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Abstract. The Icosahedral Shallow Water Model
(ICOSWM) has been a first step in the development of the
ICON (acronym for ICOsahedral Nonhydrostatic) models.
ICON is a joint project of the Max Planck Institute for Me-
teorology in Hamburg (MPI-M) and Deutscher Wetterdienst
(DWD) for the development of new unified general circu-
lation models for climate modeling and numerical weather
forecasting on global or regional domains. A short descrip-
tion of ICOSWM is given. Standard test cases are used to
test the performance of ICOSWM. The National Center for
Atmospheric Research (NCAR) Spectral Transform Shallow
Water Model (STSWM) has been used as reference for test
cases without an analytical solution. The sensitivity of the
model results to different model parameters is studied. The
kinetic energy spectra are calculated and compared to the
STSWM spectra. A comparison to the shallow water version
of the current operational model GME at DWD is presented.
The results presented in this paper use the ICOSWM version
at the end of 2008 and are a benchmark for the new options
implemented in the development of the ICON project.

1 Introduction

ICON (acronym for ICOsahedral Nonhydrostatic) is a joint
project of the Max Planck Institute for Meteorology (MPI-
M) and Deutscher Wetterdienst (DWD), the national weather
service of Germany, for the development of new general cir-
culation models. The project aims at unified general circu-
lation models for climate modeling and numerical weather
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forecasting on global or regional domains. The new model
will be based on finite volume (for the continuity equation)
and finite difference discretizations of the fully elastic, non-
hydrostatic Navier-Stokes equations on geodesic, icosahe-
dral, locally refinable grids. Various research institutes in
Germany and elsewhere are also contributing to the project,
among which are University of Postdam, Free University of
Berlin and Los Alamos National Laboratory.

Bonaventura(2004) discussed the current problems in
NWP and climate modeling like mass conservation and
monotonicity of tracer concentrations, local mesh refinement
and the use of massively parallel computers for high resolu-
tion modeling. The ICON project joins DWD and MPI-M
resources to face these problems in the development of new
models.

As a first step, a shallow water model has been devel-
oped: the Icosahedral Shallow Water Model (ICOSWM). A
first version of ICOSWM has been described inBonaven-
tura (2003, 2004) andBonaventura et al.(2005). In Sect.2
the main features of the model are given and the differ-
ences between the current version and the previous version
in Bonaventura(2003, 2004) andBonaventura et al.(2005)
are highlighted.

To test the results of ICOSWM, the standard shallow wa-
ter test suite ofWilliamson et al.(1992) is considered. In
particular, results for test cases 2 (global steady state nonlin-
ear zonal geostrophic flow), 5 (zonal flow over an isolated
mountain), and 6 (Rossby-Haurwitz wave) of the standard
shallow water test suite are shown in Sect.3. Convergence
of model errors for different grid resolutions is considered.
Model results for test cases 5 and 6, which have no analyti-
cal solution, are compared to high resolution runs of a variant
of the National Center for Atmospheric Research (NCAR)
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Spectral Transform Shallow Water Model (STSWM;Jakob-
Chien et al., 1995). The sensitivity of the model results to
different model parameters is studied. In Sect.4 a compari-
son of results of ICOSWM and GMESWM, the shallow wa-
ter version of the GME model (the current operational model
at Deutscher Wetterdienst) is presented. Kinetic energy spec-
tra for test cases 5 and 6 are shown in Sect.5 and compared
to the STSWM spectra.

2 Description of ICOSWM

A description of the model is given here.Bonaventura
(2003, 2004); Bonaventura et al.(2005) andBonaventura and
Ringler (2005) provide a detailed description of the model
equations, the discrete operators and the spatial and time dis-
cretizations of a previous version of the ICOSWM model.
Differences of the current version of ICOSWM to the model
described in these references will be highlighted.

2.1 The Shallow Water Equations on the sphere

The vector invariant form of the shallow water equations on
the sphere is considered here:

∂v

∂t
= −(ζ +f )k×v−∇ (gh+K), (1)

∂h

∂t
+∇ ·

(
h∗v

)
= 0. (2)

Here v = (u,v) is the horizontal velocity vector (on the
sphere),K =

1
2(u

2
+v2) is the kinetic energy per unit mass,

ζ is the vertical component of the relative vorticity,f is
the Coriolis coefficient,h∗ is fluid depth,h= h∗

+hs is the
height of the free surface,hs is the height of the orography,g
is the gravitational constant andk the unit vector in the radial
outward direction.

2.2 The model grid and the discrete operators

The discretization method employed is defined as a spe-
cial case of the Delaunay triangulation on the sphere, i.e.
the icosahedral geodesic grid described e.g. inBaumgard-
ner and Frederickson(1985). The main reasons for the
choice of this type of grid is its quasi-uniform coverage of
the sphere, which solves automatically the pole problem of
regular latitude-longitude grids. Furthermore its hierarchical
structure provides a very natural setting for local grid refine-
ment on nested grid hierarchies. Finite element approaches
based on such geodesic grids have been introduced inCullen
(1974), Giraldo (2000), Heinze and Hense(2002). Finite
volume approaches were presented inHeikes and Randall
(1995a), Ringler et al.(2000), Ringler and Randall(2002).

The icosahedral construction yields a Delaunay triangula-
tion of the sphere to which a Voronoi tessellation is naturally
associated (see e.g.Quiang et al.(2003) and the references

Fig. 1. Delaunay (red triangles) and Voronoi (blue hexagons, and
pentagons at the 12 special points) grids on the sphere obtained after
one dyadic refinement step of the regular icosahedron.

therein for a complete description of Delaunay-Voronoi grid
pairs on the sphere), which consists of convex spherical
polygons (either pentagons or hexagons, see Fig.1). The
triangular Delaunay grid is chosen as the primal grid and
the pentagon-hexagon Voronoi grid as is the dual grid for
ICOSWM.

The mass and vorticity preservation properties in ICON
are achieved by use of triangular Delaunay cells on the
sphere as control volumes for mass and of the dual Voronoi
cells (pentagons or hexagons) as control volumes for vor-
ticity. The orthogonality of the primal and dual grid edges
allows the use of simple approximations to the gradient, di-
vergence and curl operators, in the framework of a C-type
staggering of the discrete variables. This represents a ma-
jor change with respect to the discretization employed e.g. in
GME (operational global model of Deutscher Wetterdienst,
Majewski et al., 2002), where an A grid approach was used
and discrete variables were defined at the vertices of the De-
launay grid and the orthogonality of primal and dual grids
was not exploited.

In order to develop an analog of the rectangular C-type
staggering (see e.g.Arakawa and Lamb, 1981; Lin and Rood,
1997; Ringler and Randall, 2002; Sadourny, 1975) on the
Delaunay grids, the mass points are defined as the circum-
centers of the triangular grid cells, while the velocity points
are defined for each cell edge as the intersection between the
edges of the Voronoi and Delaunay cells (see Fig.1). By con-
struction, each of these points is equidistant from the centers
of the Voronoi cells at the ends of that edge. In Fig.2 i is a
mass point,l is a velocity point andv is a vorticity point.

In a C grid discretization approach, the discrete prognostic
variables considered are the value of the height field at the
mass points (i), interpreted as a cell averaged value, and the
velocity components normal to the triangle edges at the edge
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Fig. 2. C-grid type staggering of variables in ICOSWM. Mass point
“ i”, normal velocity point “l”, and vorticity point “v”.

midpoints (l). The tangential velocity components, which are
needed for the computation of the Coriolis force term, must
be reconstructed.

The projection of the regular icosahedron on the sphere
yields the so-called base grid or grid level−1. Two of the
vertices of the icosahedron coincide with the poles of the re-
ference spherical coordinate system. A first refinement step
for which edges are divided in 2 or more, generally inn
equal arcs, and connected by great circle arcs “parallel” to the
edges of a parent cell, then results in the so called root grid,
or grid level 0. Hence each cell of the base grid is divided
in n2 new triangular cells, or 4 cells if the original triangle
edges are divided in two equal sections. From here on the
grid construction allows only repeated bisection of triangular
cell edges, yielding a hierarchy of computational grids num-
bered as grid levels 1, 2, etc. The number of cells quadruples
at each refinement step. Note that this numbering of grid lev-
els is different from that used inBonaventura(2003, 2004)
andBonaventura et al.(2005). Figure 1 shows the triangles
in red and hexagons/pentagons in blue of the root grid, or
level 0 grid, resulting from an initial dyadic refinement step.
Table1 shows the number of mass points, velocity points and
vorticity points of the different grid levels, again for a dyadic
refinement of the base grid.

Before introducing the discrete operators, some notation
to describe the grid topology and geometry will now be in-
troduced. Leti denote the generic cell of the Delaunay grid.
Let E(i) then denote the set of all edges of celli. The grid
point associated to celli will also be referred to as the cell
center. The generic vertex of a cell, which is also the cen-
ter of a cell in the dual grid, is denoted byv. E(v) denotes
the set of all edges of the dual cell whose center is vertexv.
The area of celli is denoted byAi , while the area of the dual
cell is denoted byAv. Let thenl denote the generic edge of

Table 1. The triangular icosahedral grid at various resolutions:
number of grid points.

Level Mass points Velocity points Vorticity points

−1 20 30 12
0 80 120 42
1 320 480 162
2 1280 1920 642
3 5120 7680 2562
4 20 480 30 720 10 242
5 81 920 122 880 40 962
6 327 680 491 520 163 842

a cell. It is to be remarked that this index can be assigned
at the same time to an edge of the primal grid and the edge
of the dual grid, which by construction intersects the primal
grid edge at its midpoint. The number of edges is actually
equal for both grids. The length of the edgel of a cell is de-
noted byλl and the distance between the centers of the cells
adjacent to edgel (i.e., the length of a edge of the dual cell)
is denoted byδl . At each edge, a unit vectorN l normal to
the edgel is assigned.T l denotes the unit vector tangen-
tial to the edgel, chosen in such a way thatN l ×kl = T l

holds, wherekl denotes the radial outgoing unit vector per-
pendicular to the tangent plane at the intersection of primal
and dual edgel. Furthermore, for each cell edge, the unit
vector pointing in the outer normal direction with respect to
cell i is denoted byni,l . Unit vectorsnv,l are also introduced,
as pointing in the outer normal direction with respect to the
dual cellv. The corresponding tangential vectorstv,l are de-
fined so thatnv,l × tv,l = kl . Given the edgel of a cell, the
adjacent cells are denoted by the indexesi(l,1) and i(l,2),
respectively. The indexes are chosen so that the direction
from i(l,1) to i(l,2) is the positive direction of the normal
vectorN l . Vertex indexesv(l,1) andv(l,2) can also be de-
fined analogously, so that the direction fromv(l,1) to v(l,2)
is the positive direction of the vectorT l .

Discrete divergence and curl operators are now introduced
in the context of the C grid staggering outlined above. Given
a generic discrete vector fieldG on the sphere, its value at a
velocity point can be represented asGl = glN l+ĝlT l , where
gl,ĝl denote the normal and the tangential components, re-
spectively. The operators are defined as acting on the set of
valuesgl assigned at the edges of the Voronoi-Delaunay grid.
The discrete divergence and curl operator can be naturally
defined as follows:

div(G)i =
1

Ai

∑
l∈E(i)

glN l ·ni,lλl (3)

curl(G)v =
1

Av

∑
l∈E(v)

glN l · tv,lδl . (4)

The Voronoi-Delaunay property of the grid (the normal di-
rection to the edges of the primal grid cell is the tangential
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Table 2. The triangular icosahedral grid at various resolutions: minimum, mean and maximum distances between grid points and velocity
point off-centering (Eq.7). Radius of the Earth: 6.371229×106 m.

mass point distances (km) vorticity point distances (km) off-centering
Level min mean max min mean max %

0 2004.8 2251.1 2497.4 3526.9 3765.0 4003.2 9.97
1 784.3 1116.2 1385.4 1701.8 1916.2 2117.3 5.97
2 345.3 556.9 714.7 843.1 962.3 1079.9 3.34
3 163.3 278.3 360.9 421.4 481.6 541.7 1.78
4 80.1 139.1 181.5 210.3 240.9 271.3 0.97
5 39.9 69.5 91.0 105.0 120.5 135.8 0.61
6 19.8 34.8 45.7 52.4 60.2 67.9 0.40

direction to the corresponding edge of the dual grid cell) has
been used here in an essential way. By the same property,
the discrete normal and tangential derivatives can also be ap-
proximated as

δνφl =
φi(l,2)−φi(l,1)

δl
, (5)

δτψl =
ψv(l,2)−ψv(l,1)

λl
, (6)

whereφi ,ψv are discrete functions defined on the primal and
dual grid cells, respectively.

Since the velocity points are not equidistant from the ad-
jacent Delaunay triangular grid cell centers, the difference
operators described above are only first order accurate. How-
ever, grid optimization procedures can partly cure this prob-
lem by reducing the off-centering to rather small values. The
grid generator for the ICOSWM model has several optimiza-
tion options. In this paper only results for a grid optimized
with the method suggested byHeikes and Randall(1995b)
are shown.

In Table 2 the minimum, mean and maximum distances
between mass points and between vorticity points for grid
levels 0 to 6 for an Earth radius of 6.371229×106 m are
shown for the case of a Heikes-Randall optimization of the
icosahedral grid. The off-centering (%) of a velocity point is
defined as

off −centering= 100 ∗

∣∣∣∣d vel−mass

d 2massp
−0.5

∣∣∣∣ (7)

where dvel-mass is the distance between the velocity point
and one of the adjacent mass points and d2massp is the
distance between the two adjacent mass points. In Table2
the maximum of the velocity point off-centerings for each
grid level is also given. The off-centering is reduced to
rather small values for the higher grid levels. InBonaventura
(2003), Bonaventura(2004) and Bonaventura and Ringler
(2005), the off-centering is defined as twice the value in
Eq. (7).

2.3 Reconstruction of a vector field from the normal
components

In order to recover the full velocity vector from the nor-
mal velocity components prescribed at the velocity points in
a C grid variable staggering, a reconstruction procedure is
needed. This is essential for the discretization of the shal-
low water equations, especially for the representation of the
Coriolis force terms. We will always be concerned here with
a vector field that is reconstructed at the triangular cell cen-
ters and whose normal components are assumed to be known
at the edges of the triangles.

Two options are available in the ICOSWM model for
the reconstruction, the Raviart-Thomas element of order 0
(RT0) and a Radial Basis Function reconstruction (RBF). In
Bonaventura(2003, 2004) and Bonaventura et al.(2005),
only the Raviart-Thomas reconstruction was available and
used.

The Raviart-Thomas technique was introduced inRaviart
and Thomas(1977) and a complete description of the math-
ematical properties can be found inQuarteroni and Valli
(1994).

In the following, the RBF vector reconstruction imple-
mented in ICOSWM (Ruppert, 2007) is described. Radial
basis functions (RBFs) are powerful tools for interpolating
scattered data (Narcowich and Ward, 1994). In ICOSWM,
they are used for providing accurate approximations to a
two-dimensional vector field on the sphere obtained from its
components normal to the edges of the icosahedral triangu-
lar grid. The interpolation is performed in a 3D Cartesian
coordinate rotating with the Earth, whose origin is located at
the Earth’s center, and thez-axis aligns with the Earth’s rota-
tion axis and points to the north. In the following, any point
on the sphere of radiusa is indicated by the location vector
x = (x,y,z).

The interpolation problem can be described as follows:
given an arbitrary destination pointx0, define a region sur-
rounding it. In this region at locationxj (j = 1,...,m), the
projection of the vector field of interest (denoted byv) in the
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direction of the unit vectorN j is know asvj ·N j = vnj . As-
sume that within this region the vector field can be approxi-
mated by the function

V(x)=

m∑
j=1

cj φ
(
x −xj

)
N j (8)

which satisfies

V(xk) ·Nk = vnk , k= 1,...,m . (9)

Hereφ is a radial basis function whose value depends only
on the great circle distance betweenx andxj , i.e.,

φ
(
x −xj

)
=φ(r) where r = ‖x −xj‖ . (10)

Commonly used RBFs include

Gaussian: φ(r) = e−(r/ε)
2
;

Inverse multiquadric: φ(r) =

[√
1+(r/ε)2

]−1

.
(11)

The parameterε is often called the scale factor and defines
a kind of influence radius of the RBF. In ICOSWM, we use
RBFs that are monotonically decreasing with respect to the
distancer.

From Eqs. (8) and (9) one can derived a linear algebraic
equation

8c = vn (12)

in which

(8)kj = φ
(
xk−xj

)(
Nk ·N j

)
, k= 1,...,m;j = 1,...,m

(c)j = cj , j = 1,...,m

(vn)k = vnk , k= 1,...,m

(13)

Formally solving Eq. (12) for c and substituting the solution
into Eq. (8), we get

v0 ≈ V(x0)=
(
8−1vn

)T
φ0 (14)

in which

(φ0)j =φ
(
x0−xj

)
N j , j = 1,...,m. (15)

For a particular application, once the stencil and the form of
the RBF have been determined, the matrix8−1 and vector
φ0 can be calculated and stored. Each time when the vector
reconstruction is needed, the approximation can be obtained
by applying Eq.14.

In the ICON models, the RBFs are used for reconstructing
the horizontal wind vector at triangle centers from the nor-
mal wind given at some triangle edges in the vicinity. Three
stencils of different sizes have been implemented (Fig.3).
Numerical tests (Ruppert, 2007) have shown that the 3-point
stencil produces in general first-order approximations, the 9-
point stencil second-order and the 15-point stencil third or-
der accuracy. The influence of the RBF kernels, scale factor
and stencil used in the reconstruction on the performance of
ICOSWM is tested and shown in Sect.3.
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Fig. 3. The (a) three-point,(b) nine-point, and(c) fifteen-point
stencils implemented in ICOSWM for the RBF wind reconstruc-
tion. The red marks indicate the midpoint of triangle edges where
the normal wind velocity is known. The blue dots indicate the des-
tination location where the horizontal wind vector is reconstructed.

2.4 Spatial discretization

The discrete operators introduced in Sect.2.2are used to de-
fine the spatial discretization. The discrete normal compo-
nent of the velocity with respect to a triangle edge will be
denoted byul , while the corresponding discrete tangential
component will be denoted byvl . The associated discrete
vector field will be denoted byUl = ulN l+vlT l ,

The spatial discretization of the continuity Eq. (1) is
straightforward by integration on celli and application of the
divergence theorem:
∂hi

∂t
= −div

(
h̄∗U

)
i
, (16)

whereh̄∗

l denotes an average of the layer thickness values in
the neighboring cells.
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The resulting numerical method conserves mass by con-
struction. This is important as discrete conservation prop-
erties have long been identified as an important feature of
global circulation models (see e.g.Arakawa and Lamb, 1981;
Lin and Rood, 1997; Ringler and Randall, 2002; Sadourny,
1975).

The discrete momentum equation can be derived by tak-
ing the scalar product of Eq. (2) with the unit vectorN l at a
generic velocity point. Using the vector identity

(kl×v) ·N l = −v ·(kl×N l)

and the definitions given in the previous section yields the
equation

∂ul

∂t
= −η̄lvl−δν [gh+K]l . (17)

Here,vl is an approximation of the tangential velocity com-
ponent,ηv = ζv +fv, whereζv = curl(u)v and η̄l is an av-
erage of the absolute vorticity values at the ends of the cell
edge. The tangential velocity at the edge is obtained as the
projection in the tangential direction of the (inverse distance
weighted) average of the reconstructed wind vectors at the
cell centers adjacent to the edge.

In Bonaventura and Ringler(2005), either potential en-
strophy conserving or total energy conserving variants of the
same method were proposed. Equation (20) inBonaventura
and Ringler(2005) specify how to calculate the edge average
of the absolute vorticity in Eq. (17) in order to conserve po-
tential enstrophy. Furthermore, inBonaventura and Ringler
(2005) a simpler formulation was also introduced, which is
essentially equivalent to the potential enstrophy preserving
scheme and produces indistinguishable results. In the latter
formulation, the edge averaged value of the absolute vortic-
ity is obtained by simple arithmetic average of the values of
ηv at the neighboring vertices. In the present paper this sim-
pler formulation is employed, combined to the more accurate
RBF reconstruction procedure described in the previous sec-
tion.

2.5 Three-time-level semi-implicit time discretization

A three time level semi-implicit time discretization of
Eqs. (17)–(16) based on the leapfrog scheme is given by

un+1
l = un−1

l −21t
(
fl+ ζ̃

n
l

)
vnl −

21t
[
δν

(
ghn+

1
2 +Kn

)]
l

(18)

Aih
n+1
i = Aih

n−1
i −21tAidiv(h̄∗Un+ 1

2 )i . (19)

Here,φn+
1
2 =

(
φn+1

+φn−1
)
/2,h∗

l =hnl −hsl , and1t is the
time step.

The detailed outline of the practical implementation of the
three time level semi-implicit discretization method is the

following:

– Substitute the expression forun+1
l into Eq. (19). For

each celli, one obtains the discrete wave equation

Aih
n+1
i − g1t2Aidiv

[(
δνh

n+1
)
h∗

]
i

= Fni (h),
(20)

where all the explictly computed values are collected in
the terms

Fni (h) = Aih
n−1
i −1tAidiv

(
h∗Un−1

)
i
−

1tAidiv(h∗Fn(Un))i ,

Fnl (U) = un−1
l −21t

(
fl+ ζ̃

n
l

)
vnl −1t

[
δνgh

n−1
]
l
−

21t
[
δνK

n
]
l
.

– oncehn+1 has been computed, it is back substituted in
Eq. (18) to obtain final update ofun+1.

The set of all Eq. (20) for each celli yields a linear sys-
tem in the unknownshn+1

i . Its matrix is sparse, symmetric,
positive definite and diagonally dominant, which allows for
efficient solution even when using relatively simple solvers.
Once the values ofhn+1

i have been computed, they are back
substituted in Eq. (18) to obtain the final update of the dis-
crete velocities.

Asselin time filtering (see e.g.Asselin, 1972) has to be ap-
plied to filter computational modes of the leapfrog discretiza-
tion, so that quantities at time leveln are filtered as follows:

Xnf =Xn+ε
(
Xn−1
f −2Xn+Xn+1

)
, (21)

whereε is a coefficient independent of the time step and of
the resolution. Results of ICOSWM are shown in Sect.3 for
different values ofε (0.2–0.03).

In this paper all the results shown are for the three-
time level semi-implicit scheme, while inBonaventura
(2003, 2004) andBonaventura et al.(2005) a two-time-level
semi-implicit time discretization is used. The three-time-
level scheme is computationally more efficient and makes
ICOSWM more comparable to the NCAR STSWM and
GMESWM, that also employ a three-time-level scheme.

2.6 Numerical diffusion

An explicit diffusion term can be added to the right hand side
of the prognostic variable equations to remove small-scale
noise and improve the stability of the numerical scheme. Due
to non-linear interactions, there is a transport of energy to
small scales and consequently the kinetic energy spectrum
grows at the small scales. To avoid it, a linear fourth-order
diffusion is applied optionally to the velocity field. There
is also an option to apply diffusion to the mass field, but it
is not used here because it is considered unphysical as the
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continuity equation does not contain a turbulent mixing term
in the full atmospheric equations. In addition, it could lead
to a violation of mass conservation for our implementation
of the diffusion coefficient.

To implement the numerical diffusion, the discrete vector
Laplacian must be defined at the velocity points. It is based
on the relation∇2v = ∇ (∇ ·v)−∇×(∇ ×v) and involves all
the basic discrete operators defined in Sect.2.2.

The discrete vector Laplacian in ICOSWM of the discrete
velocity fieldUl , is defined as

lapl(U)l ·N l = δν [div(U)]l−δτ [curl(U)]l (22)

For a fourth-order diffusion, with the form of−k4∇
4U,

wherek4 is the so called diffusion coefficient, the discrete
vector Laplacian operator is applied twice.

In ICOSWM, Eq. (23) is used for the relation between the
diffusion coefficient and a characteristic damping timeτ in
which the grid scale noise is removed, wheredgl is the dual
grid length or distance between mass points andpgl is the
primal grid length or distance between vorticity points. A
uniform planar grid of equilateral triangles is considered to
derive Eq. (23) (Wan, 2009).

k4 =

(dgl)2 (
pgl
√

3
)2

(64τ)
(23)

The ICOSWM grid is not homogeneous, the value of the
primal and dual grid length varies from point to point, and
therefore a location dependent diffusion coefficient is used.

The characteristic damping timeτ is a good parameter to
represent the amount of diffusion applied in ICOSWM, al-
though in the literature usually is the value ofk4 what is doc-
umented. Table3 shows the minimum, mean and maximum
values of the diffusion coefficients used in the model for dif-
ferent grid levels for a characteristic damping time of 2 h.
The corresponding diffusion coefficients for a different char-
acteristic damping time parameterτ can be obtained multi-
plying the values in Table3 by the factor (2 h/τ ).

The inhomogeneities of the grid edge lengths, which in-
crease with resolution, translate to ratios between maximum
to minimum diffusion coefficients of∼2.7 to∼3.4 for grid
levels 2 to 6, respectively.

3 Results of shallow water test cases

The standard shallow water test suite ofWilliamson et al.
(1992) is a very useful benchmark for the model develop-
ment process. This test suite comprises a number of ideal-
ized tests which are representative of some main features of
large scale atmospheric motion. This section presents results
for the steady state zonal geostrophic flow (test case 2), the
zonal flow over an isolated mountain (test case 5) and the
Rossby-Haurwitz Wave (test case 6).

Table 3. Minimum, mean and maximum diffusion coefficients
(m4 s−1) corresponding to a characteristic damping time of 2 h for
different grid levels.

Level mink4 meank4 maxk4
(m4 s−1) (m4 s−1) (m4 s−1)

2 1.00566e+17 2.06608e+17 2.68774e+17
3 5.60454e+15 1.29357e+16 1.7162e+16
4 3.33407e+14 8.08837e+14 1.09473e+15
5 2.04609e+13 5.05579e+13 6.90396e+13
6 1.26539e+12 3.15996e+12 4.34329e+12

The time steps are set to 1440, 720, 360, 180, and 90 s
for grid levels 2, 3, 4, 5, and 6, respectively to yield simi-
lar Courant numbers at different grid levels. All the results
presented here are obtained with the semi-implicit three-time
level scheme and Heikes-Randall optimized grid.

The normalized errorsl2, and l∞ in Williamson et al.
(1992) are used to test the model quantitatively. For the case
of the height field, the expressions for thel2, andl∞ errors
are

l2(h)=
{
I
[
(h(λ,θ)−hT (λ,θ))

2
]} 1

2
/
{
I
[
(hT (λ,θ))

2
]} 1

2 (24)

l∞(h)= max|h(λ,θ)−hT (λ,θ)|/max|hT (λ,θ)| (25)

whereλ and θ are the longitude and latitude of the grid
points,h is the model output,hT is the true solution if there
is an analytical solution and a reference solution if not, andI

is a discrete approximation to the global integral

I (h)=
1

4π

∫ 2π

0

∫ π
2

−
π
2

h(λ,θ)cosθdθdλ. (26)

3.1 Williamson’s test case 2 with zonal flow

Test case 2 of the standard shallow water suite ofWilliamson
et al.(1992) is a steady state solution of the non-linear shal-
low water equations. It consists of a solid body rotation with
a balanced geostrophic height field. The spherical coordi-
nate poles are not necessarily coincident with earth rotation
axis. We denoteα the angle between the coordinate and the
rotational axis. We consider here only the caseα = 0: the
poles of the coordinate system, that are two of the vertices of
the original icosahedron, coincide then with the rotation axis.

For this test case, an analytical solution is available, so that
approximate convergence rates can be computed by applying
the numerical method at different resolutions.

Convergence results for different sets of model parameters
after 10 days simulation are presented below.
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Fig. 4. Height field (bottom) and vorticity field (top) convergence
test for case 2 after 10 days. Test for different characteristic damp-
ing times. Solid lines forl2 errors and dash-dotted lines forl∞
errors.

3.1.1 Sensitivity to the characteristic damping time

We start to test the influence of using different characteristic
damping times for the numerical diffusion.

Several experiments have been run with different charac-
teristic damping times (28, 12, 2, and 1 h) and also without
diffusion (τ=∞).

The tests have been performed with Asselin filter parame-
ter 0.1 and g9p-0.5 RBF reconstruction.

A comparison of the convergence of the normalized errors
for the height and vorticity fields at day 10 for the different
experiments is shown in Fig.4. The results for the different
characteristic damping times are plotted in different colours
and in the order shown in the figure. As in the other conver-
gence figures shown in this work, the black line represents a
second order convergence and thel2 and l∞ normalized er-
rors are represented with solid and dash-dotted lines respec-
tively. The behavior of thel1 errors (Williamson et al., 1992)
is similar to thel2 errors and it is not plotted.

Table 4. Normalizedl2 andl∞ errors after 10 days. Case 2. Char-
acteristic damping time 2 h, Asselin filter parameter 0.1, g9p-0.5
RBF reconstruction.

height wind vorticity

Level l2 l∞ l2 l∞ l2 l∞

2 0.257e-2 0.544e-2 0.439e-1 0.785e-1 0.177 0.249
3 0.529e-3 0.112e-2 0.913e-2 0.160e-1 0.375e-1 0.556e-1
4 0.123e-3 0.270e-3 0.212e-2 0.364e-2 0.912e-2 0.194e-1
5 0.300e-4 0.661e-4 0.518e-3 0.897e-3 0.234e-2 0.655e-2
6 0.740e-5 0.163e-4 0.129e-3 0.220e-3 0.660e-3 0.206e-2

The convergence plot for the wind field is not shown be-
cause no significant sensitivity to the characteristic damping
time is observed in the normalized errors for this field. A
second order convergence is observed for bothl2 andl∞ (see
Table4).

In Fig. 4 (bottom) we observe that the normalized errors
for the height field increase with decreasing characteristic
damping times (increasing diffusion). The effect is larger
in the case of thel∞ error. A second order convergence is
observed for bothl2 andl∞.

In Fig. 4 (top) we observe the opposite effect in the case
of the vorticity field. The errors are reduced with increas-
ing diffusion coefficients (decreasing characteristic damping
times), especially for the higher grid levels. In a geostrophic
balance, the vorticity is proportional to the Laplacian of the
height field, and therefore any small scale noise present in
the height field is amplified in the vorticity field. Increasing
diffusion reduces this noise, reducing at the same time the
normalized errors for the vorticity field. For the vorticity field
second order convergence is only achieved for the higher grid
levels when high diffusion coefficients are used (characteris-
tic damping times of the order of 2 h). The positive effect of
a larger diffusion in the vorticity errors is larger than the neg-
ative effect in the height errors. Therefore a 2 h characteristic
damping time seems to be a good choice. Smaller character-
istic damping times are not recommended because the exper-
iment withτ=1 h has larger errors for all the variables than
the experiment with 2 h characteristic damping time. In the
case ofτ=1 h, the diffusion is smoothing too much.

Table4 presents the numerical values of the normalizedl2
and l∞ errors after 10 days for the different variables from
grid level 2 to 6 for the experiment with 2 h characteristic
damping time.

Figure5 shows the error fields for height (bottom) and vor-
ticity (top) for τ=∞, i.e. no explicit diffusion, g9p-0.5 RBF
reconstruction, Asselin parameter 0.1 and grid level 6. The
height errors show a clear wavenumber-5 pattern due to the
icosahedral grid.

In the vorticity errors a wavenumber-5 pattern can be ob-
served, together with small scale noise. Error spikes near
the special points (vertices of the original icosahedron) are a
consequence of the irregularity of the grid. Applying explicit
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horizontal diffusion, the small scale noise and the effects of
the irregularity of the grid are reduced, decreasing thel2 and
l∞ vorticity errors.

This is a good test case to test the effect of the optimiza-
tion of the ICOSWM grid, because the errors are small and
show a clear wavenumber-5 pattern due to the grid. Two ex-
periments have been run with the non-optimized grid, with
τ=∞ andτ=2 h and the same parameters as in the previous
experiments.

When no numerical diffusion is applied, and the grid is
not optimized, thel2 and l∞ errors for the height field and
the l2 errors for the wind field after 10 days show the same
convergence rate as in the case of the optimized grid, but the
errors are smaller than in the case of the optimized grid. As
an example,l2 height errors after 10 days and grid level 6
are 0.5483e-5 and 0.6955e-5 for the non-optimized and op-
timized grids. Thel∞ errors for the wind field are slightly
larger in the case of the non-optimized grid. But thel2 and
l∞ errors for the vorticity field after 10 days are definitely
larger for the non-optimized grid.l2 vorticity errors after
10 days and grid level 6 are 0.3164e-2 and 0.1244e-2 for the
non-optimized and optimized grids. Thel∞ vorticity error
for grid level 6 is also∼3 times larger in the non-optimized
grid. Plotting the errors for the vorticity (not shown), a
wavenumber-5 pattern together with small scale noise is ob-
served. The shape of the original icosahedron is more visi-
ble than in Fig.5 (top). As already mentioned, the vorticity
field is more sensitive to small scale noise, and the optimiza-
tion of the grid has a positive effect on it. In the process of
the optimization, the off-centering is reduced to very small
values. Also the range of values of the triangular (and pen-
tagon/hexagon) areas for a given grid level is reduced with
the optimization, increasing the homogeneity of the grid in
this sense. But the range of values of the lengths of the pri-
mal (and dual) grid edges for a given grid level increases with
the optimization process. This latter effect could be the rea-
son why some errors increased when the grid is optimized.

When numerical diffusion is applied, the vorticity errors
decrease in both cases. Thel2 error in the non-optimized
grid now is only∼2 times larger in the non-optimized grid
than in the optimized one. Thel∞ error is still ∼3 times
larger in the non-optimized grid. The numerical diffusion
eliminates small scale noise to a large extent, but some large
errors along the edges of the original icosahedron and the
Equator are not significantly reduced and consequently the
effect of the numerical diffusion is smaller in thel∞ error.

We can conclude that the optimization has in general a
positive effect.

3.1.2 Sensitivity to the wind reconstruction

Some experiments have been run to test the sensitivity of
ICOSWM to the way the wind field is reconstructed from the
normal components of the wind to the center of the triangular
cells.

Fig. 5. Errors of the height (m) field (bottom) and vorticity (s−1)
field (top) after 10 days for test case 2 without explicit diffusion.

For the RBF reconstruction, some parameters can be cho-
sen. The radial basis functions used (the kernel), the stencil
and a scale factor. For a detailed description of these param-
eters seeRuppert(2007).

Experiments with the following wind reconstructions have
been run:

– RBF Gaussian kernel, 3-point stencil, scale factor 1
(g3p-1)

– RBF Gaussian kernel, 9-point stencil, scale factor 0.2
(g9p-0.2)

– RBF Gaussian kernel, 9-point stencil, scale factor 0.5
(g9p-0.5)

– RBF Gaussian kernel, 9-point stencil, scale factor 1.
(g9p-1)

– RBF Gaussian kernel, 15-point stencil, scale factor 0.5
(g15p-0.5)

– Raviart-Thomas reconstruction (3-point stencil) (RT)
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Fig. 6. Wind field (bottom) and vorticity field (top) convergence test
for case 2 after 10 days. Tests for different wind reconstructions.
Solid lines forl2 errors and dash-dotted lines forl∞ errors.

– RBF inverse multiquadratic kernel, 9-point stencil,
scale factor 0.5 (imq9p-0.5)

– RBF inverse multiquadratic kernel, 9-point stencil,
scale factor 0.2 (imq9p-0.2)

In all the experiments the characteristic damping time is
2 h and the Asselin filter parameter is set to 0.1.

Figure 6 shows the convergence results for wind (bot-
tom) and vorticity (top). The convergence forl2 and l∞ is
shown with solid and dash-dotted lines respectively. As in
the other convergence plots, each experiment is identified
with a colour and the experiment results are plotted in the
order shown in the figure.

Most of the experiments give similar results, meaning that
a variety of RBF options can be chosen without changing the
ICOSWM performance. The experiments that lead to larger
errors help to determine the range of values of the RBF op-
tions that are optimal for the reconstruction. The g9p-0.2 ex-
periment gave for all variables significantly largerl2 andl∞
errors. The RBF parameters in this experiment are consid-
ered inadequate because of the larger errors. The imq9p-0.2
experiment also results in larger wind and vorticityl2 errors

and considerably larger vorticityl∞ errors. This result can
be explained considering that the scale factor defines a kind
of influence radius of the RBF. A small scale factor means
that the point where the wind is reconstructed can be outside
the influence radius of the more remote stencil points, reduc-
ing the accuracy order of the reconstruction. The fact that
the convergence lines for experiments with Gaussian kernel
and different scale factors are parallel, means that it is a rea-
sonable approach the use of a constant scale factor for the
different resolutions.

It is remarkable that the experiments with bigger stencils
for the reconstruction (RBF 15- and 9-point stencil) do not
have better results than the experiments with RBF 3-point
stencil and Raviart-Thomas reconstruction. In fact the ex-
periment with a 3-point stencil RBF reconstruction yields
slightly better results. In this test case, the wind field is
smooth, so a bigger stencil for the reconstruction does not
improve the results.

We can conclude that in the case of the RBF reconstruc-
tion, the results do not depend significantly on the kernel and
the stencil chosen. There is a range of scale factors that give
similar good results. For the Gaussian kernel and 9-point
stencil values from 0.5 to 1 seem to be adequate, and 0.5 is
a good selection for the inverse multiquadratic kernel with
9-point stencil.

3.1.3 Sensitivity to the Asselin filter

Some experiments have been run for different Asselin filter
parameters. All of these experiments use the semi-implicit
three-time-level scheme, characteristic damping time of 2 h
and g9p-0.5 RBF reconstruction. Asselin filter parameters
0.2, 0.1, 0.08, 0.05, and 0.03 have been considered.

The model simulations become numerically unstable for
Asselin parameter 0.05 and 0.03 at grid levels 5 and 6. This
means that we need an Asselin filter parameter bigger than
0.05.

The normalized errorsl2 andl∞ for the height, wind and
vorticity fields after 10 days are not exactly the same for all
the experiments, but the differences are too small to be seen
in a convergence plot. Thus a comparison of the convergence
on accuracy for the different experiments is not shown.

We can conclude that there is no important effect of the
Asselin filter, but it must be larger than 0.05 for numerical
stability in the model version documented here.

Some experiments have been tried looking for a combina-
tion of parameters that make the model stable for smaller As-
selin parameters. It has turned out that the problem is related
to the reconstruction of the wind field at the mass points.

There is already available a RBF reconstruction of the tan-
gential velocity at the velocity points in a new version of the
model that makes the model stable for very small (or even
zero) Asselin filter parameters. It must be stressed that the
present work shows the results at a stage (end of 2008) of
a project in development. When the tangential velocity is
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reconstructed at the velocity points, the kinetic energy is cal-
culated at the velocity points and then interpolated to the
mass points. It means that a different spatial discretization
of the rotation and kinetic energy gradient terms is used.
Hollingsworth et al.(1992) show that a computational in-
stability can happen because of a non-cancellation of cer-
tain terms in the linearized form of the momentum equation.
With the new discretization (RBF reconstruction at the ve-
locity points) the cancellation happens, the instability is not
present and no Asselin filter is needed.

3.2 Williamson’s test case 5

In test case 5 ofWilliamson et al.(1992) the initial state con-
sists of a zonal flow impinging on an isolated mountain of
conical shape. The surface or mountain heighths is given by

hs =hs0(1−r/R) (27)

where
hs0=2000 m,
R=π/9, and
r2

= min
[
R2,(λ−λc)

2
+(θ−θc)

2]. The center of the moun-
tain is located atλc=3π/2 radians,θc=π/6 radians.

The imbalance in the initial state and the presence of the
mountain lead to the development of a Rossby gravity wave
which propagates all around the globe. This test is relevant
to understand the response of the numerical solution to oro-
graphic forcing and it has been a common benchmark since
the development of the first spectral models.

No analytical solution is available for this test case and a
reference model is used to evaluate the errors of ICOSWM.
As reference the NCAR STSWM has been used. The spec-
tral resolution for the reference model is T426, the time step
is 90 s, the diffusion coefficient is 4.97×1011 m4 s−1 and no
Asselin filter is applied. The reference solution is available
athttp://icon.enes.org/swm/stswm/node5.html.

For a variety of model parameters 15-day runs have been
done. The spectral reference solution is interpolated by bi-
cubic interpolation from the corresponding Gaussian grid
(that has a resolution of 31.25 km at the Equator) to the
ICOSWM grids at different grid levels. The difference be-
tween the ICOSWM output fields and the interpolated refe-
rence solution is used to calculate thel2 andl∞ normalized
errors.

3.2.1 Sensitivity to the characteristic damping time

Experiments with different characteristic damping times
(28 h and 2 h) and without explicit diffusion have been run.
All of them use Asselin filter 0.1 and g9p-0.5 RBF recon-
struction.

Figure 7 shows the height (bottom) and vorticity (top)
fields after 15 days for the case of a characteristic damping
time of 2 h and grid level 6. In the height plot the moun-
tain height is represented by black contour lines at intervals

Fig. 7. ICOSWM height (m) (bottom) and vorticity (s−1) (top)
fields after 15 days in colours. Test case 5. Grid level 6. NCAR
STSWM reference solution in black contour lines.

of 400 m. Superimposed is the NCAR STSWM reference
solution as contour black lines. There is a good agreement
between the ICOSWM and NCAR STSWM solutions. The
general pattern of the vorticity field is very similar in both
models.

Except for grid level 2, no significant influence of the char-
acteristic damping time is observed in the height and wind
errors in the three experiments. In the case of the vorticity
field the l2 errors are slightly smaller with larger diffusion
coefficients for all the grid levels (see Fig.8).

Table5 shows the numerical values of the normalized er-
rors after 15 days for the different variables from grid level 2
to 6 for the experiment with 2 h characteristic damping time.

A second order convergence for the height field is only
achieved for the coarser resolutions. Thel2 errors for the
wind and vorticity fields show a convergence rate slightly
larger than first order. Thel∞ errors lose convergence for the
higher resolutions.

Figure 15 inTomita et al.(2001) shows the temporal evo-
lution of the height and wind error norms for test case 5. The
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Fig. 8. Vorticity field convergence test for case 5 after 15 days.
Tests for different characteristic damping times. Solid lines forl2
errors and dash-dotted lines forl∞ errors.

Table 5. Normalizedl2 andl∞ errors after 15 days. Case 5. Char-
acteristic damping time 2 h, Asselin filter parameter 0.1, g9p-0.5
RBF reconstruction.

height wind vorticity

Level l2 l∞ l2 l∞ l2 l∞

2 0.983e-2 0.382e-1 0.353 0.436 0.663 0.628
3 0.248e-2 0.916e-2 0.120 0.198 0.300 0.306
4 0.879e-3 0.331e-2 0.429e-1 0.699e-1 0.138 0.196
5 0.514e-3 0.271e-2 0.153e-1 0.413e-1 0.596e-1 0.165
6 0.338e-3 0.200e-2 0.648e-2 0.231e-1 0.260e-1 0.120

values at day 15 for grid level 7 inTomita et al.(2001) are
very similar to the ICOSWM error norms in Table5 for grid
level 6. Grid level 7 inTomita et al.(2001) and grid level 6
in ICOSWM are equivalent in the sense that they correspond
to the same number of bisections performed on the original
icosahedron, although the grids differ not only due to the op-
timization process but on the fact that the grid inTomita et al.
(2001) is an Arakawa-A type grid with all the variables de-
fined at the vertices of the triangular cells.

Figure9 shows the difference with respect to the reference
STSWM solution for the vorticity field for grid level 6 (bot-
tom) and grid level 5 (top) with characteristic damping time
2 h, g9p-0.5 RBF reconstruction and Asselin parameter 0.1.
The same colour table is used in both cases. Although Fig.7
(top) shows a good agreement between the vorticity fields in
ICOSWM and the NCAR STSWM reference solutions, the
difference of both fields show discrepancies at some points.
The difference map does not show a wave number-5 pattern,
as in test case 2.

The number of grid points with large errors is considerably
reduced moving from grid level 5 to grid level 6, reducing the

Fig. 9. Differences ICOSWM-NCAR STSWM for the vorticity
field (s−1) after 15 days for test case 5. Grid level 6 (bottom) and
grid level 5 (top).

l2 normalized error. But the largest error is only slightly re-
duced, and the convergence rate of thel∞ error is very small.
The orography in this test case is not smooth and the rep-
resentation of this mountain in the spectral model might in-
volve Gibbs phenomena at the edge of the mountain that are
not present in the ICOSWM model. Some discrepancies in
the lee side of the mountain between the two models seem to
be propagated and amplified with time.

One of the purposes in test case 5 is to investigate the
global conservation properties. We check the conservation
of total energy TE and Potential enstrophy PENS defined as

TE =
1

4π

∫ 2π

0

∫ π
2

−
π
2

(
1

2
h∗v ·v

)
cosθdθdλ+

1

4π

∫ 2π

0

∫ π
2

−
π
2

(
1

2
g
(
h2

−hs
2
)
−Ep0

)
cosθdθdλ (28)

PENS=
1

4π

∫ 2π

0

∫ π
2

−
π
2

1

2h∗
(ζ +f )2cosθdθdλ (29)

whereEp0 denotes the potential energy in the initial state.
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Fig. 10. Relative changes of the total potential enstrophy (bottom)
and total energy (top). Case 5. Grid level 6.

The definition of total energy in Eq. (28) is the same as in
Tomita et al.(2001) andStuhne and Peltier(1999) but differs
from that ofWilliamson et al.(1992). In Eq. (28) the initial
potential energy is subtracted because the interest is to test
the variation of the total energy with respect to the available
energy. The normalized deviations from the initial values for
TE and PENS are then defined as

1TE=
TE−TE0

TE0
(30)

1PENS=
PENS−PENS0

PENS0
(31)

where TE0 and PENS0 are the initial values.
Figure 10 shows the temporal evolution of1TE and

1PENS for the cases without numerical diffusion and with
characteristic damping time of 2 h, for grid level 6. The max-
imum values of1TE and1PENS are of the same order of
magnitude than the corresponding values in Fig. 17 inTomita
et al.(2001) for grid level 7.

3.2.2 Sensitivity to the wind reconstruction

As in test case 2, some experiments with different wind re-
constructions have been run to evaluate the impact of the re-
construction technique in the model results. For simplicity,
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Fig. 11.Height field (bottom) and wind field (top) convergence test
for case 5 after 15 days. Tests for different wind reconstructions.
Solid lines forl2 errors and dash-dotted lines forl∞ errors.

and considering the previous results for test case 2, only ex-
periments with Raviart-Thomas reconstruction and RBF with
Gaussian kernel and different stencils and scale factors have
been performed.

Figure11 shows thel2 (solid lines) andl∞ (dash-dotted
lines) normalized errors after 15 days for the height (bot-
tom) and wind (top) fields for different grid levels. Thel2
and l∞ errors with Raviart-Thomas and RBF 3-point sten-
cil reconstruction are very similar, the convergence line for
both experiments would be indistinguishable and the Raviart-
Thomas experiment results are not presented in Fig.11.

The two experiments with RBF-9 points stencil recon-
struction and different scale factors also show very similar
results. The 15-points stencil generally produces larger er-
rors than a 9-points stencil. The difference in the errors is
reduced with increasing grid level and at grid level 6 all the
experiments have similar errors. In the case of the height
field (and the vorticity field, not shown here), the errors us-
ing the 15- or 3-point stencil are very similar. In the case
of the wind field, the 15-point stencil reduces the wind er-
rors for the higher grid levels compared to the 3-point stencil
experiments.
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Fig. 12.Height field (bottom) and wind field (top) convergence test
for case 5 after 15 days. Tests for different Asselin filter parameters.
Solid lines forl2 errors and dash-dotted lines forl∞ errors.

From these results we can conclude that a 15-point stencil
for the reconstruction does not improve the results and is not
recommended as it is computationally more expensive.

3.2.3 Sensitivity to the Asselin filter

Experiments with different Asselin filter parameters (0.2,
0.1, 0.08, and 0.05) have been run, with semi-implicit three-
time-level scheme, g9p-0.5 RBF reconstruction and charac-
teristic damping time of 2 h.

The convergence plots forl2 (solid lines) andl∞ (dash-
dotted lines) after 15 days for the height and wind fields are
shown in Fig.12bottom and top, respectively.

The normalized errors for the higher resolutions are sig-
nificantly reduced with decreasing Asselin filter parameter,
especially for the heightl2 andl∞ normalized errors and the
wind l2 normalized errors. In the reference model the As-
selin filter parameter is set to zero and the ICOSWM solution
is closer to the reference model when a small Asselin filter
parameter is used.

The experiment with Asselin parameter 0.05 can not be
run for grid level 2. Smith and Dritschel(2006) report that
they found a limit for the minimum value of the Asselin filter
parameter that could be used in their model. This value is re-
lated to the mean short-scale gravity wave speed and depends
on the time step. This minimum Asselin parameter increases
with increasing time step. For grid level 2, the time step is
1440 s and 0.05 is slightly below the minimum Asselin pa-
rameter reported bySmith and Dritschel(2006).

No sensitivity to the Asselin filter parameter is observed in
the case of the vorticity field normalized errors.

Following these results, 0.05 would be the best choice for
the Asselin filter parameter.

3.3 Williamson’s test case 6

In test case 6 ofWilliamson et al.(1992) the initial state con-
sists of a Rossby-Haurwitz wave of wavenumber-4. This
type of wave is an analytic solution for the barotropic vor-
ticity equation and has also been widely used to test shal-
low water models, since the analysis inHoskins(1973) sup-
ported the view that wavenumber-4 is stable also as a solu-
tion of the shallow water equations. However, some recent
work presented inThuburn and Li(2000) has shown that
the Rossby-Haurwitz wave of test case 6 is actually unsta-
ble as a solution of the shallow water equations, since small
random perturbations in the initial state or small numerical
errors result in long term disruption of the wavenumber-4
pattern. This was shown to be the case for a wide range
of numerical models, including spectral transform models.
Therefore, the usefulness of the Rossby-Haurwitz wave of
wavenumber-4 as a benchmark for the solution of the shallow
water initial value problem is limited to time ranges shorter
than those sometimes considered in the literature. We choose
a run time of 10 days for the study of the convergence of
the solutions, although the ICOSWM solution is still sta-
ble and the wavenumber-4 is well kept after 14 days. Fig-
ure 13 shows the height field at day 14 for an ICOSWM
solution with a characteristic damping time of 2 h, Asselin
filter parameter 0.1, and g9p-0.5 RBF and grid level 6. The
NCAR STSWM reference solution (T511) is superimposed
in the figure as black contour lines for comparison. The
wavenumber 4 pattern is well kept after 14 days. No phase
delay is observed in the solution. InBonaventura and Ringler
(2005) a slight phase delay was observed in the solution
produced by the Icosahedral C-staggered grid model. The
fact that inBonaventura and Ringler(2005) a simple two-
time-level semi-implicit time discretization is used, while
ICOSWM uses a three-time-level semi-implicit time dis-
cretization, can be the reason why the phase delay is not ob-
served in ICOSWM. It must also be noted that the NCAR
STSWM uses a three time-level scheme.

The NCAR STSWM is used as a reference to evaluate the
normalized errors of the ICOSWM. The spectral model res-
olution is T511, the time step is 90 s, the diffusion coeffi-
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Fig. 13. ICOSWM height field (m) after 14 days for test case 6
and grid level 6 in colours. T511 NCAR STSWM height field (m)
solution in black contour lines. Contour interval is 200 m.

cient is 3.4×1012 m4 s−1 and no Asselin filter is applied. The
reference solution is available athttp://icon.enes.org/swm/
stswm/node5.html. The corresponding Gaussian grid has a
resolution of 26 km at the Equator. The explicit diffusion co-
efficient used in test case 6 to produce the STSWM reference
solution is larger than in test case 5 to reduce the small scale
noise in the vorticity field.

Convergence tests after 10-day runs with a variety of
model parameters are shown.

3.3.1 Sensitivity to the characteristic damping time

Experiments with different characteristic damping times
(28 h, 2 h, and 0.5 h) and without explicit diffusion have been
run. All of them use Asselin filter 0.1 and g9p-0.5 RBF re-
construction.

No important variability is observed for thel2 andl∞ er-
rors of the wind field. In the case of the vorticity, thel2
and l∞ errors are reduced with larger diffusion coefficients
(smaller characteristic damping times), see Fig.14. In the
case of the height field, thel2 andl∞ errors increase slightly
with increasing diffusion but the (negative) effect is smaller
than the (positive) effect of the increasing diffusion on the
vorticity error norms.

Table6 summarizes the numerical values of the normal-
ized errors after 10 days for the different variables from grid
level 2 to 6 for the experiment with 2 h characteristic damp-
ing time.

The l2 normalized height and wind errors show approx-
imately second order convergence. But thel∞ height and
wind errors lose convergence for the higher grid levels. For
the vorticity field, both thel2 andl∞ errors lose convergence
for the higher grid levels.

Figure 15 shows the differences of ICOSWM with re-
spect to the STSWM reference for the vorticity field after
10 days and grid level 6, with characteristic damping time
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Fig. 14. Vorticity field convergence test for case 6 after 10 days.
Tests for different characteristic damping times. Solid lines forl2
errors and dash-dotted lines forl∞ errors.

Table 6. Normalizedl2 andl∞ errors after 10 days. Case 6. Char-
acteristic damping time 2 h, Asselin filter parameter 0.1, g9p-0.5
RBF reconstruction.

height wind vorticity

Level l2 l∞ l2 l∞ l2 l∞

2 0.473e-1 0.114 0.733 0.898 1.083 1.048
3 0.154e-1 0.367e-1 0.222 0.265 0.357 0.412
4 0.408e-2 0.111e-1 0.582e-1 0.753e-1 0.126 0.199
5 0.130e-2 0.433e-2 0.175e-1 0.278e-1 0.773e-1 0.167
6 0.474e-3 0.191e-2 0.566e-2 0.180e-1 0.598e-1 0.141

Fig. 15. Difference ICOSWM-NCAR STSWM for the vorticity
field (s−1) after 10 days for test case 6, grid level 6.
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Fig. 16. Relative changes of total mass. Case 6. Grid level 6.

2 h, g9p-0.5 RBF reconstruction and Asselin parameter 0.1.
The difference map shows a wavenumber-4 pattern and it is
not related to the grid.

A characteristic damping time of 0.5 h is a good choice
because of the smaller vorticity errors. For test case 2 a char-
acteristic damping time of 1 h or smaller turns out to be a bad
choice because it leads to a degradation of the results for all
the variables.Thuburn and Li(2000) concludes that in test
case 6 a generation of small scales and a cascade towards
unresolved scales takes place. Therefore numerical models
need a dissipation mechanism to avoid noisy structures in the
solution, particularly in the potential vorticity field. Increas-
ing the numerical diffusion in ICOSWM to a characteristic
damping time of 0.5 h leads to a less noisy vorticity field and
to smaller vorticity errors.

Figure16 shows the evolution of the relative changes of
total mass for the runs with no diffusion and with character-
istic damping time of 2 h for grid level 6. Figure17shows the
temporal evolution of1TE (top) and1PENS (bottom). Al-
though the model is not formally preserving potential enstro-
phy and total energy, these quantities are nearly conserved. It
can be observed that the conservation properties of the model
are not significantly affected by the amount of diffusion ap-
plied.

3.3.2 Sensitivity to the wind reconstruction

The different reconstructions for the wind field as in test
case 5 have been tried with the aim of testing the influence
of the reconstruction on the model results. In all the cases
the Asselin filter parameter is set to 0.1 and the characteristic
damping time to 2 h.

Figure 18 shows the height (bottom) and wind (top)l2
(solid lines) andl∞ (dash-dotted lines) normalized errors for
different grid levels for the different experiments.

For the height and vorticity field (not shown here), start-
ing from grid level 3, thel2 errors increase if more points are
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Fig. 17. Relative changes of the total potential enstrophy (bottom)
and total energy (top). Case 6. Grid level 6.

used for the reconstruction. The differences decrease with
increasing grid level, and at grid level 6 all the experiments
have similarl2 height and vorticity errors. Thel∞ height and
vorticity errors for the experiments with 3-point stencil are
smaller than the errors for the experiments with 9- and 15-
point stencil at grid level 6. In the case of the wind field,
thel2 errors at grid level 6 for the experiments with a 3-point
stencil are the largest. The wind is a diagnostic variable, to
calculate the normalized wind errors, the wind has to be re-
constructed from the normal velocity components and a big-
ger stencil yields smaller errors.

Again we can conclude that the used of a 15-point stencil
is not recommended because it is more expensive and does
not improve the model results. It is interesting to see that the
experiments with a 3-point stencil have better results than the
ones with a 9-point stencil, with the exception of the windl2
error at grid level 6.

3.3.3 Sensitivity to the Asselin filter

Experiments with different Asselin filter parameters (0.2,
0.1, and 0.08) have been run, with semi-implicit three-time-
level scheme, g9p-0.5 RBF reconstruction and characteristic
damping time of 2 h.
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P. Ŕıpodas et al.: Icosahedral Shallow Water Model (ICOSWM) 247

10−3

10−2

10−1

h
 n

o
rm

a
liz

e
d

 e
rr

o
rs

 

10000 100000

number of grid points

10−3

10−2

10−1

h
 n

o
rm

a
liz

e
d

 e
rr

o
rs

 

10000 100000

number of grid points

10−3

10−2

10−1

h
 n

o
rm

a
liz

e
d

 e
rr

o
rs

 

10000 100000

number of grid points

10−3

10−2

10−1

h
 n

o
rm

a
liz

e
d

 e
rr

o
rs

 

10000 100000

number of grid points

10−3

10−2

10−1

h
 n

o
rm

a
liz

e
d

 e
rr

o
rs

 

10000 100000

number of grid points

10−3

10−2

10−1

h
 n

o
rm

a
liz

e
d

 e
rr

o
rs

 

10000 100000

number of grid points

10−3

10−2

10−1

h
 n

o
rm

a
liz

e
d

 e
rr

o
rs

 

10000 100000

number of grid points

10−3

10−2

10−1

h
 n

o
rm

a
liz

e
d

 e
rr

o
rs

 

10000 100000

number of grid points

10−3

10−2

10−1

h
 n

o
rm

a
liz

e
d

 e
rr

o
rs

 

10000 100000

number of grid points

10−3

10−2

10−1

h
 n

o
rm

a
liz

e
d

 e
rr

o
rs

 

10000 100000

number of grid points

3p,1. 9p,0.5 9p,1. RT 15p,0.5

second order

gl2 gl3 gl4 gl5 gl6

10−2

10−1

100

w
in

d
 n

o
rm

a
liz

e
d

 e
rr

o
rs

 

10000 100000

number of grid points

10−2

10−1

100

w
in

d
 n

o
rm

a
liz

e
d

 e
rr

o
rs

 

10000 100000

number of grid points

10−2

10−1

100

w
in

d
 n

o
rm

a
liz

e
d

 e
rr

o
rs

 

10000 100000

number of grid points

10−2

10−1

100

w
in

d
 n

o
rm

a
liz

e
d

 e
rr

o
rs

 

10000 100000

number of grid points

10−2

10−1

100

w
in

d
 n

o
rm

a
liz

e
d

 e
rr

o
rs

 

10000 100000

number of grid points

10−2

10−1

100

w
in

d
 n

o
rm

a
liz

e
d

 e
rr

o
rs

 

10000 100000

number of grid points

10−2

10−1

100

w
in

d
 n

o
rm

a
liz

e
d

 e
rr

o
rs

 

10000 100000

number of grid points

10−2

10−1

100

w
in

d
 n

o
rm

a
liz

e
d

 e
rr

o
rs

 

10000 100000

number of grid points

10−2

10−1

100

w
in

d
 n

o
rm

a
liz

e
d

 e
rr

o
rs

 

10000 100000

number of grid points

10−2

10−1

100

w
in

d
 n

o
rm

a
liz

e
d

 e
rr

o
rs

 

10000 100000

number of grid points

3p,1. 9p,0.5 9p,1. RT 15p,0.5

second order

gl2 gl3 gl4 gl5 gl6gl6

Fig. 18.Height field (bottom) and wind field (top) convergence test
for case 6 after 10 days. Tests for different wind reconstructions.
Solid lines forl2 errors and dash-dotted lines forl∞ errors.

The convergence plots forl2 (solid lines) andl∞ (dash-
dotted lines) after 10 days for the height field are in Fig.19.

The heightl2 and the wind (not shown here)l2 normalized
errors for the higher resolutions are reduced with decreasing
Asselin filter parameter, the effect being larger in the case of
the height field. On the contrary, in the case of the vorticity
field, the errors decrease with increasing Asselin filter pa-
rameter, but the difference is very small and it is hardly seen
in a convergence comparison plot.

The model solutions get numerically unstable for Asselin
parameters of 0.05 and smaller for higher grid levels. Thus
an Asselin filter parameter larger than 0.05 is needed for sta-
bility reasons.

As mentioned in Sect.3.1.3, a RBF reconstruction of the
wind at the velocity points has been developed on a new ver-
sion of the code which allows for running the model with-
out explicit diffusion and no Asselin filter. Using the same
model parameters in both versions of the code leads to very
similar normalized errors. When using the new code with
the wind reconstruction at the velocity points together to a
very small Asselin filter parameter (0.01), leads to smaller
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Fig. 19.Height field convergence test for case 6 after 10 days. Tests
for different Asselin filter parameters. Solid lines forl2 errors and
dash-dotted lines forl∞ errors.

l2 height error norms, particularly for the higher resolutions,
increasing the convergence rate of thel2 height error norms.

4 Comparison to GMESWM

To evaluate the results of the ICOSWM model, a comparison
with GMESWM, the shallow water version of GME (oper-
ational global model of Deutscher Wetterdienst,Majewski
et al., 2002) has been considered.

The GMESWM model uses a non-staggered icosahedral-
hexagonal grid. The prognostic variables are the height and
zonal and meridional velocity components at the centers of
the hexagons/pentagons. The number of mass points is equal
to the number of vorticity points for a given resolution.

The ICOSWM model uses a C-staggered grid, the prog-
nostic variables are the height at the centers of the primary
cells (the centers of the triangles) and the normal velocity
components with respect to the cell edge. The vorticity is
calculated at the centers of the dual grid (hexagons and pen-
tagons) and the number of mass points is different from the
number of vorticity points for a given grid level.

Convergence plots comparing thel2 height and vorticity
errors of ICOSWM and GMESWM for test cases 5 and 6 are
shown in Figs.20and21.

In GMESWM the number of equal intervals into which
each side of the original icosahedral triangles is divided,ni ,
is used as a parameter for specifying the resolution of the
grid. GMESWM runs forni=32, 64, 96, and 192 corre-
sponding to a spacing between grid points of about 240, 120,
80, and 40 km, with diffusion coefficients 8×1015, 1×1015,
4.22×1014, and 5×1013 m4 s−1, respectively, have been con-
sidered. The Asselin parameter used in the GMESWM runs
is 0.03.

www.geosci-model-dev.net/2/231/2009/ Geosci. Model Dev., 2, 231–251, 2009
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Fig. 20. Convergence test after 15 days. Test case 5. Compari-
son GMESWM and ICOSWM. Top: height field; bottom: vorticity
field.

The ICOSWM results in Fig.20correspond to a run with a
characteristic damping time of 2 h, g9p-0.5 RBF reconstruc-
tion and Asselin filter 0.1. In Fig.21 the ICOSWM results
with characteristic damping times of 2 h and 0.5 h are shown.

For test case 5 (Fig.20), ICOSWM shows a better heightl2
convergence rate and a similar vorticityl2 convergence rate
as GMESWM.

For test case 6 (Fig.21), ICOSWM shows a better height
l2 convergence rate and smaller normalizedl2 height er-
rors. With a characteristic damping time of 2 h, ICOSWM
shows a worse vorticityl2 convergence rate than GMESWM,
but with a characteristic damping time of 0.5 h, ICOSWM
has similar results as GMESWM. It has been seen that test
case 6 needs more numerical diffusion to eliminate small
scale noise, which is more noticeable in the vorticity field.
The mean diffusion coefficient for grid level 6 with charac-
teristic damping times of 2 h and 0.5 h are 3.1599×1012 and
1.2640×1013 m4 s−1. The latter is the same order of magni-
tude than the one used in GMESWM.
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Fig. 21. Convergence test after 10 days. Test case 6. Compari-
son GMESWM and ICOSWM. Top: height field; bottom: vorticity
field.

We can conclude that in general the ICOSWM results are
better than those of GMESWM. It could be due to the C-
grid formulation and the Heikes-Randall grid optimization.
To test the effect of the grid optimization, ICOSWM has
also been run for test case 6 without optimization with g9p-
0.5 RBF reconstruction, Asselin filter 0.1 and characteristic
damping times of 2 h and 0.5 h. The normalized errors for the
different variables obtained (not shown here) are very similar
to the ones obtained with the optimized grid. The errors in
test case 6 are larger than in test case 2, hiding the benefits of
the optimization observed in test case 2. Without optimiza-
tion, ICOSWM has still better results than GMESWM.

5 Kinetic energy spectra

In this section the kinetic energy spectra for some experi-
ments are shown. They are also compared to the kinetic en-
ergy spectra of the variant of the NCAR STSWM used as a
reference to evaluate the ICOSWM output fields.
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Fig. 22. Kinetic energy spectra after 15 days run, case 5.
T426 NCAR STSWM model and ICOSWM model grid level 6 with
different characteristic damping times.

The kinetic energy spectra are calculated using Eq. (32)
(Eq. 3.2 inJakob-Chien et al., 1995) whereζmn andδmn are
the spectral coefficients of the divergence and the vorticity,n

is the total wavenumber,m is the longitudinal wavenumber
anda is the radius of the earth.

KEn =
a2

4n(n+1)

[
ζ 0
n

(
ζ 0
n

)∗

+δ0
n

(
δ0
n

)∗

+2
n∑

m=1

ζmn
(
ζmn

)∗
+

2
n∑

m=1

δmn
(
δmn

)∗

]
(32)

where()∗ denotes the complex conjugate.
To calculate the spectra, the divergence and vorticity fields

are first interpolated to a Gaussian grid (T426 or T511). Then
the spectral divergence and vorticity coefficients are calcu-
lated.

5.1 Test case 5 kinetic energy spectra

Figure 22 shows the kinetic energy spectra at day 15 for
the NCAR STSWM model and ICOSWM with different
characteristic damping times (three-time-level semi-implicit
scheme, Asselin parameter 0.1, g9p-0.5 RBF reconstruction)
for grid level 6.

There is a good agreement between the kinetic energy
spectra of both models. With decreasing characteristic damp-
ing time (increasing diffusion coefficients), the kinetic en-
ergy of the highest wavenumbers decreases in ICOSWM.
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Fig. 23. Kinetic energy spectra after 10 days run, case 6.
T511 NCAR STSWM model and ICOSWM model grid level 6 with
different characteristic damping times.
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Fig. 24. Kinetic energy spectra at initial time, case 6. T511 NCAR
STSWM model and ICOSWM model grid level 6.

5.2 Test case 6 kinetic energy spectra

Figure 23 shows the kinetic energy spectra at day 10 for
the NCAR STSWM model and for ICOSWM with different
characteristic damping times (three-time-level semi-implicit
scheme, Asselin parameter 0.1, g9p-0.5 RBF reconstruction)
for grid level 6.
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The energy corresponding to odd total wavenumbers is
larger than that corresponding to even wavenumbers. The
main contribution to the kinetic energy of the odd total
wavenumbers are the vorticity spectral coefficients, since the
zonal wavenumberm=4 dominates and the spherical har-
monics forn odd andm=4 are antisymmetric with respect
to the Equator as is the vorticity field. The main contribution
to the kinetic energy of the even total wavenumbers are the
divergence spectral coefficients, because the spherical har-
monics forn even andm=4 are symmetric with respect to
the Equator as is the divergence field. This added to the fact
that the vorticity field is larger in magnitude than the diver-
gence field, leads to the splitting observed in the spectra.

Divergence at initial time is zero in test case 6, as is the ini-
tial tendency of the divergence field. This initial state is a so-
lution of the barotropic equations and in a barotropic model
the solution would remain divergence free. In a shallow wa-
ter model, some divergence is produced. The energy of the
even wavenumbers forn>20 in the NCAR STSWM model
is much smaller than in the ICOSWM, indicating that less
divergence is produced by the NCAR STSWM model. Apart
from this, there is a good agreement between the kinetic en-
ergy spectra of both models.

The kinetic energy spectra show an−3 dependence for
the odd wave numbers till wavenumbers of about 160. The
kinetic energy spectrum of the NCAR STSWM evolves
with time towards an−3 dependence for wavenumbers
20<n<160 (not shown here), reaching an equilibrium state
between day-10 and day-15. It is not clear if then−3 depen-
dence is developed only for this range of wavenumbers or if
more time is needed to develop it for larger wavenumbers or
if the n>160 wavenumbers are just affected by the numeri-
cal diffusion. In the latter case, we could not use the NCAR
STSWM kinetic energy spectrum as the true kinetic energy
spectrum and use it as a reference to define the effective res-
olution of ICOSWM as it is proposed inSkamarock(2004).

Decreasing the characteristic damping time (increasing
diffusion coefficients) in ICOSWM, the kinetic energy of the
even total wavenumbers decreases forn>20, but for a char-
acteristic damping time of 2 h, it is still much larger than for
the NCAR STSWM. Decreasing the characteristic damping
time also reduces the energy of the higher (odd and even)
total wavenumbers.

To estimate the impact of the interpolation from the
ICOSWM grid to the Gaussian grid on the calculated
ICOSWM kinetic energy spectra, the spectrum of the ini-
tial state of test case 6 is considered. Figure24 shows the
spectra for the STSWM and ICOSWM models at initial time.
The divergence is zero and the vorticity is a linear combina-
tion of the spherical harmonicsYm=0

n=1 andYm=4
n=5 (Williamson

et al., 1992). The spectra of both models show peaks at
the expected total wavenumbersn=1 andn=5. The energy
for the other total wavenumbers should be zero. Values for
STSWM are typically∼10−29, corresponding to machine
precision, and∼10−8 for ICOSWM. We can conclude that

the accuracy of the ICOSWM spectra is limited to∼10−8

due to the interpolation from the icosahedral grid to the Gaus-
sian grid.

6 Conclusions and outlook

The Icosahedral Shallow Water Model (ICOSWM) is de-
scribed and results for tests cases 2, 5, and 6 ofWilliamson
et al.(1992) are presented for a variety of model parameters.
For test cases 5 and 6 the NCAR STSWM is used as refe-
rence.

ICOSWM uses a grid optimized with the method sug-
gested byHeikes and Randall(1995b). The benefits of the
optimization can be observed in test case 2, where the error
models are small enough. In test case 6, with larger errors,
the benefits of the optimization are hidden.

ICOSWM simulations for test cases 5 and 6 have been
compared to the Shallow Water Version of the current op-
erational model at DWD (GMESWM), ICOSWM shows be-
tter results than GMESWM, probably because of the C-grid
formulation. The ICOSWM normalized height and wind er-
rors for test case 5 (day 15) and test case 6 (day 10) are very
similar to those shown inTomita et al.(2001), although the
figures inTomita et al.(2001) do not allow to do a more
quantitative comparison.

The kinetic energy spectra of ICOSWM has been calcu-
lated and a good agreement with the kinetic energy spectra
of the NCAR STSWM model is observed.

An instability is observed in ICOSWM that is overcome
with a relative large value of the Asselin Filter parameter
(0.05–0.08). It seems that it is related to the reconstruction
of the wind at the center of the triangular cells. The current
work presents the results of the ICOSWM at the end of the
year 2008, but the model is being further developed. A RBF
reconstruction of the wind at the velocity points has been
developed on a new version of the code which allows for
running the model without explicit diffusion and no Asselin
filter. Hollingsworth et al.(1992) show that an instability
can happen because of a non-cancellation of certain terms in
the linearized form of the momentum equation. With the new
discretization (RBF reconstruction at the velocity points), the
cancellation happens, the instability is not present and no As-
selin filter is needed. Using the same model parameters in
both versions of the code leads to very similar normalized
errors. When using the new code with the wind reconstruc-
tion at the velocity points together to a very small Asselin
filter parameter (0.01), leads to smallerl2 height error norms
in test case 6, particularly for the higher resolutions, increas-
ing the convergence rate of thel2 height error norms.

In the framework of the ICON project a hydrostatic dy-
namical core has been developed (Wan, 2009) and a local
grid refinement option and a non-hydrostatic dynamical core
are under development. Among other things, these new
models include the above-mentioned new implementation of
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the wind reconstruction. The results presented here are a
reference to evaluate the impact that these new and other up-
coming implementations have on the stability and quantita-
tive results of the ICOSWM model.

Edited by: P. J̈ockel
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