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Abstract. The Icosahedral Shallow Water Model forecasting on global or regional domains. The new model
(ICOSWM) has been a first step in the development of thewill be based on finite volume (for the continuity equation)
ICON (acronym for ICOsahedral Nonhydrostatic) models. and finite difference discretizations of the fully elastic, non-
ICON is a joint project of the Max Planck Institute for Me- hydrostatic Navier-Stokes equations on geodesic, icosahe-
teorology in Hamburg (MPI-M) and Deutscher Wetterdienst dral, locally refinable grids. Various research institutes in
(DWD) for the development of new unified general circu- Germany and elsewhere are also contributing to the project,
lation models for climate modeling and numerical weatheramong which are University of Postdam, Free University of
forecasting on global or regional domains. A short descrip-Berlin and Los Alamos National Laboratory.
tion of ICOSWM is given. Standard test cases are used to Bonaventura(20049 discussed the current problems in
test the performance of ICOSWM. The National Center for NWP and climate modeling like mass conservation and
Atmospheric Research (NCAR) Spectral Transform Shallowmonotonicity of tracer concentrations, local mesh refinement
Water Model (STSWM) has been used as reference for tesand the use of massively parallel computers for high resolu-
cases without an analytical solution. The sensitivity of thetion modeling. The ICON project joins DWD and MPI-M
model results to different model parameters is studied. Theesources to face these problems in the development of new
kinetic energy spectra are calculated and compared to thenodels.
STSWM spectra. A comparison to the shallow water version As a first step, a shallow water model has been devel-
of the current operational model GME at DWD is presented.oped: the Icosahedral Shallow Water Model (ICOSWM). A
The results presented in this paper use the ICOSWM versioffirst version of ICOSWM has been describedBonaven-
at the end of 2008 and are a benchmark for the new optionsura (2003 2004 andBonaventura et al2005. In Sect.2
implemented in the development of the ICON project. the main features of the model are given and the differ-
ences between the current version and the previous version
in Bonaventurg2003 2004 andBonaventura et al2005
1 Introduction are highlighted.

To test the results of ICOSWM, the standard shallow wa-
ICON (acronym for ICOsahedral Nonhydrostatic) is a joint ter test suite oWilliamson et al.(1992 is considered. In
project of the Max Planck Institute for Meteorology (MPI- particular, results for test cases 2 (global steady state nonlin-
M) and Deutscher Wetterdienst (DWD), the national weatherear zonal geostrophic flow), 5 (zonal flow over an isolated
service of Germany, for the development of new general cir-mountain), and 6 (Rossby-Haurwitz wave) of the standard
culation models. The project aims at unified general circu-shallow water test suite are shown in Sekt.Convergence
lation models for climate modeling and numerical weatherof model errors for different grid resolutions is considered.
Model results for test cases 5 and 6, which have no analyti-
cal solution, are compared to high resolution runs of a variant
?n?;?as.%?gﬁigz%;T@ngv%égg) of the National Center for Atmospheric Research (NCAR)
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Spectral Transform Shallow Water Model (STSWJ3ékob-
Chien et al. 1995. The sensitivity of the model results to
different model parameters is studied. In Sdca compari-
son of results of ICOSWM and GMESWM, the shallow wa-
ter version of the GME model (the current operational model

at Deutscher Wetterdienst) is presented. Kinetic energy spec-

tra for test cases 5 and 6 are shown in Seend compared
to the STSWM spectra.

2 Description of ICOSWM
A description of the model is given hereBonaventura

(2003 2004); Bonaventura et a{2005 andBonaventura and
Ringler (2005 provide a detailed description of the model

equations, the discrete operators and the spatial and time dis-

cretizations of a previous version of the ICOSWM model.
Differences of the current version of ICOSWM to the model
described in these references will be highlighted.

2.1 The Shallow Water Equations on the sphere

The vector invariant form of the shallow water equations on
the sphere is considered here:

E:—((—}—f)kxv—V(g}H-K), @)
oh .
¥+v-(h v) =0. )

Here v = (u,v) is the horizontal velocity vector (on the
sphere) X = 3(u?+v?) is the kinetic energy per unit mass,
¢ is the vertical component of the relative vorticity, is
the Coriolis coefficienth* is fluid depth,h = h* + h; is the
height of the free surfacé;, is the height of the orography,
is the gravitational constant akdhe unit vector in the radial
outward direction.

2.2 The model grid and the discrete operators
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Fig. 1. Delaunay (red triangles) and Voronoi (blue hexagons, and
pentagons at the 12 special points) grids on the sphere obtained after
one dyadic refinement step of the regular icosahedron.

therein for a complete description of Delaunay-Voronoi grid
pairs on the sphere), which consists of convex spherical
polygons (either pentagons or hexagons, see Fjig.The
triangular Delaunay grid is chosen as the primal grid and
the pentagon-hexagon Voronoi grid as is the dual grid for
ICOSWM.

The mass and vorticity preservation properties in ICON
are achieved by use of triangular Delaunay cells on the
sphere as control volumes for mass and of the dual Voronoi
cells (pentagons or hexagons) as control volumes for vor-
ticity. The orthogonality of the primal and dual grid edges
allows the use of simple approximations to the gradient, di-
vergence and curl operators, in the framework of a C-type
staggering of the discrete variables. This represents a ma-
jor change with respect to the discretization employed e.g. in
GME (operational global model of Deutscher Wetterdienst,
Majewski et al, 2002, where an A grid approach was used
and discrete variables were defined at the vertices of the De-

The discretization method employed is defined as a spelaunay grid and the orthogonality of primal and dual grids
cial case of the Delaunay triangulation on the sphere, i.ewas not exploited.

the icosahedral geodesic grid described e.gBammgard-
ner and Fredericksof1985. The main reasons for the
choice of this type of grid is its quasi-uniform coverage of

In order to develop an analog of the rectangular C-type
staggering (see e.grakawa and Lamfl 981 Lin and Rood
1997 Ringler and Randall2002 Sadourny 1975 on the

the sphere, which solves automatically the pole problem ofDelaunay grids, the mass points are defined as the circum-
regular latitude-longitude grids. Furthermore its hierarchicalcenters of the triangular grid cells, while the velocity points

structure provides a very natural setting for local grid refine-

are defined for each cell edge as the intersection between the

ment on nested grid hierarchies. Finite element approachesdges of the Voronoi and Delaunay cells (see EjgBy con-

based on such geodesic grids have been introducgdllan
(1974, Giraldo (2000, Heinze and Hens€002. Finite
volume approaches were presentedHieikes and Randall
(19954, Ringler et al.(2000, Ringler and Randall2002.

struction, each of these points is equidistant from the centers
of the Voronoi cells at the ends of that edge. In Fig.is a
mass point] is a velocity point and is a vorticity point.

In a C grid discretization approach, the discrete prognostic

The icosahedral construction yields a Delaunay triangula-variables considered are the value of the height field at the
tion of the sphere to which a Voronoi tessellation is naturally mass pointsi{, interpreted as a cell averaged value, and the

associated (see e.Quiang et al(2003 and the references
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Table 1. The triangular icosahedral grid at various resolutions:
number of grid points.

Level Mass points Velocity points  Vorticity points
-1 20 30 12
0 80 120 42
/ 1 320 480 162
2 1280 1920 642
3 5120 7680 2562
4 20480 30720 10242
5 81920 122880 40962
6 327680 491520 163842

a cell. It is to be remarked that this index can be assigned
at the same time to an edge of the primal grid and the edge
of the dual grid, which by construction intersects the primal
grid edge at its midpoint. The number of edges is actually
equal for both grids. The length of the edgef a cell is de-
noted by); and the distance between the centers of the cells

. . . . adjacent to edge(i.e., the length of a edge of the dual cell)
midpoints (). The tangential velocity components, which are is denoted bys,. At each edge, a unit vectd¥; normal to

needed for the computation of the Coriolis force term, must,, edgel is assigned.T; denotes the unit vector tangen-

be reconstructed. _ tial to the edgd, chosen in such a way tha{; x k; =T}
The projection of the regular icosahedron on the spherg,o|qs wherek; denotes the radial outgoing unit vector per-

yields the so-called base grid or grid level. Two of the  pengicular to the tangent plane at the intersection of primal
vertices of the icosahedron coincide with the poles of the re- 4 qual edgé. Furthermore, for each cell edge, the unit

ference spherical coordinate system. A first refinement steRector pointing in the outer normal direction with respect to
for which edges are divided in 2 or more, generallynin  ¢q|; js denoted bys; ;. Unit vectorsa,; are also introduced,
equal arcs, and connected by great circle arcs “parallel” to the,g nyinting in the outer normal direction with respect to the
edges of a parent cell, then results in the so called root gridg 51 cellv. The corresponding tangential vectes are de-

or grid level 0. Hence each cell of the base grid is dividedfjeq so thaw, | x t,; = k;. Given the edgé of a cell, the

in n2 new triangular cells, or 4 cells if the original triangle adjacent cells ‘are denoted by the index@sl) andi(l,2),

edges are divided in two equal sections. From here on theegpectively. The indexes are chosen so that the direction
grid construction allows only repeated bisection of triangular ;g m, i(1,1) to i(l,2) is the positive direction of the normal

cell edges, yielding a hierarchy of computational grids NUM-yector N,. Vertex indexes(Z. 1) andv(l,2) can also be de-

bered as grid levels 1, 2, etc. The number of cells quadrupleg,eq analogously, so that the direction fran, 1) to v(/,2)
at each refinement step. Note that this numbering of grid levig the positive direction of the vectdr,.

els is different from that used iBonaventurg2003 2004 Discrete divergence and curl operators are now introduced
andBonaventura et al2003. Figure 1 shows the triangles jp, the context of the C grid staggering outlined above. Given
in red and hexagons/pentagons in blue of the root grid, ot generic discrete vector fielth on the sphere, its value at a
level O grid, resulting from an initial dyadlc reflnemeqt step. velocity point can be represented@&s= g;N;+§ T, where
Tablel shows the number of mass points, velocity points andy, = denote the normal and the tangential components, re-
vorticity points of the different grid levels, again for a dyadic gpectively. The operators are defined as acting on the set of
refinement of the base grid. valuesg; assigned at the edges of the Voronoi-Delaunay grid.

Before introducing the discrete operators, some notationthe discrete divergence and curl operator can be naturally
to describe the grid topology and geometry will now be in- gefined as follows:

Fig. 2. C-grid type staggering of variables in ICOSWM. Mass point
“i”, normal velocity point 77, and vorticity point “v”.

troduced. Let denote the generic cell of the Delaunay grid. 1

Let £(i) then denote the set of all edges of gellThe grid ~ dIV(®)i = 1 > alNinik ®3)
point associated to cellwill also be referred to as the cell HleEW

center. The generic vertex of a cell, which is also the cen- 1

ter of a cell in the dual grid, is denoted by £(v) denotes curl(®), = —— Z QNI -tv18. (4)

v
the set of all edges of the dual cell whose center is vartex 1e€)

The area of cell is denoted bw;, while the area of the dual The Voronoi-Delaunay property of the grid (the normal di-
cell is denoted by ,. Let then/ denote the generic edge of rection to the edges of the primal grid cell is the tangential
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Table 2. The triangular icosahedral grid at various resolutions: minimum, mean and maximum distances between grid points and velocity
point off-centering (Eq7). Radius of the Earth:.871229%« 108 m.

mass point distances (km)  vorticity point distances (km) off-centering

Level min mean max min mean max %
0 2004.8 2251.1 2497.4 3526.9 3765.0 4003.2 9.97
1 784.3 1116.2 13854 1701.8 1916.2 2117.3 5.97
2 345.3 556.9 714.7 843.1 962.3 1079.9 3.34
3 163.3 278.3 360.9 421.4 481.6 541.7 1.78
4 80.1 139.1 181.5 210.3 240.9 271.3 0.97
5 39.9 69.5 91.0 105.0 120.5 135.8 0.61
6 19.8 34.8 457 52.4 60.2 67.9 0.40

direction to the corresponding edge of the dual grid cell) has2.3 Reconstruction of a vector field from the normal
been used here in an essential way. By the same property, = components
the discrete normal and tangential derivatives can also be ap-

proximated as In order to recover the full velocity vector from the nor-
b0 — i mal ve!ocity f:omponents prescribed at the \{elocity points ir_1
vy = 8— (5) a C grid variable staggering, a reconstruction procedure is
! needed. This is essential for the discretization of the shal-
5. = Vu.2) — Yo 1) ©) Iow_wgter equations, espepially for the representation of .the
Wi=———F—" Coriolis force terms. We will always be concerned here with

Al ' ) )
a vector field that is reconstructed at the triangular cell cen-

whereg;, ¥, are discrete functions defined on the primal and ters and whose normal components are assumed to be known
dual grid cells, respectively. at the edges of the triangles.

Since the velocity points are not equidistant from the ad-  Two options are available in the ICOSWM model for
jacent Delaunay triangular grid cell centers, the differencethe reconstruction, the Raviart-Thomas element of order 0
operators described above are only first order accurate. HOWRT0) and a Radial Basis Function reconstruction (RBF). In
ever, grid optimization procedgres can partly cure this prob-gonaventura(2003 2004 and Bonaventura et al(2005),
lem by reducing the off-centering to rather small values. Thegnly the Raviart-Thomas reconstruction was available and
grid generator for the ICOSWM model has several optimiza-|;se(d.
tiqn options. In this paper only _results for a grid optimized The Raviart-Thomas technique was introduce®aviart
with the method suggested ieikes and Randal1995h and Thomag1977) and a complete description of the math-
are shown. . , . ematical properties can be found @Quarteroni and Valli

In Table 2 the minimum, mean and maximum dlstances( 94
between mass points and between vorticity points for grid In the following, the RBF vector reconstruction imple-
levels 0 to 6 for an Earth radius of3&¥1229%<10°m are : ! . : .

. T mented in ICOSWM Ruppert 2007 is described. Radial
shown for the case of a Heikes-Randall optimization of thebas's functions (RBFs) are powerful tools for interpolatin
icosahedral grid. The off-centering (%) of a velocity point is sca;terl;d dlatai\(arcowich ang VV\\;ardLiQQLI) In ICIOS\F/)VM 'ng

defined as . T
they are used for providing accurate approximations to a

. d_vel—mass -di i ' i i
off — centering= 100 x 05 ) two-dimensional vector field on the spher_e obtained frqm its
d_2massp components normal to the edges of the icosahedral triangu-

where dvel-mass is the distance between the velocit ointIar grid. The interpolation is performed in a 3D Cartesian
Y POt ordinate rotating with the Earth, whose origin is located at

gg?aﬁgg l:c))(];tf/\r/]sezri]dtjr?gi\?\/torgzjsasc:r?tmrfaiﬁnﬁip Ilr? 'Tgf)le the Earth’s center, and theaxis aligns with the Earth’s rota-
the maximum of the velocity point off-centeringé for each tion axis and points to the north. In the following, any point
grid level is also given. The off-centering is reduced to on the sphere of radiusis indicated by the location vector
rather small values for the higher grid levels Banaventura = (x’,y’z)' ) i

The interpolation problem can be described as follows:

(2003, Bonaventura(20049 and Bonaventura and Ringler . , o , . .
(2009, the off-centering is defined as twice the value in given an arbitrary destination poinp, define a region sur-
rounding it. In this region at locatiom; (j =1,...,m), the

Eq. (7).
a0 projection of the vector field of interest (denoted®)yin the
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direction of the unit vectoN ; is know asv; - N j = vy, . As- (a)
sume that within this region the vector field can be approxi-
mated by the function

Bx)=) c;d(x—x;)N; (8)

j=1

which satisfies
B(xp) Ne=vp, k=1...m. 9)

Here¢ is a radial basis function whose value depends only
on the great circle distance betweeandx ;, i.e.,

¢(x—x;)=¢(r) wherer=|x—x;|. (10)

Commonly used RBFs include

Gaussian ¢ (r) = e (/o2

_1
Inverse multiquadric ¢ (r) = I:‘/l+(r/8)2i| .

The parametet is often called the scale factor and defines
a kind of influence radius of the RBF. In ICOSWM, we use
RBFs that are monotonically decreasing with respect to the

(11) .

distancer. (c)

From Egs. 8 and @) one can derived a linear algebraic
equation
dc=v, (12)
in which .
(@) ; =¢(xk—x;)(Ne-Nj), k=1,...m; j=1....m

(©;=cj, j=1..m (13)
(Vn)k = iy k=1,....m
Formally solving Eq. 12) for ¢ and substituting the solution
into Eq. ), we get Fig. 3. The (a) three-point,(b) nine-point, and(c) fifteen-point

. stencils implemented in ICOSWM for the RBF wind reconstruc-
Vo~ V(xg) = (q)—lvn) éo (14) tion. The red_ marks |r_1d|(_:ate the midpoint of trlan_gle_ edges where
the normal wind velocity is known. The blue dots indicate the des-

in which tination location where the horizontal wind vector is reconstructed.
(¢0); =¢(xo—x;)N;, j=1,...,m. (15)

For a particular application, once the stencil and the form of2.4 Spatial discretization

i i1 , . .

the RBF have been determined, the mathix™ and vector  The giscrete operators introduced in S@c2are used to de-
¢o can be calculated and stored. Each time when the vectofine the spatial discretization. The discrete normal compo-
reconstrgcﬂon is needed, the approximation can be obtainefent of the velocity with respect to a triangle edge will be
by applying Eq14. _ denoted by, while the corresponding discrete tangential

In the ICON models, the RBFs are used for reconstructingcomponent will be denoted by. The associated discrete
the horizontal wind vector at triangle centers from the nor-yecior field will be denoted bgl; =1y N; + 0, T;
mal wind given at some triangle edges in the vicinity. Three ¢ spatial discretization of the continuity Edf) (is

stencils of different sizes have been implemented (B)g.  girajightforward by integration on celnd application of the
Numerical testsRuppert 2007 have shown that the 3-point divergence theorem:

stencil produces in general first-order approximations, the 9-,, B

point stencil second-order and the 15-point stencil third or-—- = —div(h*4l). , (16)

der accuracy. The influence of the RBF kernels, scale factor

and stencil used in the reconstruction on the performance ofvhereﬁ;‘ denotes an average of the layer thickness values in
ICOSWM is tested and shown in Se8t. the neighboring cells.

www.geosci-model-dev.net/2/231/2009/ Geosci. Model Dev., 2, 2312009



236 P. Rpodas et al.: Icosahedral Shallow Water Model (ICOSWM)

The resulting numerical method conserves mass by confollowing:
struction. This is important as discrete conservation prop-
erties have long been identified as an important feature of
global circulation models (see eArakawa and Lamji1981%;

Lin and Rood 1997 Ringler and Randal2002 Sadourn )
1975, J Y AT — g Ar2Adiv](8,h" ) h*],

The discrete momentum equation can be derived by tak- =Fi(h),
ing the scalar product of Eg2) with the unit vectorV; at a
generic velocity point. Using the vector identity

— Substitute the expression ftuf‘“ into Eq. (19). For
each cell, one obtains the discrete wave equation

(20)

where all the explictly computed values are collected in
the terms

(kj xv)-Ny=—v-(k; xNj)

Fih) = AR}t = AtAdiv(R* ) —

i

and the definitions given in the previous section yields the

equation AtAdiv(R* F" (1)),

0 _n=1_ = _ -1 _

% =—qv; =8, [gh+K];. (17) FrAh = 241 (fl +Cln)nln Arfgh"™],
2At[8,K"]; .

Here,v; is an approximation of the tangential velocity com-

ponent,n, = ¢, + fu, whereg, = curl(u), and, is an av- — onceh™*! has been computed, it is back substituted in

erage of the absolqte vort|c_|ty values at thg ends.of the cell Eq. (18) to obtain final update af’+1.

edge. The tangential velocity at the edge is obtained as the

projection in the tangential direction of the (inverse distance The set of all Eq.Z0) for each celli yields a linear sys-

weighted) average of the reconstructed wind vectors at théem in the unknownii;'“. Its matrix is sparse, symmetric,

cell centers adjacent to the edge. positive definite and diagonally dominant, which allows for
In Bonaventura and Ringlg2005, either potential en- efficient solution even when using relatively simple solvers.

strophy conserving or total energy conserving variants of theOnce the values df?“ have been computed, they are back

same method were proposed. Equation (2@amaventura  substituted in Eq.1(8) to obtain the final update of the dis-

and Ringler (2005 specify how to calculate the edge average crete velocities.

of the absolute vorticity in Eq{) in order to conserve po- Asselin time filtering (see e.d\sselin 1972 has to be ap-

tential enstrophy. Furthermore, Bonaventura and Ringler plied to filter computational modes of the leapfrog discretiza-

(2005 a simpler formulation was also introduced, which is tion, so that quantities at time levelare filtered as follows:

essentially equivalent to the potential enstrophy preserving

scheme and produces indistinguishable results. In the latteX' = X" +¢ (X;-_l —2X" +X”+1), (21)

formulation, the edge averaged value of the absolute vortic- ) o ]

ity is obtained by simple arithmetic average of the values ofWheree is a coefficient independent of the time step and of

1, at the neighboring vertices. In the present paper this sim{N€ resolution. Results of ICOSWM are shown in S&dor

pler formulation is employed, combined to the more accuratedifferent values ot (0.2-0.03).

RBF reconstruction procedure described in the previous sec- !N this paper all the results shown are for the three-
tion. time level semi-implicit scheme, while iBonaventura

(2003 2004 andBonaventura et a(2005 a two-time-level

semi-implicit time discretization is used. The three-time-
2.5 Three-time-level semi-implicit time discretization level scheme is computationally more efficient and makes

ICOSWM more comparable to the NCAR STSWM and

A three time level semi-implicit time discretization of GMESWM, that also employ a three-time-level scheme.

Egs. (L7)—(16) based on the leapfrog scheme is given by
Wt = wto2ar(fi+ 8o - 2.6 Numerical diffusion

An explicit diffusion term can be added to the right hand side
of the prognostic variable equations to remove small-scale
B . noise and improve the stability of the numerical scheme. Due
Aih;.’” = Aih?_l—ZAtAidiV(h*il’H'?)i. (29) to non-linear interactions, there is a transport of energy to
N small scales and consequently the kinetic energy spectrum
Here,¢"*2 = (¢" ™1 +¢""1) /2, hf =h} —hy, andAristhe  grows at the small scales. To avoid it, a linear fourth-order
time step. diffusion is applied optionally to the velocity field. There
The detailed outline of the practical implementation of the js also an option to apply diffusion to the mass field, but it
three time level semi-implicit discretization method is the js not used here because it is considered unphysical as the

A [5U (gh"+% + K")]l (18)

Geosci. Model Dev., 2, 23251, 2009 www.geosci-model-dev.net/2/231/2009/
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continuity equation does not contain a turbulent mixing terMapie 3. Minimum. mean and maximum diffusion coefficients
in the full atmospheric equations. In addition, it could lead ()4 5~1y corresponding to a characteristic damping time of 2 h for

to a violation of mass conservation for our implementation giterent grid levels.

of the diffusion coefficient.
To implement the numerical diffusion, the discrete vector

Level mink4 meanky maxkg
Laplacian must be defined at the velocity points. It is based (m*s1) (m*s1 (ms 1
on the relatiorvV2v = V (V- v) — V x (V x v) and involves all
the basic discrete operators defined in S2&. 2 1.00566e+17 2.06608e+17 2.68774e+17
The di_screte v_ector_LapIacian in ICOSWM of the discrete j g:ggjgi:ii égggg;g:ii 1%651%2112
velocity field 41;, is defined as 5  204609e+13 5.05579e+13 6.90396e+13
6  1.2653%e+12 3.15996e+12 4.34329e+12

lapl(Lh), - Ny =6, [div(sh)]; — 5. [curl (LD)], (22)

For a fourth-order diffusion, with the form ofksV*4l,
wherek, is the so called diffusion coefficient, the discrete
vector Laplacian operator is applied twice.

In ICOSWM, Eq. @3) is used for the relation between the
diffusion coefficient and a characteristic damping tima
which the grid scale noise is removed, whdgtis the dual
grid length or distance between mass points pgtis the
primal grid length or distance between vorticity points. A
uniform planar grid of equilateral triangles is considered to
derive Eq. 23) (Wan, 2009.

The time steps are set to 1440, 720, 360, 180, and 90s
for grid levels 2, 3, 4, 5, and 6, respectively to yield simi-
lar Courant numbers at different grid levels. All the results
presented here are obtained with the semi-implicit three-time
level scheme and Heikes-Randall optimized grid.

The normalized errorgy, andl,, in Williamson et al.
(1992 are used to test the model quantitatively. For the case
of the height field, the expressions for the andl,, errors

(dgh? (242 are

k=G (23)

1 1
o) ={ 1[0 0) =1 6,002} /{1 ar G002} (24)
The ICOSWM grid is not homogeneous, the value of the, v o0 4 0y _ 7 G0 0) [/maxtir (A6 25
primal and dual grid length varies from point to point, and oo (A) Ah(4,0) k1 (.0)|/maxhr (4.6)] (29)
therefore a location dependent diffusion coefficient is used. ywhere » and ¢ are the longitude and latitude of the grid

The characteristic damping timeis a good parameter to points,  is the model outputs is the true solution if there
represent the amount of diffusion applied in ICOSWM, al- js an analytical solution and a reference solution if not, And
thOUgh in the literature usually is the valuekafwhat is doc- is a discrete approximation to the g|oba| integraj
umented. Tabl® shows the minimum, mean and maximum or oz
values of the diffusion coefficients used in the model for dif- 1 2
ferent grid levels for a characteristic damping time of 2 h. Iy = Efo /_ h(4.0)coHdbdh. (26)
The corresponding diffusion coefficients for a different char-
acteristic damping time parametercan be obtained multi-
plying the values in Tabl8 by the factor (2 hv).

The inhomogeneities of the grid edge lengths, which in-

crease with re_solu_tion, tran_s!ate to ratios between maximunﬁ_est case 2 of the standard shallow water suit@/itifamson
fgvg?'znlgrg (:gfsups;ézvzcl);fﬁments 0#-2.7 to~3.4 for grid etal.(1992 is a ;teady statg solution of' the non-line'ar shgl-
' ' low water equations. It consists of a solid body rotation with
a balanced geostrophic height field. The spherical coordi-
nate poles are not necessarily coincident with earth rotation
axis. We denote the angle between the coordinate and the
rotational axis. We consider here only the case 0: the

The standard shallow water test suiteWfiliamson et al. : .
(1992 is a very useful benchmark for the model develop- poles of the coordinate system, that are two of the vertices of
Y the original icosahedron, coincide then with the rotation axis.

ment process. This test suite comprises a number of ideal- . . o .
P P For this test case, an analytical solution is available, so that

ized tests which are representative of some main features of roximate converaence rates can be comouted by applvin
large scale atmospheric motion. This section presents result‘;al P . 9 : omp Y applying
e numerical method at different resolutions.

for the steady state zonal geostrophic flow (test case 2), the Convergence results for different sets of model parameters
zonal flow over an isolated mountain (test case 5) and the 9 P

Rossby-Haurwitz Wave (test case 6). after 10 days simulation are presented below.

T
2

3.1 Williamson'’s test case 2 with zonal flow

3 Results of shallow water test cases
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Table 4. Normalizedl, andi, errors after 10 days. Case 2. Char-
acteristic damping time 2 h, Asselin filter parameter 0.1, g9p-0.5
RBF reconstruction.
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0.163e-4

0.43%-1
0.913e-2
0.212e-2
0.518e-3
0.129%e-3

0.785e-1
0.160e-1
0.364e-2
0.897e-3
0.220e-3

0.177

0.375e-1
0.912e-2
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T
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The convergence plot for the wind field is not shown be-
cause no significant sensitivity to the characteristic damping
time is observed in the normalized errors for this field. A
second order convergence is observed for hoémd/, (see
Table4).

In Fig. 4 (bottom) we observe that the normalized errors
for the height field increase with decreasing characteristic
damping times (increasing diffusion). The effect is larger
in the case of thé,, error. A second order convergence is
observed for botly and/.

In Fig. 4 (top) we observe the opposite effect in the case
of the vorticity field. The errors are reduced with increas-
ing diffusion coefficients (decreasing characteristic damping
times), especially for the higher grid levels. In a geostrophic

balance, the vorticity is proportional to the Laplacian of the
height field, and therefore any small scale noise present in
the height field is amplified in the vorticity field. Increasing
Fig. 4. Height field (bottom) and vorticity field (top) convergence diffusion reduces this noise, reducing at the same time the
test for case 2 after 10 days. Test for different characteristic dampnormalized errors for the vorticity field. For the vorticity field
ing times. Solid lines for, errors and dash-dotted lines ok second order convergence is only achieved for the higher grid
errors. levels when high diffusion coefficients are used (characteris-
tic damping times of the order of 2 h). The positive effect of
a larger diffusion in the vorticity errors is larger than the neg-
ative effect in the height errors. Therefore a 2 h characteristic
damping time seems to be a good choice. Smaller character-
We start to test the influence of using different characteristicistic damping times are not recommended because the exper-
damping times for the numerical diffusion. iment with =1 h has larger errors for all the variables than
Several experiments have been run with different characthe experiment with 2h characteristic damping time. In the
teristic damping times (28, 12, 2, and 1 h) and also withoutcase ofr=1h, the diffusion is smoothing too much.
diffusion (t=00). Table4 presents the numerical values of the normalized
The tests have been performed with Asselin filter parameand /s errors after 10 days for the different variables from
ter 0.1 and g9p-0.5 RBF reconstruction. grid level 2 to 6 for the experiment with 2 h characteristic
A comparison of the convergence of the normalized errorsdamping time.
for the height and vorticity fields at day 10 for the different  Figure5 shows the error fields for height (bottom) and vor-
experiments is shown in Fig. The results for the different ticity (top) for r=o0, i.e. no explicit diffusion, g9p-0.5 RBF
characteristic damping times are plotted in different coloursreconstruction, Asselin parameter 0.1 and grid level 6. The
and in the order shown in the figure. As in the other conver-height errors show a clear wavenumber-5 pattern due to the
gence figures shown in this work, the black line represents acosahedral grid.
second order convergence and th@ndl,, normalized er- In the vorticity errors a wavenumber-5 pattern can be ob-
rors are represented with solid and dash-dotted lines respeserved, together with small scale noise. Error spikes near
tively. The behavior of thé, errors Williamson et al, 1992 the special points (vertices of the original icosahedron) are a
is similar to thel2 errors and it is not plotted. consequence of the irregularity of the grid. Applying explicit

number of grid points

3.1.1 Sensitivity to the characteristic damping time
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horizontal diffusion, the small scale noise and the effects of [ ‘ T
the irregularity of the grid are reduced, decreasing ttand _46-08 0 46-08
I~ Vorticity errors.

This is a good test case to test the effect of the optimiza-

min -5.19562e-08 max 5.64397¢-08

tion of the ICOSWM grid, because the errors are small and %" 2% %% ¢ AN
show a clear wavenumber-5 pattern due to the grid. Two ex-
periments have been run with the non-optimized grid, with %% : 60
=00 andt=2 h and the same parameters as in the previous 30° ; e : e = 30°
experiments. . o : - o
When no numerical diffusion is applied, and the grid is ) , : : )
not optimized, the, andl., errors for the height field and 30 e 30
thelo errors for the wind field after 10 days show the same -60° -60°
convergence rate as in the case of the optimized grid, but the _gy- | | —o0°
errors are smaller than in the case of the optimized grid. As 180° 240° 300° 0 60" 120° 180°
an example/; height errors after 10 days and grid level 6
are 0.5483e-5 and 0.6955e-5 for the non-optimized and op- — . ]
timized grids. Thd errors for the wind field are slightly = 0.00 004
larger in the case of the non-optimized grid. But thend min ~0.0374519  max 0.0388151
Il errors for the vorticity field after 10 days are definitely 180" 240° 300° o 60" 120° 180"
larger for the non-optimized gridl» vorticity errors after 80" 1

10 days and grid level 6 are 0.3164e-2 and 0.1244e-2 for the 0o
non-optimized and optimized grids. Tlg vorticity error
for grid level 6 is also~3times larger in the non-optimized
grid. Plotting the errors for the vorticity (not shown), a
wavenumber-5 pattern together with small scale noise is ob- -3o°
served. The shape of the original icosahedron is more visi-
ble than in Fig5 (top). As already mentioned, the vorticity
field is more sensitive to small scale noise, and the optimiza-
tion of the grid has a positive effect on it. In the process of
the optimization, the off-centering is reduced to very small rig. 5. Errors of the height (m) field (bottom) and vorticity (%)
values. Also the range of values of the triangular (and pen-ield (top) after 10 days for test case 2 without explicit diffusion.
tagon/hexagon) areas for a given grid level is reduced with
the optimization, increasing the homogeneity of the grid in
this sense. But the range of values of the lengths of the pri- £,; the RBE reconstruction, some parameters can be cho-
mal (and dual) grid edges for a given grid level increases withge, The radial basis functions used (the kernel), the stencil
the optimization process. This latter effect could be the rea;n 5 scale factor. For a detailed description of these param-
son why some errors increased when the grid is optimized. gtqrg se®uppert(2007).

When numerical diffusion is applied, the vorticity errors gy periments with the following wind reconstructions have
decrease in both cases. Theerror in the non-optimized been run:
grid now is only~2times larger in the non-optimized grid
than in the optimized one. Thig, error is still ~3times — RBF Gaussian kernel, 3-point stencil, scale factor 1
larger in the non-optimized grid. The numerical diffusion (93p-1)
eliminates small scale noise to a large extent, but some large
errors along the edges of the original icosahedron and the — RBF Gaussian kernel, 9-point stencil, scale factor 0.2
Equator are not significantly reduced and consequently the ~ (99p-0.2)
effect of the numerical diffusion is smaller in thg error.

We can conclude that the optimization has in general a

180° 240° 300° 0’ 60° 120°

— RBF Gaussian kernel, 9-point stencil, scale factor 0.5

positive effect. (g9p-0.5)
. . ) — RBF Gaussian kernel, 9-point stencil, scale factor 1.
3.1.2 Sensitivity to the wind reconstruction (g9p-1)

Some experiments have been run to test the sensitivity of _ RBF Gaussian kernel, 15-point stencil, scale factor 0.5
ICOSWM to the way the wind field is reconstructed from the (915p-0.5)

normal components of the wind to the center of the triangular
cells. — Raviart-Thomas reconstruction (3-point stencil) (RT)
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o e el . and considerably larger vorticity, errors. This result can
be explained considering that the scale factor defines a kind
of influence radius of the RBF. A small scale factor means
that the point where the wind is reconstructed can be outside
the influence radius of the more remote stencil points, reduc-
ing the accuracy order of the reconstruction. The fact that
o 3 the convergence lines for experiments with Gaussian kernel
\:Q;:, i and different scale factors are parallel, means that it is a rea-
\ [ sonable approach the use of a constant scale factor for the
1034  second order L different resolutions.
] g 99p.05 imq9p,0.5 RTE It is remarkable that the experiments with bigger stencils
for the reconstruction (RBF 15- and 9-point stencil) do not
have better results than the experiments with RBF 3-point
~ nhumber of grid points o stencil and Raviart-Thomas reconstruction. In fact the ex-
10_1_'g|2 ol3 gl4 gl gle'_ periment with a 3-point stencil RBF reconstruction yields
ER i slightly better results. In this test case, the wind field is
Ny E smooth, so a bigger stencil for the reconstruction does not

(02 \\\ I improve the results.
~< Ny E .
] S i We can conclude that in the case of the RBF reconstruc-

\\.\ : tion, the results do not depend significantly on the kernel and
N I the stencil chosen. There is a range of scale factors that give

3| R L L R g
10 \\\ similar good results. For the Gaussian kernel and 9-point
] Usf stencil values from 0.5 to 1 seem to be adequate, and 0.5 is
imq9p,(‘.5\R7\

10'1-E

10'2-E

vort normalized errors

T T T T T T T T T
1000 10000 100000

wind normalized errors

second order
104 o3p.1 99p,0.5

LA | T T T
10000 100000
number of grid points

a good selection for the inverse multiquadratic kernel with
9-point stencil.

3.1.3 Sensitivity to the Asselin filter

Fig. 6. Wind field (bottom) and vorticity field (top) convergence test Some experiments have been run for different Asselin filter

for case 2 after 10 days. Tests for different wind reconstructions.param?ters' All of these experlmeljts_ use th? seml—lmpI|C|t
Solid lines forl, errors and dash-dotted lines fig, errors. three-time-level scheme, characteristic damping time of 2h

and g9p-0.5 RBF reconstruction. Asselin filter parameters
0.2, 0.1, 0.08, 0.05, and 0.03 have been considered.

— RBF inverse multiquadratic kernel, 9-point stencil, The model simulations become numerically unstable for

scale factor 0.5 (imq9p-0.5) Asselin parameter 0.05 and 0.03 at grid levels 5 and 6. This

means that we need an Asselin filter parameter bigger than
' 0.05.

The normalized errork andl, for the height, wind and

In all the experiments the characteristic damping time isvorticity fields after 10 days are not exactly the same for all
2 h and the Asselin filter parameter is set to 0.1. the experiments, but the differences are too small to be seen

Figure 6 shows the convergence results for wind (bot- in a convergence plot. Thus a comparison of the convergence
tom) and vorticity (top). The convergence forandl,, is ~ on accuracy for the different experiments is not shown.
shown with solid and dash-dotted lines respectively. As in We can conclude that there is no important effect of the
the other convergence plots, each experiment is identifiedsselin filter, but it must be larger than 0.05 for numerical
with a colour and the experiment results are plotted in thestability in the model version documented here.
order shown in the figure. Some experiments have been tried looking for a combina-

Most of the experiments give similar results, meaning thattion of parameters that make the model stable for smaller As-
a variety of RBF options can be chosen without changing theselin parameters. It has turned out that the problem is related
ICOSWM performance. The experiments that lead to largerto the reconstruction of the wind field at the mass points.
errors help to determine the range of values of the RBF op- There is already available a RBF reconstruction of the tan-
tions that are optimal for the reconstruction. The g9p-0.2 ex-gential velocity at the velocity points in a new version of the
periment gave for all variables significantly larggerand/. model that makes the model stable for very small (or even
errors. The RBF parameters in this experiment are considzero) Asselin filter parameters. It must be stressed that the
ered inadequate because of the larger errors. The img9p-042resent work shows the results at a stage (end of 2008) of
experiment also results in larger wind and vortidityerrors ~ a project in development. When the tangential velocity is

— RBF inverse multiquadratic kernel, 9-point stencil
scale factor 0.2 (imgq9p-0.2)

Geosci. Model Dev., 2, 23251, 2009 www.geosci-model-dev.net/2/231/2009/



P. Ripodas et al.: Icosahedral Shallow Water Model (ICOSWM) 241

reconstructed at the velocity points, the kinetic energy is cal- |
culated at the velocity points and then interpolated to the — _4 g5 0 4e-05
mass points. It means that a different spatial discretization

. . . . . min -3.62663e-05 max 4.85618e-05
of the rotation and kinetic energy gradient terms is used.

Hollingsworth et al.(1992 show that a computational in- '8 20 %0 ¢ A
stability can happen because of a non-cancellation of cer- /<; :é ~ S
tain terms in the linearized form of the momentum equation. 60" 7 T - GQV\D - 60"
With the new discretization (RBF reconstruction at the ve- 3¢ _g) @ @ Pt SINZ < 30°
locity points) the cancellation happens, the instability is not | O g ) { 5 N g 4
present and no Asselin filter is needed. W . Cfé/\

» -30° J\) d = i -30°
3.2 Williamson's test case 5 _60° — L@ 60"

-
In test case 5 ofvilliamson et al (1992 the initial state con- ~ ~99" T T ] T T ) 90
180 240 300 0 60 120 180

sists of a zonal flow impinging on an isolated mountain of

conical shape. The surface or mountain heighis given by — ] _

hy =hg(1—r/R) (27)

min 5032.8 max 5951.68

where
hg,=2000m, 90
R=m/9, and 60"

r2=min[R?, (x — 1c)%+ (6 —6.)?]. The center of the moun-
tain is located at.=3r /2 radiansg.=x /6 radians.

The imbalance in the initial state and the presence of the ¢
mountain lead to the development of a Rossby gravity wave 5.
which propagates all around the globe. This test is relevant
to understand the response of the numerical solution to oro--
graphic forcing and it has been a common benchmark since-90*
the development of the first spectral models.

No analytical splution is available for this test case and aFig. 7. ICOSWM height (m) (bottom) and vorticity (&) (top)
reference model is used to evaluate the errors of ICOSWIv'ﬁelds after 15 days in colours. Test case 5. Grid level 6. NCAR
As reference the NCAR STSWM has been used. The specstsym reference solution in black contour lines.
tral resolution for the reference model is T426, the time step
is 90's, the diffusion coefficient is@7x 10 m*s~1 and no

Asselin filter is applied. The reference solution is available of 400m. Superimposed is the NCAR STSWM reference
athttp://icon.enes.org/swm/stswm/node5.html solution as contour black lines. There is a good agreement

For a variety of model parameters 15-day runs have beepetween the ICOSWM and NCAR STSWM solutions. The
done. The spectral reference solution is interpolated by bigyeneral pattern of the vorticity field is very similar in both
cubic interpolation from the corresponding Gaussian gridmodels.

(that has a resolution of 31.25km at the Equator) t0 the gycent for grid level 2, no significant influence of the char-
ICOSWM grids at different grid levels. The difference be- eristic damping time is observed in the height and wind
tween the ICOSWM output fields and the interpolated refe-g o5 in the three experiments. In the case of the vorticity
rence solution is used to calculate tendlo normalized  fig|q the s, errors are slightly smaller with larger diffusion
errors. coefficients for all the grid levels (see F#).

Table5 shows the numerical values of the normalized er-
rors after 15 days for the different variables from grid level 2
Experiments with different characteristic damping times © 6 for the experiment with 2 h characteristic damping time.
(28h and 2 h) and without explicit diffusion have been run. A second order convergence for the height field is only
All of them use Asselin filter 0.1 and g9p-0.5 RBF recon- achieved for the coarser resolutions. Theerrors for the
struction. wind and vorticity fields show a convergence rate slightly

Figure 7 shows the height (bottom) and vorticity (top) larger than first order. Thig, errors lose convergence for the
fields after 15 days for the case of a characteristic dampindtigher resolutions.
time of 2h and grid level 6. In the height plot the moun-  Figure 15 inTomita et al.(2001) shows the temporal evo-
tain height is represented by black contour lines at intervaldution of the height and wind error norms for test case 5. The

Al

30°

60°

fﬁll\\\h

180° 240° 300° 0’ 60° 120° 180°

3.2.1 Sensitivity to the characteristic damping time
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Fig. 8. Vorticity field convergence test for case 5 after 15 days. — _
Tests for different characteristic damping times. Solid lines/jor . [') 26-06
errors and dash-dotted lines figg, errors.
min -4.86278e-06  max 5.81689¢-06
180° 240° 300° 0 60° 120° 180°
90" ' ' ' 90°
Table 5. Normalized/, andi errors after 15 days. Case 5. Char- . il \ .
acteristic damping time 2 h, Asselin filter parameter 0.1, g9p-0.5 60 L : = «a" ! 60
RBF reconstruction. 30° ’f:" 30°
height wind vorticity 0 0
Level 173 Io I Io I Io -30° -30°
2 09832 0.382-1 0.353 0.436 0.663 0.628 —60° —60°
3 0.248e-2 0916e-2 0.120 0.198 0.300 0.306
4  0879-3 0.33le2 0429-1 0.699%-1 0.138 0.196 -90° . . . -90°
5  0.514e-3 0.271e-2 0.153e-1 0.413e-1 0.596e-1 0.165 180° 240° 300° 0 60" 120° 180°
6  0.338e-3 0.200e-2 0.648e-2 0.23le-1 0.260e-1 0.120

Fig. 9. Differences ICOSWM-NCAR STSWM for the vorticity
field (s™1) after 15 days for test case 5. Grid level 6 (bottom) and
grid level 5 (top).

values at day 15 for grid level 7 iflomita et al.(2001) are I normalized error. But the largest error is _only slightly re-
very similar to the ICOSWM error norms in Tatbdor grid ~ duced, and the convergence rate ofitheerror is very small.
level 6. Grid level 7 inTomita et al.(2001) and grid level 6 ~ The orography in this test case is not smooth and the rep-
in ICOSWM are equivalent in the sense that they correspond€Sentation of this mountain in the spectral model might in-
to the same number of bisections performed on the originaV0lve Gibbs phenomena at the edge of the mountain that are
icosahedron, although the grids differ not only due to the op-n°t present in the ICOSWM model. Some discrepancies in
timization process but on the fact that the gridamita et al. the lee side of the mountain between the two models seem to

(2001 is an Arakawa-A type grid with all the variables de- P€ propagated and amplified with time. _ _
fined at the vertices of the triangular cells. One of the purposes in test case 5 is to investigate the

Figure9 shows the difference with respect to the reference9l0bal conservation properties. We check the conservation
STSWM solution for the vorticity field for grid level 6 (bot- ©f total energy TE and Potential enstrophy PENS defined as
tom) and grid level 5 (top) with characteristic damping time 1 (2 % /1
2h, g9p-0.5 RBF reconstruction and Asselin parameter 0.1TE = Ef / B} <§h*v-v> coYdodi+
The same colour table is used in both cases. Although7Fig. 0 /=3

(top) shows a good agreement between the vorticity fields in 1 r2r 1% /1

ICOSWM and the NCAR STSWM reference solutions, the yo / <§g(h2—hs2)—E,,o> cowdodyr (28)

difference of both fields show discrepancies at some points. TJo J-5

The difference map does not show a wave number-5 pattern, 1 (20 (% 1

as in test case 2. PENS= —/ / (¢ + f)%cododx (29)
4r Jo J-z 2h*

The number of grid points with large errors is considerably
reduced moving from grid level 5 to grid level 6, reducing the whereE ,o denotes the potential energy in the initial state.
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Fig. 10. Relative changes of the total potential enstrophy (bottom)
and total energy (top). Case 5. Grid level 6. number of grid points

Fig. 11. Height field (bottom) and wind field (top) convergence test
L . ) . for case 5 after 15 days. Tests for different wind reconstructions.
The definition of total energy in Eq28) is the same as in  sjid lines fori;, errors and dash-dotted lines fag errors.
Tomita et al(2001) andStuhne and Peltigd 999 but differs

from that of Williamson et al.(1992. In Eq. 28) the initial

potential energy is subtracted because the interest is to tesind considering the previous results for test case 2, only ex-
the variation of the total energy with respect to the availableperiments with Raviart-Thomas reconstruction and RBF with
energy. The normalized deviations from the initial values for Gaussian kernel and different stencils and scale factors have

TE and PENS are then defined as been performed.
TE—TE, Figure 11 shows thel» (solid lines) and, (dash-dotted
ATE:T (30)  lines) normalized errors after 15days for the height (bot-
0 tom) and wind (top) fields for different grid levels. Thg
PENS- PENS andl errors with Raviart-Thomas and RBF 3-point sten-
APENS= TPENS (31) cil reconstruction are very similar, the convergence line for
both experiments would be indistinguishable and the Raviart-
where Tk and PENGg are the initial values. Thomas experiment results are not presented inHig.
Figure 10 shows the temporal evolution oATE and The two experiments with RBF-9 points stencil recon-

APENS for the cases without numerical diffusion and with struction and different scale factors also show very similar
characteristic damping time of 2 h, for grid level 6. The max- results. The 15-points stencil generally produces larger er-
imum values ofATE and APENS are of the same order of rors than a 9-points stencil. The difference in the errors is
magnitude than the corresponding values in Fig. Tlbimita ~ reduced with increasing grid level and at grid level 6 all the

et al.(200]) for grid level 7. experiments have similar errors. In the case of the height
field (and the vorticity field, not shown here), the errors us-
3.2.2 Sensitivity to the wind reconstruction ing the 15- or 3-point stencil are very similar. In the case

of the wind field, the 15-point stencil reduces the wind er-

As in test case 2, some experiments with different wind re-rors for the higher grid levels compared to the 3-point stencil
constructions have been run to evaluate the impact of the regyperiments.

construction technique in the model results. For simplicity,
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The experiment with Asselin parameter 0.05 can not be
run for grid level 2. Smith and Dritsche(2006 report that
they found a limit for the minimum value of the Asselin filter
parameter that could be used in their model. This value is re-
lated to the mean short-scale gravity wave speed and depends
on the time step. This minimum Asselin parameter increases
with increasing time step. For grid level 2, the time step is
1440s and 0.05 is slightly below the minimum Asselin pa-
rameter reported bgmith and Dritsche{2006.

No sensitivity to the Asselin filter parameter is observed in
the case of the vorticity field normalized errors.

Following these results, 0.05 would be the best choice for

the Asselin filter parameter.
number of grid points
! ! 3.3 Williamson'’s test case 6
: gl?\ gl3 gld4 gl5 gI6:
N In test case 6 ddVilliamson et al (1992 the initial state con-
£ 1024 \‘\,\ sists of a Rossby-Haurwitz wave of wavenumber-4. This
5 ] NN type of wave is an analytic solution for the barotropic vor-
3 Z\ [ ST B ticity equation and has also been widely used to test shal-
% 1 h TEisar low water models, since the analysisHioskins(1973 sup-
g 10-34 \\ : ported the view that wavenumber-4 is stable also as a solu-
= ] \\ tion of the shallow water equations. However, some recent
second order e work presented iffhuburn and Li(2000 has shown that
102 0.08 - the Rossby-Haurwitz wave of test case 6 is actually unsta-
T T ble as a solution of the shallow water equations, since small
10000 100000 random perturbations in the initial state or small numerical

number of grid points

errors result in long term disruption of the wavenumber-4
pattern. This was shown to be the case for a wide range

Fig. 12. Height field (bottom) and wind field (top) convergence test of numerical models, including spectral transform models.

for case 5 after 15 days. Tests for different Asselin filter parametersTherefore, the usefulness of the Rossby-Haurwitz wave of
Solid lines fori, errors and dash-dotted lines fgg errors.

wavenumber-4 as a benchmark for the solution of the shallow
water initial value problem is limited to time ranges shorter
than those sometimes considered in the literature. We choose

From these results we can conclude that a 15-point stencift 'un time of 10days for the study of the convergence of

for the reconstruction does not improve the results and is no
recommended as it is computationally more expensive.

3.2.3 Sensitivity to the Asselin filter

the solutions, although the ICOSWM solution is still sta-
ble and the wavenumber-4 is well kept after 14 days. Fig-
ure 13 shows the height field at day 14 for an ICOSWM
solution with a characteristic damping time of 2h, Asselin
filter parameter 0.1, and g9p-0.5 RBF and grid level 6. The
NCAR STSWM reference solution (T511) is superimposed

Experiments with different Asselin filter parameters (0.2, i the figure as black contour lines for comparison. The
Q.l, 0.08, and 0.05) have been run, with sem_l-lmpllcr[ three-yavenumber 4 pattern is well kept after 14 days. No phase
time-level scheme, g9p-0.5 RBF reconstruction and characge|ay is observed in the solution. Bonaventura and Ringler

teristic damping time of 2 h.

The convergence plots fdg (solid lines) and, (dash-

(2005 a slight phase delay was observed in the solution
produced by the Icosahedral C-staggered grid model. The

dotted lines) after 15 days for the height and wind fields arefact that inBonaventura and Ringlg2009 a simple two-

shown in Fig.12 bottom and top, respectively.

time-level semi-implicit time discretization is used, while

The normalized errors for the higher resolutions are sig-ICOSWM uses a three-time-level semi-implicit time dis-

nificantly reduced with decreasing Asselin filter parameter,cretization, can be the reason why the phase delay is not ob-
especially for the heighp andl, normalized errors and the served in ICOSWM. It must also be noted that the NCAR
wind /> normalized errors. In the reference model the As- STSWM uses a three time-level scheme.

selin filter parameter is set to zero and the ICOSWM solution The NCAR STSWM is used as a reference to evaluate the
is closer to the reference model when a small Asselin filternormalized errors of the ICOSWM. The spectral model res-
parameter is used. olution is T511, the time step is 90s, the diffusion coeffi-
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Fig. 13. ICOSWM height field (m) after 14 days for test case 6 number of grid points
and grid level 6 in colours. T511 NCAR STSWM height field (m)
solution in black contour lines. Contour interval is 200 m. Fig. 14. Vorticity field convergence test for case 6 after 10 days.

Tests for different characteristic damping times. Solid linesd$or
errors and dash-dotted lines figg, errors.
cientis 34x10?m*s~1 and no Asselin filter is applied. The
reference solution is available &ttp://icon.enes.org/swm/
stswm/node5.html The corresponding Gaussian grid has a
resolution of 26 km at the Equator. The explicit diffusion co-
efficient used in test case 6 to produce the STSWM referencéable 6. Normalized/; and/ errors after 10 days. Case 6. Char-
solution is larger than in test case 5 to reduce the small scal@cteristic damping time 2h, Asselin filter parameter 0.1, g9p-0.5
noise in the vorticity field. RBF reconstruction.
Convergence tests after 10-day runs with a variety of
model parameters are shown.

height wind vorticity
Level 17 loo 173 loo 173 loo

0.473e-1 0.114 0.733 0.898 1.083 1.048
0.154e-1 0.367e-1 0.222 0.265 0.357 0.412
0.408e-2 0.111e-1 0.582e-1 0.753e-1 0.126 0.199
0.130e-2 0.433e-2 0.175e-1 0.278e-1 0.773e-1 0.167
0.474e-3 0.191e-2 0.566e-2 0.180e-1 0.598e-1 0.141

3.3.1 Sensitivity to the characteristic damping time

Experiments with different characteristic damping times
(28 h, 2 h, and 0.5 h) and without explicit diffusion have been
run. All of them use Asselin filter 0.1 and g9p-0.5 RBF re-
construction.

No important variability is observed for tHg andl., er-
rors of the wind field. In the case of the vorticity, tlhe
andl. errors are reduced with larger diffusion coefficients
(smaller characteristic damping times), see Hig. In the ﬁ 0 z_os_
case of the height field, thHe andl., errors increase slightly
with increasing diffusion but the (negative) effect is smaller

o OThAs WN

min -1.41093e-05 max 1.3808e-05

than the (positive) effect of the increasing diffusion on the o0 & 20 0 ‘ & i g%
vorticity error norms. o 1B ‘ s it T L
Table 6 summarizes the numerical values of the normal- 1 { I
ized errors after 10 days for the different variables from grid 3 L= b= = = o
level 2 to 6 for the experiment with 2 h characteristic damp- - | = ‘ L o
ing time. , = = ‘ b= ,,
The I, normalized height and wind errors show approx- | FT f’éﬂ ’ f“ﬁ\ ’ f i T
imately second order convergence. But theheight and -4 4 o N
wind errors lose convergence for the higher grid levels. For . i i R e ‘ = .
the vorticity field, both thé, andl, errors lose convergence 180° 240° 300° o 60" 120° 180°

for the higher grid levels.

Figure 15 shows the differences of ICOSWM with re-
spect to the STSWM reference for the vorticity field after
10days and grid level 6, with characteristic damping time

Fig. 15. Difference ICOSWM-NCAR STSWM for the vorticity
field (s_l) after 10 days for test case 6, grid level 6.
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Fig. 16. Relative changes of total mass. Case 6. Grid level 6. S ]
@ -0.0001
o ]
2 -0.0002 ]
g 1
2h, g9p-0.5 RBF reconstruction and Asselin parameter 0.1. § _y,0003 1
The difference map shows a wavenumber-4 pattern and it is 3 ]
. N .
not related to the grid. = 00004 -
A characteristic damping time of 0.5h is a good choice § 20,0005 ] "o 2-hours a
because of the smaller vorticity errors. For test case 2 a char- - ] ‘ ‘

T T
144 192

time (hours)

acteristic damping time of 1 h or smaller turns out to be a bad 0 48 96
choice because it leads to a degradation of the results for all
the variables.Thuburn and Li(2000 concludes that in test
case 6 a generation of small scales and a cascade towar@gy. 17. Relative changes of the total potential enstrophy (bottom)
unresolved scales takes place. Therefore numerical modebkmnd total energy (top). Case 6. Grid level 6.
need a dissipation mechanism to avoid noisy structures in the
solution, particularly in the potential vorticity field. Increas-
ing the numerical diffusion in ICOSWM to a characteristic
damping time of 0.5 h leads to a less noisy vorticity field and
to smaller vorticity errors.

Figure 16 shows the evolution of the relative changes of
total mass for the runs with no diffusion and with character-

itStiC damlpinglti;pe of;;;jortgrid IevdeL(;EFl\ilgsuﬂgsirows t:Ie smaller than the errors for the experiments with 9- and 15-
emporal evolution o (top) an (bottom). Al- point stencil at grid level 6. In the case of the wind field,

though the model is not formally preserving potential enstro-Lhel2 errors at grid level 6 for the experiments with a 3-point

phy and total energy, these quantmgs are near_ly conserved. encil are the largest. The wind is a diagnostic variable, to
can be observed that the conservation properties of the mode]

S e Ralculate the normalized wind errors, the wind has to be re-
are not significantly affected by the amount of diffusion ap- constructed from the normal velocity components and a big-
plied.

ger stencil yields smaller errors.

Again we can conclude that the used of a 15-point stencil
is not recommended because it is more expensive and does
. . . i . not improve the model results. It is interesting to see that the
The different reconstructions for the wind field as in test experiments with a 3-point stencil have better results than the

case 5 have been tried with the aim of testing the influence o\ wh o 9-point stencil, with the exception of the wind
of the reconstruction on the model results.

In all the cases ;

the Asselin filter parameter is set to 0.1 and the characteristic(:arror atgrid level 6.
damping time to 2 h. 3.3.3 Sensitivity to the Asselin filter

Figure 18 shows the height (bottom) and wind (top)
(solid lines) and, (dash-dotted lines) normalized errors for Experiments with different Asselin filter parameters (0.2,
different grid levels for the different experiments. 0.1, and 0.08) have been run, with semi-implicit three-time-

For the height and vorticity field (not shown here), start- level scheme, g9p-0.5 RBF reconstruction and characteristic
ing from grid level 3, the, errors increase if more points are damping time of 2 h.

240

used for the reconstruction. The differences decrease with
increasing grid level, and at grid level 6 all the experiments
have similar, height and vorticity errors. Thig, height and
vorticity errors for the experiments with 3-point stencil are

3.3.2 Sensitivity to the wind reconstruction
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10000 100000 4 Comparison to GMESWM

number of grid points To evaluate the results of the ICOSWM model, a comparison
with GMESWM, the shallow water version of GME (oper-

ational global model of Deutscher Wetterdiengltajewski

et al, 2002 has been considered.

The GMESWM model uses a non-staggered icosahedral-
hexagonal grid. The prognostic variables are the height and
- zonal and meridional velocity components at the centers of

The convergence plots fdg (solid _Ilnes) ando .(da.sh- the hexagons/pentagons. The number of mass points is equal
dotted lines) after 10 days for the height field are in Ef. to the number of vorticity points for a given resolution.

The height, and the wind (not shown herg)normalized The ICOSWM model uses a C-staggered grid, the prog-
errors for the higher resolutions are reduced with decreasing,ystic variables are the height at the centers of the primary
Asselin filter parameter, the effect being larger in the case of.g||5 (the centers of the triangles) and the normal velocity
the height field. On the contrary, in the case of the vorticity components with respect to the cell edge. The vorticity is
field, the errors decrease with increasing Asselin filter pa-.5iculated at the centers of the dual grid (hexagons and pen-
rameter, but the diﬁ‘erenge is very small and it is hardly SeeNagons) and the number of mass points is different from the
in a convergence comparison plot. number of vorticity points for a given grid level.

The model solutions get numerically unstable for Asselin  Convergence plots comparing theheight and vorticity
parameters of 0.05 and smaller for higher grid levels. Thuserrors of ICOSWM and GMESWM for test cases 5 and 6 are
an Asselin filter parameter larger than 0.05 is needed for stashown in Figs20and21.
bility reasons. In GMESWM the number of equal intervals into which

As mentioned in SecB.1.3 a RBF reconstruction of the each side of the original icosahedral triangles is divided,
wind at the velocity points has been developed on a new veris used as a parameter for specifying the resolution of the
sion of the code which allows for running the model with- grid. GMESWM runs forn;=32, 64, 96, and 192 corre-
out explicit diffusion and no Asselin filter. Using the same sponding to a spacing between grid points of about 240, 120,
model parameters in both versions of the code leads to ver$0, and 40 km, with diffusion coefficients@0®, 1x10'°,
similar normalized errors. When using the new code with4.22x10', and 5«10 m*s~1, respectively, have been con-
the wind reconstruction at the velocity points together to asidered. The Asselin parameter used in the GMESWM runs
very small Asselin filter parameter (0.01), leads to smalleris 0.03.

Fig. 18. Height field (bottom) and wind field (top) convergence test
for case 6 after 10 days. Tests for different wind reconstructions.
Solid lines fori, errors and dash-dotted lines figg errors.
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Fig. 20. Convergence test after 15 days. Test case 5. CompariFig. 21. Convergence test after 10 days. Test case 6. Compari-
son GMESWM and ICOSWM. Top: height field; bottom: vorticity son GMESWM and ICOSWM. Top: height field; bottom: vorticity
field. field.

The ICOSWM results in Fi20 correspond to a run with a We can conclude that in general the ICOSWM results are
characteristic damping time of 2 h, g9p-0.5 RBF reconstruc-better than those of GMESWM. It could be due to the C-
tion and Asselin filter 0.1. In Fig21 the ICOSWM results  grid formulation and the Heikes-Randall grid optimization.
with characteristic damping times of 2 h and 0.5 h are shownTo test the effect of the grid optimization, ICOSWM has

For test case 5 (FiQ0), ICOSWM shows a better height  also been run for test case 6 without optimization with g9p-
convergence rate and a similar vorticipyconvergence rate 0.5 RBF reconstruction, Asselin filter 0.1 and characteristic
as GMESWM. damping times of 2 h and 0.5 h. The normalized errors for the

For test case 6 (Fi®21), ICOSWM shows a better height different variables obtained (not shown here) are very similar
I> convergence rate and smaller normalizecheight er-  to the ones obtained with the optimized grid. The errors in
rors. With a characteristic damping time of 2h, ICOSWM test case 6 are larger than in test case 2, hiding the benefits of
shows a worse vorticity convergence rate than GMESWM, the optimization observed in test case 2. Without optimiza-
but with a characteristic damping time of 0.5h, ICOSWM tion, ICOSWM has still better results than GMESWM.
has similar results as GMESWM. It has been seen that test
case 6 needs more numerical diffusion to eliminate small o
scale noise, which is more noticeable in the vorticity field. © Kinetic energy spectra
The mean diffusion coefficient for grid level 6 with charac-
teristic damping times of 2h and 0.5 h aré 399x 10'? and
1.2640x 10 m*s~1. The latter is the same order of magni-
tude than the one used in GMESWM.

In this section the kinetic energy spectra for some experi-

ments are shown. They are also compared to the kinetic en-
ergy spectra of the variant of the NCAR STSWM used as a

reference to evaluate the ICOSWM output fields.
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Fig. 22. Kinetic energy spectra after 15 days run, case S.Fig. 23. Kinetic energy spectra after 10 days run, case 6.
T426 NCAR STSWM model and ICOSWM model grid level 6 with  T511 NCAR STSWM model and ICOSWM model grid level 6 with
different characteristic damping times. different characteristic damping times.

NCAR-STSWM
ICOSWM

The kinetic energy spectra are calculated using Bg) (
(Eq. 3.2 inJakob-Chien et 811995 where,” ands§)' are
the spectral coefficients of the divergence and the vortigity,
is the total wavenumber is the longitudinal wavenumber
anda is the radius of the earth.

"“""'W :

KE, = #ZH) {4? (a0) 7 (53)*+2§;:" (&) +

Kinetic energy (J/Kg)

Zfé‘,’? (82")*} (32)
m=1

where()* denotes the complex conjugate.

To calculate the spectra, the divergence and vorticity fields
are first interpolated to a Gaussian grid (T426 or T511). Then
the spectral divergence and vorticity coefficients are calcu- total wavenumber n
lated.

Fig. 24. Kinetic energy spectra at initial time, case 6. T511 NCAR

51 Testcase 5 kinetic energy spectra STSWM model and ICOSWM model grid level 6.

Figure 22 shows the kinetic energy spectra at day 15 for
the NCAR STSWM model and ICOSWM with different
characteristic damping times (three-time-level semi-implicit5.2 Test case 6 kinetic energy spectra

scheme, Asselin parameter 0.1, g9p-0.5 RBF reconstruction)
for grid level 6. Figure 23 shows the kinetic energy spectra at day 10 for

There is a good agreement between the kinetic energjn€ NCAR STSWM model and for ICOSWM with different

spectra of both models. With decreasing characteristic dampcharacteristic damping times (three-time-level semi-implicit
ing time (increasing diffusion coefficients), the kinetic en- Scheme, Asselin parameter 0.1, g9p-0.5 RBF reconstruction)

ergy of the highest wavenumbers decreases in ICOSWM. for grid level 6.
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The energy corresponding to odd total wavenumbers ighe accuracy of the ICOSWM spectra is limited td.0~8
larger than that corresponding to even wavenumbers. Thelue to the interpolation from the icosahedral grid to the Gaus-
main contribution to the kinetic energy of the odd total sian grid.
wavenumbers are the vorticity spectral coefficients, since the
zonal wavenumbem=4 dominates and the spherical har-
monics forn odd andm=4 are antisymmetric with respect 6 Conclusions and outlook
to the Equator as is the vorticity field. The main contribution
to the kinetic energy of the even total wavenumbers are thel he Icosahedral Shallow Water Model (ICOSWM) is de-
divergence spectral coefficients, because the spherical hafcribed and results for tests cases 2, 5, and \&/itiflamson
monics forn even andn=4 are symmetric with respect to €t al.(1992 are presented for a variety of model parameters.
the Equator as is the divergence field. This added to the factor test cases5and6 the NCARSTSWM is used as refe-
that the vorticity field is larger in magnitude than the diver- rénce.
gence field, leads to the splitting observed in the spectra. ICOSWM uses a grid optimized with the method sug-

Divergence at initial time is zero in test case 6, as is the ini-gested byHeikes and Randa(l1995h. The benefits of the
tial tendency of the divergence field. This initial state is a so-Optimization can be observed in test case 2, where the error
lution of the barotropic equations and in a barotropic modelmodels are small enough. In test case 6, with larger errors,
the solution would remain divergence free. In a shallow wa-the benefits of the optimization are hidden.
ter model, some divergence is produced. The energy of the ICOSWM simulations for test cases 5 and 6 have been
even wavenumbers for>20 in the NCAR STSWM model compared to the Shallow Water Version of the current op-
is much smaller than in the ICOSWM, indicating that less erational model at DWD (GMESWM), ICOSWM shows be-
divergence is produced by the NCAR STSWM model. Aparttter results than GMESWM, probably because of the C-grid
from this, there is a good agreement between the kinetic enformulation. The ICOSWM normalized height and wind er-
ergy spectra of both models. rors for test case 5 (day 15) and test case 6 (day 10) are very

The kinetic energy spectra showna3 dependence for similar to those shown iffomita et al.(200J), although the
the odd wave numbers till wavenumbers of about 160. Thefigures inTomita et al.(2003) do not allow to do a more
kinetic energy spectrum of the NCAR STSWM evolves quantitative comparison.
with time towards an—2 dependence for wavenumbers The kinetic energy spectra of ICOSWM has been calcu-
20<n <160 (not shown here), reaching an equilibrium statelated and a good agreement with the kinetic energy spectra
between day-10 and day-15. Itis not clear if the’ depen-  of the NCAR STSWM model is observed.
dence is developed only for this range of wavenumbers or if An instability is observed in ICOSWM that is overcome
more time is needed to develop it for larger wavenumbers omwith a relative large value of the Asselin Filter parameter
if the n>160 wavenumbers are just affected by the numeri-(0.05-0.08). It seems that it is related to the reconstruction
cal diffusion. In the latter case, we could not use the NCARof the wind at the center of the triangular cells. The current
STSWM kinetic energy spectrum as the true kinetic energywork presents the results of the ICOSWM at the end of the
spectrum and use it as a reference to define the effective regear 2008, but the model is being further developed. A RBF
olution of ICOSWM as it is proposed iikamarocK2004. reconstruction of the wind at the velocity points has been

Decreasing the characteristic damping time (increasingleveloped on a new version of the code which allows for
diffusion coefficients) in ICOSWM, the kinetic energy of the running the model without explicit diffusion and no Asselin
even total wavenumbers decreasesifeR0, but for a char-  filter. Hollingsworth et al.(1992 show that an instability
acteristic damping time of 2 h, it is still much larger than for can happen because of a non-cancellation of certain terms in
the NCAR STSWM. Decreasing the characteristic dampingthe linearized form of the momentum equation. With the new
time also reduces the energy of the higher (odd and evenfliscretization (RBF reconstruction at the velocity points), the
total wavenumbers. cancellation happens, the instability is not present and no As-

To estimate the impact of the interpolation from the selin filter is needed. Using the same model parameters in
ICOSWM grid to the Gaussian grid on the calculated both versions of the code leads to very similar normalized
ICOSWM kinetic energy spectra, the spectrum of the ini- errors. When using the new code with the wind reconstruc-
tial state of test case 6 is considered. FigPdeshows the tion at the velocity points together to a very small Asselin
spectra for the STSWM and ICOSWM models at initial time. filter parameter (0.01), leads to smaligheight error norms
The divergence is zero and the vorticity is a linear combina-in test case 6, particularly for the higher resolutions, increas-
tion of the spherical harmoniag"=° andy”<* (Williamson ing the convergence rate of theheight error norms.
et al, 1992. The spectra of both models show peaks at In the framework of the ICON project a hydrostatic dy-
the expected total wavenumbersl andrn=5. The energy namical core has been developatlaf, 2009 and a local
for the other total wavenumbers should be zero. Values fogrid refinement option and a non-hydrostatic dynamical core
STSWM are typically~10-2°, corresponding to machine are under development. Among other things, these new
precision, and~10-8 for ICOSWM. We can conclude that models include the above-mentioned new implementation of
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the wind reconstruction. The results presented here are a 2477-2498, 1997.

reference to evaluate the impact that these new and other updajewski, D., Liermann, D., Prohl, P., Ritter, B., Buchhold, M.,

coming implementations have on the stability and quantita- Hanisch, T., Paul, G., Wergen, W., and Baumgardner, J.: The

tive results of the ICOSWM model. operational global icosahedral-hexagonal gridpoint model GME:
description and high resolution tests, Mon. Weather Rev., 130,
319-338, 2002.
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