickness of the unstable middle
layer h occurs through the non-dimensional wavenumber
kh. For small values of kh, the unstable growth rate
tends to zero, whereas the stable solution tends to o2 =
—(e1 —€9)gk/2 ~ —kb, /2, since by >~ g(e; — €p), this
result corresponding to the oscillation of a two-layer
system formed by layers O and 1. For large values of

O

// \6

0.2

0.0 0.4 0.6

€y/e=D/1+D)

0.8 1.0

Figure 3. Ratio between the unstable and stable mode growth rates
as a function of the density difference ratio and the non-dimensional
wavenumber kh in the Boussinesq limit O(eg), O(e1) < 1.
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kh, both growth rates in Equation (12) tend to those
corresponding to two independent two-layer systems, one
stable with eigenvalue —e;gk/2, the other one unstable
with eigenvalue €pgk/2.

In case of ¢y < €, as we expect to have, the solutions
to Equation (12) are

.~ eogh(l—e7M)2,
2 13)
oy ~ —€18k/2,
which correspond to an oscillation period much smaller
than the time-scale of the exponential growth of the
unstable mode. The solution for oy corresponds to a
stable two-layer configuration; the interface 7; does not
feel the small density difference at z = 0. The solution
for o, corresponds to an unstable two-layer system with
a wall at a height z = h; this no-penetration condition
is consistent with the fact that the upper interface
oscillates fast compared with the characteristic time of
the unstable layer, and only the mean position z =/ is
felt by the interface 7.

Equation (12) corresponds to the functional depen-
dence anticipated by Equation (6) which we derived from
dimensional analysis. This can be made explicit by not-
ing that the former equation can be written in terms of
the ratio €p/€;, the buoyancy reversal parameter (Equa-
tion (3)) is

€o/e
D= 0/€1

T 1/ (1

when the density of the middle layer p,, is identified with
the saturation value pg, and

(e1 — €0)

b, =
T8I )

~ g(e1 — €)

in the Boussinesq limit, leading to

2
o 1 [—1 +/1+4D(1 + D)1 — e—2kh)] . (5)
kb, 4
with # playing the role of the thickness § and k the
inverse of a characteristic length L. The stable solution
corresponds again to the minus sign and the unstable to
the plus sign. This result is valid for any value of D.

Equation (15) and Figure 3 allow one to compare the
results obtained in the linear analysis with the discussion
presented by Shy and Breidenthal (1990), Siems et al.
(1990) and Siems and Bretherton (1992) about the role of
the buoyancy reversal parameter D. In the first place, the
instability condition 0 < €y < €| translates with the new
notation into D > 0, which corresponds to the buoyancy
reversal instability criteria introduced by those authors
and equal to the nondimensionalized Randall-Deardorff
criterion. Our analysis shows that this instability reflects
one of two modes of the system, the second one being
stable. Second, the critical value D ~1 is reported
by Siems and Bretherton (1992) to characterize the
transition between buoyancy reversal instability and a
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strong buoyancy reversal instability, which can lead
ultimately to cloud-top entrainment instability. However,
the present linear analysis does not support such a
scenario and Figure 3 depicts a rather smooth variation
of the unstable growth rate with D. If the value D =1
is substituted in Equation (15), then the growth rate of
the unstable mode is only a factor ~/2 smaller than the
corresponding stable one for small wavelengths, hence
D =~ 1 should be simply interpreted as the condition for
both modes to have comparable growth rates. This result
suggests that to the extent D ~ 1 represents a transition
in the experiments of Shy and Breidenthal (1990), it does
so because of nonlinear interactions related to the manner
in which they perturb the interface in the experiment,
or because of a finite-amplitude instability that cannot
be described by the linear stability analysis. Finally,
Equation (15) shows the influence of the thickness & of
the buoyancy reversal layer. For small values compared
to the wavelength of the perturbation, the growth rates
increase with kh, but asymptote to a constant after kh is
of order one.

Last, the case D « 1 (previous limit €y < €1) is
of special interest because it occurs often in normal
conditions at the top of the cloud deck (Kuo and Schubert,
1988; Stevens et al., 2003). In this limit

~ kbiD(1 —e M2,

2
b 1
o2~ —kby/2, (16)

and the ratio of growth rates depends on the square of
the buoyancy reversal parameter

|oul N (17)

D(1 — e=2kny
|os|

In brief, the linear stability analysis shows that the
system is characterized by two modes, the stable one
with a period of oscillation given by Equation (15)
(negative sign), depending on the strength of the stable
stratification as kb; and with corrections depending on
D and the non-dimensional wavenumber kh, and the
unstable mode with a growth rate smaller than the
stable one (Figure 3) and whose exact value is given
by Equation (15) (positive sign). Two time-scales appear
thus naturally from the equations, and a clear physical
interpretation of the parameter D for the case D « 1
typical of the stratocumulus top is obtained. The period of
oscillation of the interfacial gravity wave can be written
as 2./m+/A/by if a wavelength A = 27/k is introduced,
and the characteristic time of the unstable mode scales
as D7'/? times this oscillation period, according to
Equation (17), with a prefactor depending on the non-
dimensional layer thickness &/A. For D = 0.1 the ratio
of the growth rates is 0.3 and it increases monotonically
with the thickness %, but asymptotically after kh >~ O(1).

4. Numerical algorithm

An incompressible code for solving the set of equations
presented in section 2 has been derived from a previously

Copyright © 2009 Royal Meteorological Society
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existing finite-difference compressible code (Mellado
et al., 2009). The algorithm follows Wilson et al. (1998);
in particular, it uses a fourth-order low-storage Runge—
Kutta scheme for the time advancement (Williamson,
1980) and sixth-order compact Padé schemes for the
spatial derivatives (Lele, 1992) over a uniform grid,
which provide the finite-difference approximations to the
derivatives of a scalar field p, e.g. along the Oz direc-
tion, by solving the linear systems A;A,p = B;p and
A A, p = B, p, for the first- and second-order approxi-
mations, A, p and A, p, respectively. The matrices A; are
tridiagonal and the matrices B; are pentadiagonal and the
0.1% error in the corresponding transfer function occurs
at about 6 points per wavelength. The scheme is one-sided
at the non-periodic boundaries (top and bottom).

The discrete Poisson equation for the pressure is
written using Fourier decomposition inside the horizontal
planes, which leads to

A:A:Pij = MPij = 8ij (18)
where p;; is the vector formed by the horizontal Fourier
modes

N N N
i=0,...,[==-1 = (1), (-1
=0 (3 w5 (3)

(modes N, /2 and N, /2 are set to zero) at each z-position,
and

A2 =[fQmi/Ny)/ (AT + [f Qrj/Ny)/ (AN,
(19)

where Ax and Ay are the uniform grid spacing in
the Ox and Oy directions, respectively. The transfer
function f(w) of the first-order finite-difference operator
A, needed in the equation above is (Lele, 1992)

_(14/9) sin(w) + (1/18) sin(2w)

f(@) 1+ (2/3) cos()

(20)

The Neumann boundary conditions are obtained by
Fourier transforming Equation (5). For the case A =0,
one of the Neumann boundary conditions has to be
substituted by a Dirichlet one, and poy = O is used.

The difficulty resides in solving the sequence of dis-
crete equations Equation (18), since each one is a linear
system with a full matrix of size N, x N,. The prob-
lem can be simplified by introducing an approximation
to the operator A,A, which leads to a system easier
to solve. For instance, using the second-order finite-
difference operator A,,, we have
—-Rp,

Ay Pij — APij = i) 1)

with
Rp=A;A;p—Ayxp =(A1_1B1A1_1Bl _Az_lBZ)P,

R being a full matrix. Cook and Dimotakis (2001) solve
an approximation to this equation by neglecting the term
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Rp in their Rayleigh-Taylor turbulence simulations and
solving the resulting pentadiagonal linear system, and the
same approach is followed here. The error introduced
by this step in solving the Poisson equation, due to the
different truncation error between A, A, and A_,, is easily
analyzed in the case of periodic boundary conditions with
help of the corresponding transfer functions. It is then
observed that the error increases monotonically with the
wavenumber and is of the order of 0.1% with 6 points per
wavelength, which is consistent with the properties of the
schemes used to calculate the derivatives of the equations.
However, this step involves a non-zero dilatation error
whose level depends on the resolution; the effects of this
error will be discussed later in section 5.

Finally, the buoyancy term in the momentum equation
is prescribed in terms of the deviation b°(x(x,?)) —
b®(xi(z)), with x; from Equation (8). It is well known
that any function f(z) can be subtracted from b(x,t)
with an appropriate redefinition of the scalar field p,
and our particular choice reduces the gradient of p at
the upper boundary to almost zero, which contributes to
well-behaved boundary conditions.

5. Two-dimensional simulations

Single-mode two-dimensional simulations are now pre-
sented with the purpose of illustrating the buoyancy
reversal instability within the nonlinear regime as a com-
plement to the linear stability analysis discussed before.
These simulations also serve to validate the incompress-
ible code for later use in the three-dimensional turbulence
studies. The linear stability analysis identifies the possi-
ble significance of each of the parameters involved in
the problem, namely, a time-scale related to by, a sec-
ond time-scale which can be further related to D, and
a thickness /# of the middle heavy layer. However, sev-
eral assumptions underlying our linear analysis are not
satisfied in reality: there is diffusion of the baroclinically
produced vorticity, the shape of the initial density profile
varies smoothly and there are finite amplitude effects. All
of these effects can be captured in two-dimensional sim-
ulations, and hence these prove to be a useful next step
in exploring whether the conclusions derived previously
hold in reality.

No mean shear is considered and the initial perturbation
is set by displacing sinusoidally the isosurface y = 0.5
from the hydrostatic equilibrium over a wavelength A
with an amplitude a/2. The length-scale a represents
then the initial thickness of the mixing region. This ini-
tial condition is different from the disk anomaly used
by Siems et al. (1990) and the single vortex employed
by Siems and Bretherton (1992), but follows the com-
mon initialization employed in Rayleigh-Taylor config-
urations (Cook and Dimotakis, 2001; Mellado et al.,
2005), the initial mechanical energy being introduced
only through potential energy. The Prandtl number is
unity.

Copyright © 2009 Royal Meteorological Society

969

5.1. Mixture fraction

A first series of simulations is performed to present here
a qualitative description of the flow, and to study reso-
lution requirements in subsection 5.2 for the numerical
algorithm presented in section 4. The geometrical param-
eters used are §/A = 0.025, where § is the thickness
of the initial error function profile (Equation (8)), and
(a/2)/A = 0.1, where a/2 is the amplitude of the sinu-
soidal displacement. The reference box size in the verti-
cal direction is 2A; different sizes were also investigated
(but not shown) to ensure that there are no finite-domain
effects on the results presented here. The cases consid-
ered are described in Table I, where A1l is the reference
case and corresponds to field experimental data of noctur-
nal marine stratocumulus from DYCOMS-II (Dynamics
and Chemistry of Marine Stratocumulus; Stevens et al.,
2003). The thermodynamic state of the upper layer is kept
fixed at a temperature 77 = 19.1 °C and a total-water
specific humidity ¢, 1 = 1.5gkg™", and the lower state is
modified to increase the effect of buoyancy reversal as
shown in Figure 1. The case AO does not retain evapora-
tion, so that only the oscillating stable mode is present,
and cases A2 and A3 consider an increasing buoyancy
reversal imposed by means of a higher water content in
the lower layer, keeping constant the density difference
0o — p1 so that the period of the stable mode 2./7 /A /b;
remains the same. The Boussinesq formulation only needs
the values xs and D from this table.

Linear stability analysis has identified two time-scales
in the problem. In this study we start from the stable
case A0 and add increasingly the unstable mode, then it
is reasonable to take /A/b; as the reference time-scale
for the non-dimensionalization. The relevant length-scale
is the initial thickness of the mixing region, of order a,
which leads to a viscous time-scale a?/v. The reference
Grashof number of the problem, defined in terms of the
ratio between the two previous time-scales, is

4
a bl
Gr = —, 22
7Y (22)
Table I. Simulation series A.
q1.0 Ty e —¢€ €0 D Xs
(gkg™) (O (x107%) (x107?)

A0 8.0 10.5 2.54 — — —
Al 9.0 10.6 2.54 0.79 0.031 0.09
A2 10.0 10.8 2.54 1.89 0.074 0.22
A3 12.0 11.3 2.54 3.37 0.133 0.39

q:,0 and Ty are the lower-layer total-water specific
humidity and temperature.

€o and €; are defined by Equation (10) in terms of the
densities, and b; = (e — €g)/(1 — €0)g =~ (€] — €0)g.-
D is the buoyancy reversal parameter from Equation (14),
and xs is defined in section 1 and Figure 1.

The upper-layer temperature and humidity are 19.1°C
and 1.50gkg™! at pressure level 940 hPa.
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S TN

Figure 4. Negative buoyancy field for case AO (top row), case Al (middle row) and case A3 (bottom row) showing the evolution (left to right)
starting from the initial condition and showing a frame every cycle of linear stable mode. Grashof number Gr = 6.4 x 10°.

and a value Gr = 6.4 x 10° is used in this first series
of simulations. The mesh of size 512 x 1024 is uniform
and with equal grid spacing in every direction; resolution
requirements are studied in detail in section 5.2.

Figure 4 shows qualitatively the evolution of the
negative buoyancy field (points x for which b(x,7) <0
are visualized using a grey scale, white for zero and black
for minimum —Db) every 2./ +/A/b| time units. The
stable case AO is represented by b®(x(x,t)) < O using
the function b°(yx) corresponding to case Al in order
to compare the flow structure of both. The box height
shown is only the lower 3/4 of the domain employed in
the simulation. The results obtained in the linear stability
analysis are reproduced here: superimposed on a standing
interfacial gravity wave, a falling finger, downdraught or
spike, starts to form at the lowest point of the oscillation.
This finger develops a mushroom shape typical of the
Rayleigh—Taylor instability for small density differences
(Sharp, 1984; Ramaprabhu and Andrews, 2004). On top

Copyright © 2009 Royal Meteorological Society

of this process, viscosity tries to stop the motion while
diffusion spreads the buoyancy reversal by mixing the
ambient moist air with the less moist air inside the falling
finger.

The non-homogeneous local mixing produced by the
baroclinic production of vorticity at the oscillating inver-
sion layer leads to the development of downdraughts at
wavelengths smaller than the initial condition, which in
turn enhances mixing at the core of the cloud-top mix-
ing layer as compared to the non-evaporative case. This
rearrangement of the buoyancy field is increasingly pro-
moted as the buoyancy reversal and is augmented either
by larger values of D or y;, as noted by comparing cases
A0, Al and A3 in Figure 4. The time evolution presents
a pulsating behaviour imposed by the stable mode, hav-
ing the big initial central falling structure followed by a
smaller one that appears in the last frame of Figure 4.
A certain amount of heavy fluid is pumped periodically
into the lower layer, the falling finger pinches off from
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Figure 5. Vertical profile of the mean mixture fraction x for the

case A3 every cycle of linear stable mode (the same times as shown

in Figure 4): solid, dashed, dot-dashed, dot-dot-dashed and dot-dash-
dashed, respectively.

the oscillating central layer and the feed of fluid from this
central layer ceases. It is observed that buoyancy rever-
sal enhances mixing in the lower layer, but there is no
strong instability in the sense of a runaway behaviour
with a continuous tongue of falling upper fluid. This
behaviour agrees with the laboratory experiments by Shy
and Breidenthal (1990) and with the numerical simula-
tions of Siems ef al. (1990) and Siems and Bretherton
(1992), who refer to it as a evaporative enhancement
of entrainment and is characteristic of small buoyancy
reversal parameters D < 1.

The instability process in now quantified with help of
the mixture fraction x. Mean profiles x (z, t) for the case
A3 are shown in Figure 5 and the perturbation growing
into the lower layer depicted in Figure 4 is easily observed
in these mean profiles. This perturbation can be located
by the point where the field y departs a given magnitude
from the constant value of the corresponding layer. For
example, for the falling finger, we can take x and scan
from the lowest boundary upward until the mean profile
reaches a given threshold; the distance from this point to
the centre plane defines a height /4, (¢) of the falling finger.
Normally, a threshold of 1% of the difference between the
two layers is used in turbulent Rayleigh—Taylor cases, but
mixing in this problem is mainly reduced to the small
fraction of x affected by buoyancy reversal; the inset in
Figure 5 shows that x varies below 0.1 in the mixing
region that forms in the lower layer. The threshold value
0.001 is therefore used.

The height &, of the falling finger as defined above is
shown in Figure 6 as a function of time. The first thing
to note is the superposition of the oscillating mode with
the unstable mode. The effect of the buoyancy reversal
parameters presented in Table I is also clearly exposed. As
buoyancy reversal is increased from case AQ to A3, the
middle unstable layer is relatively heavier (increasing D)
and thicker (increasing xs), and therefore the growth rate
of the unstable mode increases in comparison with the
stable oscillation, the distance /i, growing faster during
the first 10-15 non-dimensional time units. These results

Copyright © 2009 Royal Meteorological Society
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Figure 6. Temporal evolution of the penetration length /i, of the
downdraughts for the different cases of Table I: A0 (solid), Al (dashed),
A2 (dot-dashed), A3 (dot-dot-dashed).
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Figure 7. Temporal evolution of the upper perturbation thickness ; for
the different cases of Table I: AO (solid), A1l (dashed), A2 (dot-dashed),
A3 (dot-dot-dashed).

agree with those obtained in the linear stability analysis
of section 3 and presented in Figure 3. The stable case AO
only oscillates, with a period about 10% larger than that
predicted by the linear theory and with a mean growth
corresponding mainly to diffusion effects.

The same technique can be used to measure the
thickness of the mixing region growing into the upper
layer, h,(t), and the result is shown in Figure 7. The
strong difference with the evolution of the lower thickness
hp(t) of Figure 6 is consistent with the mean profiles x
shown in Figure 5 and the visualizations in Figure 4,
h; showing only a steady mild growth of the mean
level. This asymmetry in the vertical direction is a
major difference with the conventional Rayleigh-Taylor
configuration. It merits emphasizing that all cases present
the same behaviour, and a strong buoyancy reversal as in
case A3 does not differ qualitatively from the stable case
AO. Since the mixture fraction is a conserved scalar,

d
— | ydz=0
dt /ﬂx .
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holds for a long enough vertical interval. The fact that
this series of simulations show no appreciable influence
of increasing buoyancy reversal on /;, but a strong one on
hp, implies that a stronger dilution of the downdraught
occurs in the sequence A0-A3, as pointed out by one
of the reviewers. Further discussion on this issue is
presented in section 5.4.

An entrainment velocity with respect to the lower
layer can be defined as the temporal derivative of h,(¢).
However, detailed quantitative results are influenced
by the dominating stable periodic motion, the lack of
multi-mode interaction and the two-dimensionality of
the problem, thus we defer further analysis to three-
dimensional simulations, which are ongoing and will be
discussed in detail in a forthcoming paper.

5.2. Resolution requirements

High resolution is needed to retain accurately the structure
of the buoyancy field represented in Figure 1 within the
turbulence interface formed between non-turbulent outer
regions and the turbulent zone. In this respect, 6 points
per vorticity thickness are normally used for a sixth-order
compact scheme. The gradient thickness of a function f
varying monotonously across a difference Af between
two levels is defined in terms of the maximum derivative
by Af/fr. For the case of the error function profile
(Equation (8)) used here, this gradient thickness is 3.548
and the resolution is then about 45 points per gradient
thickness of the initial mixture fraction field x, which
might seem too much. However, the peak of the density
field occurs within a fraction y of the mixture fraction
variation and the resolution of this buoyancy reversal
layer can be as low as 10% of the complete viscous
superlayer (Table I).

As the flow develops, the smallest scales in these two-
dimensional configurations correspond to the thickness
of the diffusive layers, partially represented in Figure 4,
which scale as (Gr!/? Pr)~!/2, but the particular reso-
lution required in a simulation depends on the particu-
lar numerical algorithm. As already mentioned, there is
a non-zero dilatation caused by the different truncation
error between the first- and the second-order finite dif-
ferences entering in the solution of the Poisson equation
and this quantity can be used to monitor the accuracy of
the simulation. Figure 8 shows the temporal evolution of
the ratio between the L?-norms of the dilatation and the
vorticity over the whole domain for the different cases.

The case without evaporative cooling A0 has a relative
error 1078 and it is therefore very well resolved (the
minimum would be round-off error, 10~!°, using an eight-
byte representation of real numbers). The presence of
buoyancy reversal introduces a dynamically active scale
smaller than that observed in the mixture fraction field
due to the mapping b®(x), as already discussed, and
the effect is observed clearly in Figure 8 because the
dilatation error is increased in three orders of magnitude
in comparison with the passive scalar case A(Q. With
the resolution 512 x 1024 for the Grashof number Gr =
6.4 x 10° considered here, the dilatation error in the cases
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Figure 8. Temporal evolution of the dilatation error measured by the

ratio between the L?-norms of the dilatation and vorticity. The thick

lines are as in Figure 6. The thin lines correspond to case A3 with:

(a) half resolution, (b) no smoothing (85 = 0) in the buoyancy function
e

(x)-

with buoyancy reversal remains between 10~ and 10~
times the vorticity magnitude, which might be enough for
small-scale analysis in the flow, like probability density
functions of derivative fields. When half the resolution is
employed, i.e. a mesh 256 x 512, then the dilatation error
increases one order of magnitude; however, differences
in the enstrophy fluctuation profile remain below 1%
(penetration length %, (f) curves shown in Figure 6 are
indistinguishable), which suggests that this mesh size
is sufficient for the study of large-scale statistics like
entrainment rate, Reynolds stress profiles or budgets of
the corresponding transport equations.

As a conclusion from the previous results we can
increase the reference Grashof number for the reference
grid 512 x 1024 by a factor of 16, according to the
scaling based on (Gr'/? Pr)~1/2, and the dilatation error
would be about 1073 times the vorticity magnitude
having still enough resolution to investigate large-scale
quantities. Figure 9 corresponds to case Al from Fig. 4
but with this new high Grashof number Gr = 107 plotted
over a longer time. The large scale pattern is the same,
but the development of stronger mixing just bellow the
inversion layer is more clearly exposed, in addition to
the richer small-scale details allowed by a larger Grashof
number. High Grashof number simulations are further
discussed below.

The effect of the smoothing parameter §; employed
in the definition of b°(x) in Equation (4) has been also
investigated and the dilatation curve for case A3 with
the reference grid 512 x 1024 is included in Figure 8,
with §; = O instead the reference value 6 = xs/16. The
effect is an increase in the dilatation error of one order of
magnitude. On the other hand, the penetration length is
higher by about 2% at the final time, which is a measure
of the error introduced by the smoothing with &5 due to
the small reduction in the minimum peak of the curve
b®(x) in Figure 1.
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Figure 9. Evolution of the negative buoyancy field for case Al as in Figure 4, but during a longer interval. The Grashof number Gr = 107.

5.3. Energy budget

The last statistics to be considered are those related
to the energy budget. First, the potential energy is
discussed in terms of the buoyancy function b, since the
transport equations are normally written in terms of this
variable. From the definition b(x, t) = b°(x (X, t)) and the
advection-diffusion transport equation for x, we obtain
the transport equation

b 5
= 4V (vb) =kV?b+S,

5 (24)

which shows that b is not conserved but has a source term
S. If this result is interpreted in terms of the density using
Equation (2), it simply states that mass is not conserved,
a well-known defect of the Boussinesq approximation
(Lilly, 1996). The source term is

21e

dy?

P& d’p®

§=-— @ dv
2 dy?

k|Vyx (25)

where €, =2k|Vx|* is the so-called scalar dissipa-
tion rate and has dimensions of inverse time. When
a piecewise-linear approximation is chosen to describe
b®(x), its second derivative is proportional to a delta
function §(x (x,t) — xs). This case is formally equal to
the Burke—Schumann solution of infinitely fast-reacting
flows (Burke and Schumann, 1928; Peters, 2000), the
buoyancy b playing the role of one reactive scalar with
the ‘flame’ sitting at the saturation surface y (X, ) = xs.
(This ‘flame front’ description has been already used
qualitatively by Siems et al., 1990.) In our case S is neg-
ative and we could talk about heat absorption instead

Copyright © 2009 Royal Meteorological Society

of heat release. For the approximation expressed by
Equation (4) employed here (already used in DNS of
reacting flows by Pantano et al., 2003), the curvature of
the buoyancy function is

d2p® 1+D D\ 1 - -2
= b + + — ) — | cosh X~ X% .
dX2 1= xs Xs) 48 26

The term inside the first parentheses is the difference in
the slopes of the piecewise-linear profile and represents
the strength of the evaporative cooling, and the rest can
be interpreted as a delta sequence that converges to the
delta function as 6; — 0. A compromise in the value of
3, small enough to mimic a localized heat absorption
zone but large enough to be resolved by the grid, has
already been discussed in section 5.2.

Multiplying Equation (24) by the vertical coordinate z,
we obtain

0(bz)

P + V- (vbz) = bw 4+ kzV?b + 28 ,

(26)

and taking the mean over horizontal planes leads to

9 9b 9b _
+x|—z— ——|+2z5, 27)

a(b a(b Z
82 82 82

ot 0z

where the turbulent buoyancy flux is given by B(z, t) =
w’b’ and the condition w = 0, satisfied in our con-
figuration, has been used. The prime indicates turbu-
lent fluctuations. The evolution equation for the total
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integrated potential energy is then

d o0 _ o0
§<_/ zbdz)z—/ Bdz

00 -
+ k by —/ zSdz.

]

(28)

The first line in the equation above corresponds to the
balance we would obtain in the exact (mass-conserving)
formulation of the problem: the integrated potential
energy changes only through the total buoyancy flux.
In contrast, in the Boussinesq limit we obtain two
additional sources. Note that the balance in Equation (28)
is independent of the reference used to measure vertical
distances, but the time change of the integrated potential
energy or the contribution from § individually do depend
on that arbitrary reference. Last, the integral of b as it
is in the left-hand side does not converge since b = b
far above in the upper layer. However, the equation can
be written in terms of b — f(z) for any constant function
f(z) and we can choose f(z) = b®(x;(z)) in order to
regularize the problem, yx; from Equation (8), without
loss of generality.

The turbulent buoyancy flux B represents the transfer
of energy between the turbulent kinetic energy and the
potential energy, and it is easy to show that the total
mechanical energy evolves according to the equation

/= "12/2 — zb)dz | =
E[/_W(M/ —zb) z}—

o0 oo _
—/ Edz+/<b1—f zSdz,
—00 —00

where e is the turbulent dissipation rate (€ = v v; ;(v] ; +
v}’i) in Cartesian coordinates using index notation). The
term kb represents a linear diffusion source of potential
energy which is always present, linear meaning that it
contains the contribution from the linear part of the
buoyancy function b®(yx) varying between O and b
(Equation (4) and Figure 1). Note that this term is always
present, even in a one-dimensional purely diffusion
case without buoyancy reversal, and it represents a
constant linear growth in time. Further discussion can
be found elsewhere, e.g. Winters et al. (1995), Peltier
and Caulfield (2003). The source term — f zS dz contains
the nonlinear contribution, since S is proportional to the
curvature of the buoyancy function by its very definition
in Equation (25).

A new series of simulations with a reference Grashof
number Gr = 107 (series B described in Table II) has
been performed in order to study the energy equation.
The different cases are defined by varying each of the
non-dimensional parameters identified through the paper
instead of modifying the water content and temperature
as was done in series A (Table I). The reference case is
B1 and corresponds again to the experimental data taken
from DYCOMS-II (Stevens et al., 2003), i.e. it is the same
as case Al with a higher Grashof number (Figure 9),
whereas case BO represents the stable configuration

29)
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as AO did. Cases B2 and B3 increase the buoyancy
reversal by increasing D and s separately, without
modifying significantly the initial potential energy. On the
other hand, cases B4 and B5 vary the initial conditions
parameters /A and a/A, both decreasing the initial
potential energy set in the system with respect to Bl
and therefore diminishing the magnitude of the motion
caused by the stable oscillations of the inversion. The
vertical size of the domain has been extended to 2.5\
in order to allow longer simulations, i.e. the grid size is
512 x 1280.

Figure 10 shows the balance of the integrated energy
(Equation (29)) for case Bl. It has been integrated
in time to observe the accumulation of numerical
errors,

o0 |V/|2 _ t
b )dz| =
o\ 2 0
t poo t poo
/cblt—// zSdzdt—// €dzdr, (30)
0 J—o0 0 J—oo

where the terms are, from left to right, the mechani-
cal energy, the linear source of potential energy, the
nonlinear source due to S, and the energy dissipation.
The results show that the linear source xb; contributes
positively to the overall balance, in particular increasing
the potential energy through the diffusion of heavy
fluid from the bottom to the top, and the rate of this
contribution is constant in time and independent of the
buoyancy reversal parameters D and x5, and of the
geometry of the initial condition § and a. The other
two terms contribute negatively: the nonlinear source
term tends to reduce the potential energy because of
the generation of negatively buoyant (heavy) parcels in
the lower layer, and the turbulent dissipation because
it represents the removal of turbulent kinetic energy
by definition. The last curve in Figure 10 depicts the
difference between the left-hand side and the right-
hand side of Equation (30), which quantifies the errors
introduced by the numerical algorithm. It is observed that
they are indeed negligible, decreasing to less than 1%

Table II. Simulation series B.

D x, 8/x  (a/2)/x Gr
BO — — 0025 0.10 107
Bl 0.031 009 0025 0.10 107
B2 0062 009 0025 0.10 107
B3 0031 0.8 0025 0.0 107
B4 0.031 009 0050 0.10 107
B5 0.031 009 0025 005 6.25 x 10°

Cases B2 and B3 increase buoyancy reversal with
respect to the reference case B1.

Case B0 has no buoyancy reversal.

Cases B4 and B5 modify the initial conditions.

Xs 1s defined in section 1, and a, § and A in section 5.1.
Gr is defined by Equation (22).
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Figure 10. Energy budget according to Equation (30) for reference

case B1: mechanical energy (solid), linear source (dashed), nonlinear

source (dot-dashed), energy dissipation (dot-dot-dashed). Accumulated
numerical error is indicated by the dot-dash-dashed line.

of the turbulent dissipation, and validates once more the
numerical scheme used in the study.

The source term S is further investigated. First, the
accumulated integral value of the this source is computed,
which from Equation (24) is related to the evolution of
the integrated buoyancy

e8] t t oo
[/ Edz} =—/ / Sdzdr.
—00 0 0 J—x

This term is shown in Figure 11 for the different
cases of Table II, normalized by the strength of the
evaporative cooling b1[(1 + D)/(1 — xs) + D/ xs]. With
this normalization and from Equation (25), this term is
approximately proportional to the accumulated integral
value of the scalar dissipation rate €, conditioned on the
evaporation surface y(x,t) = x5, and therefore closely
related to the turbulent mixing generated by the motion.
In fact, the curves shown in Figure 11 show an increase in
the accumulated buoyancy as more forcing is imposed, by
increasing D or xs or a. The parameter § is also consistent
with this interpretation because the higher the § for a
given a, the smoother the initial buoyancy profile and
the smaller the initial potential energy set in the problem.
Last, it is also interesting to calculate where in the
domain the evaporative cooling is most concentrated,
which is related to the source term of the energy equation.
It has been observed in Figure 10 that the nonlinear
source term S decreases the integrated potential energy,
but this interpretation really depends on the vertical
reference position taken to calculate the potential energy,
although the balance between them, which is equal
to the remaining terms in Equation (28), is of course
independent of that reference. A useful quantity for that

purpose is the instantaneous centroid of the function
S(x, 1)

(31

(32)

Copyright © 2009 Royal Meteorological Society

975
0.0
-1.0 SN e
I XN Y ~o '
2 N \‘-\\_
S RN S
~ N N S~
g -2.0 : N &
> A
< .
S~ N
3.0 Mo
\
0.0 5.0 10.0 15.0 20.0 25.0 30.0
1 (byN)'"?

Figure 11. Normalized integrated buoyancy (Equation (31) and asso-

ciated text) for different cases: reference, B1 (solid); double D, B2

(dashed); double x5, B3 (dot-dashed); double &, B4 (dot-dot-dashed);
half a, BS (dot-dash-dashed).
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Figure 12. Centroid of the function S(x,t) according to definition
Equation (32). The legend as in Figure 11.

This location can be used as reference for the definition
of the potential energy, if desired, which allows Equa-
tion (28) to be written as

% [—/_m{z - zs(t)}de] =

o0 dZ5 o _
—/ Bdz +«b +—/ bdz, (33)
0 dt J_
introducing a velocity dzs/d¢. The energy Equation (29)
can be correspondingly rewritten, if desired.

The evolution of zs(z) is therefore of interest and it
is shown in Figure 12 for the different cases. The first
thing to note is that it is relatively constant in time,
meaning that it presents oscillations but the mean remains
constant. Hence, the mean position of the evaporative
cooling source (and therefore the saturation surface
X (X, 1) = xs) remains located between 15 and 35 below
the reference position of the stable mode, and the decrease
in the nonlinear source term — /[ zSdz of the energy
equation in Figure 10 is mainly determined by the
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evolution of the source term S, itself shown in Figure 11.
After these parcels of relatively heavy mixture have
been generated, mixing outside the saturation surface
homogenizes the field b, mixing that can be generated
either by the oscillating mode, dominant in the two-
dimensional single-mode cases considered in this paper,
or by the downdraughts of the heavy mixtures themselves.
The influence of § in the problem has been determined,
but the role of the other parameters cannot be really
deduced from Figure 12 for the current configuration.

5.4. Discussion

The objective of this section has been the extension of
the linear stability analysis into the nonlinear regime,
explaining the flow characteristics based on the mixture
fraction and energy statistics, and the validation of the
incompressible code through a quantitative resolution
study.

However, further discussion of the results seems appro-
priate at this point. One characteristic of turbulent entrain-
ment is the mean entrainment rate, normally quantified
either by a mean flow velocity towards the turbulent
region, or by a displacement velocity of some mean pro-
file towards the non-turbulent region (Hunt et al., 2006).
In our problem, the mean vertical velocity is zero because
of statistical homogeneity in the horizontal planes and the
solenoidal character of the velocity field, and therefore we
have discussed mean entrainment through the evolution
of the penetration lengths %, and %, defined in terms of
the mean vertical profile x(z, t) in section 5.1. Evapora-
tive enhancement of turbulent entrainment is observed
in Figures 6 and 4 and agrees with the general con-
clusions of Siems er al. (1990). However, the current
results show that the motion below the cloud top for val-
ues of D « 1 is highly convoluted (cf. Figure 9) and
suggest that in a three-dimensional broadband situation
the flow could become turbulent only due to the buoy-
ancy reversal instability without an additional sustained
external forcing (e.g. from an already existing turbu-
lent state in the lower layer or from local shear). It is
not only weak circulations in the lower layer that need
to be observed, and there is indeed a large difference
between the stable cases and buoyancy reversing cases
with small D, in contrast to previous suggestions (Siems
et al., 1990; Siems and Bretherton, 1992). The differ-
ence is partly due to the low Reynolds numbers achieved
in Siems et al. (1990), because they define a reference
Reynolds number (Db;A3/v?)1/? ~ 2 x 103, whereas the
corresponding value here is about 10*. This increase in
the affordable Reynolds number is due not only to the
increase in grid size, but also to the employment of
high-order schemes in our work. Siems and Bretherton
(1992) report simulations with a reference Reynolds num-
ber (113 /v?)1/? ~ 2 x 10*, the equivalent value in our
paper being 8 x 10*. These two cases are more similar,
yet they still report a negligible difference between the
stable case and the case with D = 0.05. The reason for
their conclusion might be the low-order scheme they use,
or the strong initial condition that they set with the initial
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vortex. We also note that the reference Grashof number
Gr = a*b;/(v*A) ~ 107 used in this work is compara-
ble to that found in the atmosphere when length-scales A
between 1 m and 10 m are considered, as mentioned in the
Introduction. For the reference case from DYCOMS-II,
with a buoyancy b; ~ 0.25ms ™2, the reference Grashof
number varies approximately between Gr ~ 10° for A =
Im and Gr ~ 10° for A >~ 10m, using a/A = 0.2 and
a kinematic viscosity of 1.5 x 1079 ms~2. The corre-
sponding reference time-scales /A /b are 2s and 6.3 s,
respectively. It is worth again stressing that the purpose
of this work is the study of small-scale phenomena (of the
order of 1-10m) at the cloud top, not the cloud-topped
boundary layer as a whole, and therefore results cannot
be directly extrapolated to the latter.

A second point to note is the difference between the
effect of D in the evolution of h, and h,, Figures 6
and 7, respectively. These figures show that there is
no apparent enhancement of turbulent entrainment of
upper-layer fluid, since all the curves in the latter figure
develop approximately the same, and turbulent mixing
enhancement by the evaporative cooling is restricted to
the lower layer. This is consistent with the results of
the study of the source term S presented before. This
source term concentrates around the saturation surface
X (X, 1) = x5 and is such that the buoyancy field b(x, ¢)
is always equal to by = — Db, at that surface, and outside
of it the field » only mixes as a conserved scalar.
Therefore, the motion of the system can be understood
in terms of the moving surface x(x,?) = xs imposing
the Dirichlet boundary condition b(x, t) = —Db; and so
creating negatively buoyant fluid and forcing the flow.
(Recall that no other external forcing is considered in
this work.) This surface moves randomly, but Figure 12
shows that its mean position remains at a constant height.
This indicates that the turbulent motion brings fluid from
the lower layer into contact with the saturation surface,
where it acquires negative buoyancy locally by diffusion
and forces further the turbulent motion in the lower layer,
but there is no evidence of engulfment of pure fluid from
the upper layer. This behaviour was anticipated by Siems
et al. (1990), who referred to it as flame front mixing, as
opposed to homogenization, where stirring by turbulence
of engulfed above-cloud fluid dominates. Our simulations
illustrate one case in which that first mechanism is
prevalent and allows a turbulent flow to develop in the
lower layer. We also observe that the saturation surface
(or local instantaneous cloud top) remains at a constant
height, whereas Siems et al. (1990) observed a downward
motion of the mean position of isosurfaces of y, which
in fact they use to define an entrainment velocity. We
believe that difference is due to the excessive numerical
dissipation in the algorithm they use, which generates
more negatively buoyant fluid than it should.

In brief, the turbulent mixing promoted by the buoy-
ancy reversal is mainly restricted to the lower layer, it is
capped and constrained by the strong inversion and there
is no enhancement of turbulent entrainment of the upper
laminar layer into the mixing region; the mixing region
mainly thickens downwards. The required thickening of

Q. J. R. Meteorol. Soc. 135: 963-978 (2009)
DOI: 10.1002/qj



BUOYANCY REVERSAL IN CLOUD TOPS

the vertical profile x upwards due to the conservation of
x occurs mainly laminarly. How buoyancy reversal mod-
ifies an already existing turbulent entrainment caused,
for instance, by an imposed shear or a lower turbulent
layer remains an open question, but buoyancy reversal
alone seems not to result in a runaway instability; it
simply homogenizes the lower layer faster. The previ-
ous description suggests that the pure buoyancy-driven
top-cloud mixing layer is similar to the upper boundary
of a Rayleigh—Bénard convection configuration with this
upper boundary free to move and the heat flux towards
the lower layer dependent on that motion.

That said, it must be emphasized that the detailed
quantitative analysis has necessarily to be discussed
with three-dimensional broadband turbulent simulations
because the mixing is different.

6. Conclusions

The buoyancy-driven cloud-top mixing layer has been
investigated in this paper. Linear stability analysis of
a simplified model consisting of three uniform inviscid
layers with different densities has been presented. It
identifies the two time-scales of the system, |o|~! for the
stable mode and |o,|~! for the unstable mode, shows the
condition of buoyancy reversal instability (D > 0), and
provides a new interpretation of the buoyancy reversal
parameter D as a measure of the ratio between those
two time-scales. For small values of D, the growth rate
of the unstable mode scales as +/D times that of the
stable one. The effect of the second buoyancy reversal
parameter y, defining the mixture fraction of minimum
buoyancy is retained through the dependence of the
solution on the thickness of the intermediate layer, which
can be estimated by 8(xs + D)/(1 + D) if § represents
an appropriate thickness of the interface defined in terms
of the mixture fraction field x. The unstable growth
rate increases with respect to the stable growth rate
monotonically with this thickness towards an asymptotic
value.

The nonlinear regime has been illustrated through
single-mode two-dimensional simulations, and these sim-
ulations qualitatively support the results from the linear
stability analysis. This numerical study has also been
used to explore quantitatively the consistency and conver-
gence of the numerical methods employed. Spatial deriva-
tives are based on sixth-order compact schemes, time
advancement employs a forth-order low-storage Runge—
Kutta algorithm and the Poisson equation is solved by
Fourier transforming the equation in the horizontal peri-
odic planes and then solving the resulting sequence of
one-dimensional equations along the vertical direction,
again using sixth-order compact schemes. The trunca-
tion error introduced by substituting the two first-order
finite-difference operators by one second-order finite-
difference, observed in the dilatation, has been used to
discuss resolution requirements. The balance of the terms
in the evolution equation of the integrated energy has
also confirmed the accuracy of the numerical scheme,
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achieving a Grashof number Gr = 107, representative of
a length-scale between 1 and 10m in the real case, with
a grid size 512 x 1024.

The two-dimensional simulations agree with previous
work on the topic in that a runaway instability of
the system does not become evident, but show that:
(a) a turbulent flow in the lower layer can develop
even for the cases with small values of D without
external forcing, and (b) a significant increase in the
resolution of small-scale mixing is required, and hence
the value of using high-order schemes. Statistics of the
mixture fraction and energy budget show that there is
no enhancement of turbulent entrainment of upper fluid
by evaporative cooling for the low levels of buoyancy
reversal typical of stratocumulus tops, and these heat
absorption effects are mainly restricted to the lower layer.
A formulation directly in terms of the buoyancy field
which introduces a source term in the transport equation
has been presented and the parallelism with infinitely
fast-reacting flows discussed. It has also been shown
that the associated buoyancy source term remains mainly
localized below the inversion at a distance comparable to
the initial thickness of the mixture fraction field, and the
subsequent motion generated by the downdraughts dilutes
these negatively buoyant parcels with the environmental
fluid of the lower layer. Three-dimensional simulations
are required to obtain more detailed quantitative results
before considering the shear-driven case.
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