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The figure on the previous page shows: Temperature response to doubled 
CO2 concentration (i.e., T2×CO2 −T1×CO2) obtained from experiments with 
different representations of small scale fluctuations. The results are based 
on the temperature means over the last 50 years of the integrations.



Abstract

One of the main challenges in climate research is the estimation of the climate

response to increasing greenhouse gas concentrations. Such an estimation is often

made with the aid of a climate model. Although climate models are forced in the

same way, they simulate different climate sensitivities. Model errors caused by the

representations of feedback processes related to water vapour, clouds, temperature

lapse rate and surface albedo are known to account for the high uncertainty of the

modelled climate sensitivity. But also the representation of dynamical small-scale

processes could affect the modelled climate sensitivity. All climate models have

finite spatial and temporal resolutions. The impact of unresolved processes is often

parameterised without taking the variability induced by subgrid-scale processes

into account.

The aim of this study is to investigate the impact of enhanced small-scale at-

mospheric fluctuations on the modelled climate response to increased CO2 con-

centration. Using a coupled atmosphere-ocean-sea ice general circulation model

(ECHAM5/MPI-OM) we carried out experiments with enhanced small-scale fluc-

tuations. To enhance small-scale fluctuations we reduced the horizontal diffusion

or added white noise to spectral coefficients with high total wavenumbers.

Whereas the reduction of the horizontal diffusion hardly affects the mean state

of the pre-industrial climate, the additional noise alters the climate considerably.

The climate response to a doubling of the CO2 concentration is influenced by both

methods used to enhance the small-scale fluctuations. Reducing the horizontal

diffusion by a factor of 3 leads to an increase of the equilibrium climate sensitivity

at the surface by 13%. If white noise is added to the small scales, the surface

climate sensitivity tends to weaken. In general, the largest changes in responses

occur in the upper troposphere.

To better understand how small-scale fluctuations alter the climate sensitivity

we used a simple stochastic model. We fitted a Langevin equation to the global

mean temperature time series at 300 hPa. The analysis based on the stochastic

model enables us to distinguish between two mechanisms influencing the climate

sensitivity. Enhanced small-scale fluctuations can influence the climate sensitivity

via altering feedback and interaction processes which are present in the unper-
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Abstract

turbed system and/or via altering processes which are only occurring in response

to the CO2 increase. Whereas reducing the horizontal diffusion changes the cli-

mate sensitivity via the second mechanism, the additional noise initiates both

mechanisms.

Although the impact of the enhanced small-scale fluctuations on the modelled

climate sensitivity is not as large as, e.g., the impact of different cloud parame-

terisations, it is not a negligible source of uncertainty for the determination of the

future climate change.
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1 Introduction

1.1 Motivation

Due to the industrialisation atmospheric greenhouse gas concentrations (e.g., of

carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O)) increase remark-

ably. The unnatural high greenhouse gas concentrations affect the climate. To

assess the future climate change we use comprehensive climate models. For ex-

ample, we want to know how much the globally averaged surface temperature will

rise due to the increased greenhouse gas concentrations until the end of the 21st

century.

When using comprehensive climate models to answer the above question we

come across two major sources of uncertainty. a) The models themselves are no

one-to-one representations of the real climate system. b) We force the models

with prescribed emission scenarios, which describe only a few possible future de-

velopments of the greenhouse gas emissions. In this study we want to focus on

the first source of uncertainty, i.e., the question of how model errors influence the

climate response.

The results published in the 4th Assessment Report (AR4) of the Intergov-

ernmental Panel on Climate Change (IPCC) show that the simulated increase of

temperature largely depends on the climate model applied. Although the compre-

hensive climate models are all forced in the same way, e.g. according to the A1B

scenario, they show different climate responses. The projected globally averaged

surface warming at the end of the 21st century ranges from 1.7 K to 4.4 K (IPCC,

2007). This transient climate response is closely related to the equilibrium climate

sensitivity of each model. The equilibrium climate sensitivity is generally defined

as the equilibrium change in global surface temperature due to a doubling of CO2

concentration.

Several attempts have been made to quantify the degree of uncertainty of the

equilibrium climate sensitivity. Murphy et al. (2004), Piani et al. (2005), and

Knutti et al. (2006) determine the uncertainty of the climate sensitivity due to

model errors by estimating probability density functions of the climate sensitivity.

They use perturbed physics ensembles. That means, the same climate model is run

7



1 Introduction

many times with different set of parameters to explore the widest possible range

of model responses to CO2 doubling. Their results suggest that the equilibrium

climate sensitivity lies between 1.5 K and 6.8 K. These values depend, however,

strongly on the explicit method used to estimate the probability density functions.

Thermodynamical feedback processes

Model errors caused by parameterisations of processes related to nonlinear ther-

modynamical feedbacks are generally called to account for the high uncertainty

of the climate sensitivity. These feedbacks involve interactions of water vapour,

clouds, temperature lapse rate and surface albedo with the earth’s radiation bud-

get (Bony et al., 2006). Several studies (e.g., Colman (2003), Soden and Held

(2006), Webb et al. (2006)) have estimated the strength of the feedback processes

in different climate models and provided valuable insight into the origins of vary-

ing model sensitivities. Especially, the cloud feedback is found to be a large source

of uncertainty.

Dynamical small-scale processes

In this study we do not concentrate on model errors originating, e.g., from cloud

parameterisations, sea ice modelling, or other thermodynamical feedback pro-

cesses, rather we investigate the effect of the representation of dynamical small-

scale processes on the modelled climate sensitivity. The climate system is not only

determined by the interactions of complex thermodynamical processes but also by

nonlinear dynamical coupling of various scales of motion. As a consequence of the

limited model resolution in space and time, the governing equations are truncated

at a certain scale. Dynamical processes below this scale cannot be adequately

represented in the models and have to be parameterised. Such parameterisations

generally do not take the variability into account, which is induced by the subgrid-

scale processes. Especially, the variability near the truncation scale is neglected

(Seiffert et al., 2006), and this variability can affect the behaviour of large-scale

processes (von Storch, 2004).

Climate response experiments with different model resolutions indicate that the

model sensitivity to increased CO2 concentration depends on the model resolu-

tion and with it on the representation of small-scale processes. Kiehl et al. (2006)

found that the climate sensitivity of the Community Climate System Model 3

(CCSM3) increases with increased horizontal resolution. The equilibrium climate

sensitivity of the high-resolution version (T85) is 17% higher than the model sen-

sitivity of the low-resolution version (T31). In contrast, the atmospheric general
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1.1 Motivation

circulation model ECHAM5 of the Max Planck Institute (MPI) for Meteorology

coupled to a fixed-depth (50m) mixed layer ocean and a thermodynamical sea

ice module experiences a reversed trend (E. Roeckner, personal communication,

2007). The results of May and Roeckner (2001), who used an earlier version of

the present MPI model, ECHAM4, also suggest a weaker climate response to in-

creased CO2 concentration when changing the resolution from T42 to T106. The

opposite trends in the two models, CCSM3 and ECHAM, can be ascribed to many

factors. The different parameterisations of complex thermodynamical processes

in the two models certainly play an important role. Since parameterisations in

general depend on the chosen model resolution, it is hard to distinguish between

the effect of changed parameterisations due to different resolution and the effect

of additional resolved small-scale processes on the climate sensitivity. Hence, to

investigate the impact of changes in the representation of dynamical small-scale

processes we do not change the model resolution in this study.

Fluctuation dissipation theorem

From a more theoretical point of view we find arguments how the representation of

the small-scale fluctuations could influence the climate sensitivity by considering

the fluctuation dissipation theorem. The fluctuation dissipation theorem (FDT)

originates from statistical physics. It states that the response of a system to

a changed external forcing can be deduced from the statistical properties of the

unperturbed system. Leith (1975) first proposed that the FDT might be applicable

to the climate system. Since Leith’s paper several studies applied the FDT to

climate-like systems (Bell (1980), North et al. (1993), Cionni et al. (2004), Langen

and Alexeev (2005), Gritsun and Branstator (2007)).

Bell (1980) gives a nice illustrative example of the idea, how the properties of

the undisturbed system are related to the system’s response to a changed external

forcing. He considers an oscillating mass suspended at the end of a spring. The

average height of the mass above the ground represents the mean ‘climate state’

of the undisturbed system (e.g., a climate system in the equilibrium state with

pre-industrial CO2 concentration). If we increased, e.g., the gravitational force,

the average height would decrease. The difference between the average heights in

the system with normal gravitational force and in the system with stronger grav-

itational force is the mean response of the spring-mass-system to the change in

external forcing. It represents a measure for its ‘climate sensitivity’. The change in

average height depends generally on the spring constant describing the elasticity of

the spring. The spring constant can be determined by observing the undisturbed

9



1 Introduction

oscillation. Hence we are able to deduce the system’s response to a changed exter-

nal forcing just by observing the undisturbed system. That, however, also means,

if the spring constant of the system is altered, the system’s response will change.

For a complex system like climate, the ’spring constant’ results from internal feed-

backs and scale-interactions. Due to the dynamical coupling between small and

large scales, small-scale variability can affect the statistics of large-scale variables

(von Storch, 2004) and with it the climate system’s ’spring constant’. Hence ne-

glecting small-scale variability could have an influence on the model sensitivity to

CO2 forcing.

1.2 Thesis objective

Although all climate models have finite resolution in space and time, up to now no

study explicitly investigated the impact of the representation of dynamical small-

scale processes near the truncation scale on the modelled climate sensitivity. The

purpose of this study is to systematically address the question of whether and

how small-scale atmospheric fluctuations affect the modelled climate sensitivity

to increased CO2 concentration. Using the coupled atmosphere-ocean-sea ice cli-

mate model ECHAM5/MPI-OM we want to answer, in particular, the following

questions:

• What influence do enhanced small-scale fluctuations have on the mean cli-

mate state?

• Do enhanced small-scale fluctuations influence the modelled climate sensi-

tivity?

• If the small-scale fluctuations affect the climate sensitivity, do the small-

scale fluctuations influence the ’spring constant’ of the climate model and

with it the climate sensitivity?

1.3 Thesis structure

Including this chapter the thesis is structured into seven chapters. Chapter 3, 4,

5, and 6 comprise the main results. Parts of Chapter 3 and 4 are published in

Geophysical Research Letters (Seiffert and von Storch, 2008).

In Chapter 2 the coupled atmospheric-ocean-sea ice model ECHAM5/MPI-OM

is shortly introduced. Furthermore, we describe the model experiments carried

10



1.3 Thesis structure

out. All experiments are done in pairs: one experiment with pre-industrial CO2

concentration and one experiment with doubled CO2 concentration. To enhance

small-scale fluctuations we reduce the horizontal diffusion or add white noise to

spectral coefficients with high total wavenumbers.

In Chapter 3 we investigate the impact of the enhanced small-scale fluctu-

ations on the mean climate state of the experiments with pre-industrial CO2

concentration.

Chapter 4 focuses on the actual question of how enhanced small-scale fluctu-

ations influence the modelled climate sensitivity. We compare the responses to

the CO2 doubling obtained from the experiments without and with enhanced

small-scale fluctuations. We show that changing the representation of small-

scale processes (i.e., enhancing the small-scale fluctuations) indeed affects the

modelled climate response to CO2 forcing.

In Chapter 5 we introduce and test a simple stochastic model fitted to the

global mean temperature at 300 hPa. We will need this stochastic model in

Chapter 6.

Chapter 6 deals with the question whether the enhanced small-scale fluctua-

tions change the modelled climate sensitivity by altering the ’spring constant’

of the climate model.

The final chapter comprises the general conclusions and an outlook.

11





2 Model and experiments

2.1 The coupled model ECHAM5/MPI-OM

ECHAM5/MPI-OM is a comprehensive coupled atmosphere-ocean-sea ice general

circulation model developed at the Max Planck Institute for Meteorology (MPI-

M) in Hamburg (Germany). It consists of the atmosphere model ECHAM5 and

the MPI-ocean model (MPI-OM). The interactions between the atmosphere model

and the ocean model are realised via the Ocean-Atmosphere-Sea Ice-Soil (OASIS)

coupler (Valcke et al., 2003). No flux-adjustment is needed to maintain a realistic

steady climate. The model is used for a wide range of applications (e.g., Pohlmann

et al. (2006), Bengtsson et al. (2007), IPCC (2007), Marotzke and Botzet (2007),

Kloster et al. (2007), von Storch and Haak (2008)).

2.1.1 Atmosphere

The atmospheric model is the global general circulation model ECHAM5.2. The

model consists of a spectral dynamical core based on the primitive equations

and a comprehensive set of physical parameterisations. The prognostic variables

temperature, vorticity, divergence, and the logarithm of the surface pressure are

represented in the horizontal by finite series of spherical harmonics. In the vertical

the atmosphere is divided into hybrid sigma-pressure levels reaching up to the

pressure level of 10 hPa. Throughout this study we will mainly use the model

version with the resolution T31L19. T31 denotes the truncation of the series

of spherical harmonics at the zonal and total wavenumber m0 = l0 = 31 (≈
3.8◦×3.8◦); L19 refers to the usage of 19 vertical levels. In Chapter 3 we also refer

to the higher model resolution T63L31 indicating a truncation at m0 = l0 = 63

(≈ 1.9◦ × 1.9◦) and 31 vertical levels.

The set of physical parameterisations includes shortwave radiation, longwave

radiation, cumulus cloud convection as well as stratiform cloud formation. Fur-

thermore, parameterisations involving boundary layer processes and unresolved

scale-interactions are implemented. For a more detailed description of ECHAM5

see Roeckner et al. (2003) or Roeckner et al. (2006). The latter provides also a

13
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comparison of the simulated climate to reanalysis data.

2.1.2 Ocean

The ocean model MPI-OM is based on the primitive equations for a hydrostatic

Boussinesq fluid on a rotating sphere. For horizontal discretisation an orthogonal

curvilinear C-grid is used. The North Pole of the grid is located over Greenland

and the South Pole is placed at the centre of Antarctica. In this way we avoid the

numerical singularities associated with the convergence of the meridians at the

geographical North Pole. The ocean model coupled to the T31L19-atmospheric

model has a horizontal resolution of nominally 3 degrees (Arctic: ≈ 20 km, Tropics:

≈ 350 km). The T63L31-atmospheric model is coupled to the MPI-OM with a

horizontal resolution of ≈ 1.5 degrees. In the vertical we use 40 unevenly spaced

vertical z-levels.

The model includes subgrid-scale parameterisation such as vertical and along-

isopycnal diffusion, eddy-induced isopycnal tracer mixing following Gent et al.

(1995), vertical eddy viscosity and a bottom boundary layer slope convection

scheme. Furthermore the effect of ocean currents on wind stress is taken into

account. The MPI-OM also comprises a dynamic, thermodynamic sea-ice model.

More technical details about the ocean model can be found in Marsland et al.

(2003). A description of the mean ocean circulation for the high-resolution version

is given by Jungclaus et al. (2006).

2.2 Experimental setups

2.2.1 Two approaches to modify the small-scale fluctuations

Using the low-resolution version of ECHAM5/MPI-OM (atmosphere: T31L19,

ocean: 3◦) we carry out idealised response experiments with enhanced small-

scale fluctuations. Two different approaches are used to enhance the small-scale

fluctuations.

The first method involves a modification of the horizontal diffusion in ECHAM5.

The horizontal diffusion damps to a large extent the variability of small-scale com-

ponents and can therefore be used to enhance small-scale variability. This param-

eterisation is implemented in ECHAM5 to incorporate the nonlinear interactions

between subgrid scales and resolved scales. It is mainly used to ensure a realistic

energy spectrum of the resolved scales.

14



2.2 Experimental setups

The horizontal diffusion is applied in spectral space on the prognostic variables:

temperature, vorticity and divergence. The time rate of change of the spectral

coefficient Xl,m caused by the horizontal diffusion is defined as

∂Xl,m

∂t

∣∣∣∣
horizontal diffusion

= −KlXl,m (2.1)

with

Kl =
1

τ0

(
l(l + 1)

l0(l0 + 1)

)q

. (2.2)

The damping factor Kl depends strongly on the total wavenumber l. l0 marks

the truncation scale of the model (here l0 = 31). The exponent q depends on the

vertical level. q ranges from 2 in the uppermost three levels to 10 in the middle

and lower troposphere. The damping time scale τ0 controls the strength of the

diffusion. In the low-resolution model version (T31L19) it is set to τ0 = 12 h.

An increase in τ0 leads to a weaker damping and hence an enhancement of the

variability of high wavenumber components.

In the second approach the horizontal diffusion remains unchanged. Instead

we add noise to the smallest resolved scales. At each time step white noise is

added to the spectral coefficients of temperature, divergence and vorticity with a

total wavenumber l ≥ 26. Note that the explicit representation of the small-scale

processes related to wavenumbers close to the truncation scale (l0 = 31) is not

reliable anyway. The noise mimics a possible impact of unresolved processes. It

does, however, not qualify for a realistic parameterisation of the subgrid-scale vari-

ability. Rather, it aims to isolate the impact of enhanced small-scale fluctuations

on the climate sensitivity in the framework of idealised experiments.

2.2.2 Experiments

The experiments are carried out in pairs. Each set of experiments comprises one

integration done with pre-industrial CO2 concentration (280 ppm) and one inte-

gration with doubled CO2 concentration. The difference of these two integrations

can then be referred to as the response of the system to the increased CO2 concen-

tration. The doubled CO2 concentration experiment was originally started from

a state of the pre-industrial control integration. The 2×CO2 concentration was

achieved by a 1% per year increase until the final value of 560 ppm was reached.

Holding the concentration constant, the model was further integrated for 930

years. The control experiment with pre-industrial CO2 concentration has a total

length of 1650 years.

15



2 Model and experiments

1×CO2 2×CO2

control experiments, τ0=12 h, σnoise = 0 ctrl1x ctrl2x

reduced horiz. diffusion, τ0=24 h diffus1x 24 diffus2x 24

reduced horiz. diffusion, τ0=36 h diffus1x 36 diffus2x 36

moderate noise, σnoise = 3× 10−2 K (3× 10−7 s−1) noise1x 3 noise2x 3

high noise, σnoise = 6 × 10−2 K (6 × 10−7 s−1) noise1x 6 noise2x 6

Table 2.1: Overview of the experiments carried out with ECHAM5/MPI-OM

(atmosphere: T31L19, ocean: 3◦

Table 2.1 gives an overview of the experiments. Experiments ctrl1x and ctrl2x

correspond to the control integrations of the standard model with no changes of

the representation of the small-scale fluctuations. ’1x’ and ’2x’ denotes 1×CO2

and 2×CO2. For the analysis we considered the last 150 years of ctrl1x and of

ctrl2x. The other experiments shown in Table 2.1 are 150 years long experiments

which were branched off ctrl1x (at year 1500) and ctrl2x (at year 780 after

reaching 2×CO2). In these experiments we altered the model as described below.

In experiments diffus1x 24, diffus2x 24, diffus1x 36, and diffus2x 36 the

horizontal diffusion is reduced. The damping time τ0 is increased by a factor of

2 or 3 from the standard value of 12 h to 24 h or 36 h. Figure 2.1 shows the

damping factor Kl for the three configurations. Furthermore, four experiments

with additional noise in the smallest resolved scales are carried out: noise1x 3,

noise2x 3, noise1x 6, and noise2x 6. Here ’ 3’ and ’ 6’ distinguishes between

two noise intensities. In the experiments noise1x 3 and noise2x 3 the standard

deviation of the white noise σnoise is 3 × 10−2 K for temperature and 3 × 10−7 s−1

for vorticity and divergence. In the experiments noise1x 6 and noise2x 6 we use

higher noise intensities: 6× 10−2 K for temperature and 6× 10−7 s−1 for vorticity

and divergence.

2.2.3 Discussion

Methods to enhance small-scale fluctuations

The implementation of horizontal diffusion into ECHAM5 is a simple and efficient

way to ensure numerical stability and of parameterising subgrid-scale horizontal

mixing and the energy-cascade into unresolved scales. The strength and the form

of the horizontal diffusion are, however, under debate (e.g., Kaas et al. (1999)).

Given the uncertainty of the form and strength of the horizontal diffusion, a
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Figure 2.1: Damping factor obtained from the horizontal diffusion in ECHAM5

(T31) for q=10 and different τ0; black solid: τ0=12 h, blue solid: τ0=24 h, blue

dashed: τ0=36 h

reduction of the horizontal diffusion to allow more small-scale fluctuations is not

a drastic modification of the climate model.

Adding white noise to the smallest resolved scales can be seen as a simple ap-

proach to taking the effect of unresolved scales into account. In general, white

noise is only appropriate if the time scales of the resolved variability are clearly

separated from those of the dominant unresolved scales. Since the climate model

resolves only time scales of hours and longer, the noise could represent fast atmo-

spheric fluctuations occurring on time scales of minutes to seconds. Nevertheless,

we should keep in mind that the white noise serves not as a realistic stochastic pa-

rameterisation of the subgrid-scale variability. A real stochastic parameterisation

of the subgrid-scale variability would involve a more complex stochastic process

(Buizza et al. (1999), Seiffert et al. (2006)). In this study we take the addition

of white noise to the smallest resolved scales as a simple approach to enhancing

small-scale fluctuations in a conceptual way.

Experimental design

Note that we do not carry out explicit response experiments for all pairs of ex-

periments. That means, to estimate the response of the model with, e.g., re-

duced horizontal diffusion we do not slowly increase the CO2 concentration (until

560 ppm) starting from diffus1x 36. Instead, we directly branch off a new ex-

periment with reduced horizontal diffusion from the 2×CO2 control experiment

17



2 Model and experiments

ctrl2x. After some time the model run with reduced horizontal diffusion and

2×CO2 concentration will reach a new equilibrium.

The advantage of this approach is the shorter computation time. If we increased

the CO2 concentration for each experiment with enhanced small-scale fluctuations

individually, we would have to integrate the model each time over several hundred

years. Since the enhancement of small-scale variability is only a minor change to

the system compared to doubling the CO2 concentration, the model adjusts more

quickly.

The question arises whether our strategy will provide different results in com-

parison to the more straightforward way of increasing the CO2 concentration in

each setup individually. Assuming that each set of boundary conditions (such as

the CO2 concentration and the representation of the small scales) corresponds to

one unique steady state, it should not matter how this steady state is reached.

If it were crucial whether we first increased the CO2 concentration and then re-

duced the horizontal diffusion or vice versa, we would find two different equilibria

with the same boundary conditions. Since we do not expect that enhancing the

small-scale fluctuations will lead to profound structural changes of the modelled

system (e.g., an earth totally covered with ice), the existence of two steady state

with the same boundary conditions is not likely.
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3 Impact of enhanced small-scale

fluctuations on the mean climate

3.1 Introduction

The main objective of this thesis is to investigate the impact of enhanced small-

scale fluctuations on the climate sensitivity. Before we actually explore how the

climate sensitivity is influenced by enhanced small-scale fluctuations, we will in

this chapter compare the mean climate states of all 1×CO2-experiments.

The idea that the representation of dynamical small-scale processes influences

the mean state of a model is not new. It is actually closely related to the research

question of finding a good parameterisation for the unresolved nonlinear interac-

tions between subgrid scales and resolved scales. Studies by Koshyk and Boer

(1995), Stephenson (1995), Kaas et al. (1999) and Frederiksen et al. (2003) show

that different parameterisation of the unresolved scale-interactions (which also

result in different small-scale fluctuations) can alter large scale quantities. Fred-

eriksen et al. (2003), for example, compares general circulation model experiments

employing a standard scale-selective horizontal diffusion scheme and experiments

employing a different horizontal diffusion scheme based on closure theory. They

find that the two experimental setups show significant differences in the large-scale

circulation.

By comparing the mean states of the 1×CO2-experiments ctrl1x, diffus1x 24,

diffus1x 36, noise1x 3, and noise1x 6 we analyse how our changes in the repre-

sentation of dynamical small-scale processes influence the mean climate state. In

Section 3.2.1 we first show that reducing the horizontal diffusion or adding white

noise to the small scales indeed enhances the small-scale fluctuations. In the sub-

sequent subsections we then compare the atmospheric temperature, clouds, the

atmospheric circulation, the ocean circulation and the kinetic energy spectrum of

the 1×CO2-experiments.
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3 Impact of enhanced small-scale fluctuations on the mean climate

3.2 Comparison of the 1×CO2-experiments

3.2.1 Enhanced small-scale variability

From Figure 3.1 we can see that a reduction of the horizontal diffusion or additional

noise on the small-scale components in fact enhances the small-scale variability.

Figure 3.1a - c) shows the standard deviations of the spectral coefficients of the

three prognostic variables: temperature, vorticity, and divergence in the control-

experiment (ctrl1x). Low wavenumbers correspond to large-scale components

and high wavenumbers to small-scale components. Figure 3.1d - i) displays the

ratio of the standard deviations from experiments with modified small-scale com-

ponents to the standard deviations obtained from the control-experiment. As

expected the variability of spectral coefficients with high total wavenumbers is

significantly enhanced if the horizontal diffusion is reduced or if noise is added

to the small-scale components. (The other two experiments diffus1x 24 and

noise1x 6, which are not shown, show qualitatively the same behaviour.) Note

that the much larger gain of small-scale variability in noise1x 3 compared to

diffus1x 36 is due to the rather high noise intensity used. By decreasing the

noise intensity it would be possible to induce changes of similar magnitude. We

chose a rather high noise intensity to ensure that the additional variability is not

damped out right away by the horizontal diffusion. The light blue areas at smaller

wavenumbers indicate slightly less variability at larger scales due to the reduced

horizontal diffusion or the noise.

The question arises, how well do our idealised experiments compare to the

situation if the model resolution is actually increased. An experiment with higher

resolution of the coupled model (atmosphere: T63L31, ocean: 1.5◦×1.5◦) includes

small-scale processes beyond the truncation scale of T31. In this experiment

nonlinear scale-interactions across this scale are possible.

The horizontal diffusion acts by design only on spectral coefficients near the

truncation scale. Since the spectral coefficients with total wavenumbers 25 � l ≤ 31

are in the T63-experiment not close to the truncations scale, these spectral coeffi-

cients are in this experiment almost not affected by the damping of the horizontal

diffusion. In contrast, in the T31-experiment the spectral coefficients with total

wavenumbers 25 � l ≤ 31 are strongly influenced by the damping of the hori-

zontal diffusion. If we considered only the difference in the damping caused by

the different horizontal diffusion in T63 and T31, the variability of spectral coef-

ficients with total wavenumbers 25 � l ≤ 31 should be much higher in T63 than

in T31. The additional resolved scale-interactions in T63, however, partly lead to

20



3.2 Comparison of the 1×CO2-experiments

a)

ctrl1x

b)

ctrl1x

c)

ctrl1x

d)

diffus1x 36 / ctrl1x

e)

diffus1x 36 / ctrl1x

f)

diffus1x 36 / ctrl1x

g)

noise1x 3 / ctrl1x

h)

noise1x 3 / ctrl1x

i)

noise1x 3 / ctrl1x

j)

high / low resol.

k)

high / low resol.

l)

high / low resol.

Figure 3.1: a)-c) Standard deviations of spectral coefficients of ex-

periment ctrl1x, d)-l) Ratio of the standard deviations of the spec-

tral coefficients: d)-f) diffus1x 3/ctrl1x, g)-i) noise1x 36/ctrl1x, j)-l)

ctrl1x(T63L31)/ctrl1x(T31L19); All estimates shown here are based on 6-

hourly data and 50-year averages at model levels ≈500 hPa. Please note the dif-

ferent colour scales.
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3 Impact of enhanced small-scale fluctuations on the mean climate

a different picture.

In Figure 3.1j - l) the variability of the two different model resolutions are com-

pared. The usage of 19 levels instead of 31 levels in the T63-experiment leads to

similar results as described below. When comparing Figure 3.1d - i) with Figure

3.1j - l) some similarities but also clear differences can be observed. As expected,

the increased model resolution leads to enhanced small-scale variability of vor-

ticity and divergence, similar to our idealised experiments. However, there is no

indication of reduced variability on large scales, as it is found in the diffusion-

and noise-experiments. Moreover, the temperature pattern differs (Figure 3.1 j).

Spectral coefficients on smallest scales show a slightly higher variability. Except

for total wavenumber l = 31, higher variability is mostly found for large zonal

wavenumbers m, independent of l. There are also spectral coefficients, in par-

ticular those with small zonal wavenumbers and large total wavenumbers, which

display less variability.

3.2.2 Temperature

Figure 3.2 and Figure 3.3 show global mean temperature time series of the various

experiments obtained from 150 years of integration. At year 1 the experiments

with enhanced small-scale fluctuations were branched off the experiment ctrl1x.

The enhancement of the small-scale fluctuations generally disturbs the equilibrium

of the system. After a certain time the system reaches a new equilibrium.

Reducing the horizontal diffusion leads to slightly higher temperatures. The

surface temperature increases from 288.0 K in the control-experiment to 288.3 K

in diffus1x 36 (see also Table 3.1). The temperature at 300 hPa rises by 0.6 K.

By contrast, in the noise-experiments the temperatures at 300 hPa decrease con-

siderably. The surface temperature in noise1x 3 remains about the same. In the

experiment noise1x 6 the surface temperature drastically starts to fall to a value

of 285.9K. Although the temperature curve of noise1x 6 seems to level off, it is

not completely clear from Figure 3.3 whether the temperature will drop further.

Figure 3.4 compares zonally averaged temperature cross-sections. We consider

time averages of the last 50 years. When reducing the strength of the horizon-

tal diffusion the mean temperature in the troposphere slightly increases. Only

near the top of the atmosphere do we observe large differences. Adding noise to

the small-scale components, however, leads to major changes in the zonal mean

temperatures. In the experiment noise1x 3 the tropics are up to 3 K cooler, espe-

cially, in the upper part of the troposphere. We also observe a cooling in the low-

and mid-troposphere near the north pole. When increasing the noise intensity the
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Figure 3.2: Time series of global mean temperature at 300 hPa of the 1×CO2-

experiments based on yearly averages (thin lines) and 11-year running mean (thick

lines)
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Figure 3.3: Time series of the global mean surface temperature of the 1×CO2-

experiments based on yearly averages (thin lines) and 11-year running mean (thick

lines)

23



3 Impact of enhanced small-scale fluctuations on the mean climate

a) b)

c) d)

Figure 3.4: a) Pressure-latitude cross-section of the zonally averaged annual-

mean temperature in Kelvin obtained from ctrl1x, and the temperature differences

of b) diffus1x 36 - ctrl1x, c) noise1x 3 - ctrl1x, and d) noise1x 6 - ctrl1x

also in Kelvin. The results are based on 50-year averages of model years 101-150.

Ts T300 qv

ctrl1x 288.0 232.2 26.0

diffus1x 24 288.2 232.6 26.4

diffus1x 36 288.3 232.8 26.7

noise1x 3 287.9 230.8 25.8

noise1x 6 285.9 230.1 24.3

Table 3.1: Time mean of the global mean temperatures at the surface, Ts, and at

300 hPa, T300, both in Kelvin, as well as the mean of the global mean vertically

integrated water vapour, qv, in kg/m2.
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3.2 Comparison of the 1×CO2-experiments

a) b)

c) d)

Figure 3.5: a) Pressure-latitude cross-section of the zonally averaged annual-

mean fractional cloud cover obtained from ctrl1x, and the cloud cover differences

of b) diffus1x 36 - ctrl1x, c) noise1x 3 - ctrl1x, and d) noise1x 6 - ctrl1x.

The results are based on 50-year averages of model years 101-150.

difference-pattern is amplified by more than a factor of two.

3.2.3 Clouds

One main reason for the big temperature changes in the noise-experiments are

the clouds. From Figure 3.5 it can be seen that also the clouds are significantly

influenced by the noise.

In general, clouds influence the earth’s radiation budget in two competing ways.

First, clouds usually have a higher albedo than the earth’s surface. Compared to

a clear sky an atmosphere containing clouds reflects more incoming solar radia-

tion, resulting in a cooling effect. In contrast, the second process involved leads

to a warming of the atmosphere and the surface. Similar to the greenhouse ef-
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Figure 3.6: Annual-mean net cloud radiative forcing at the top of the atmosphere

of the experiment ctrl1x (black) and the differences between ctrl1x and the four

other 1×CO2-experiments. The curves represent 50-year averages. (The net cloud

radiative forcing is defined as the difference between the radiation budget with

clouds and without clouds.)

fect caused by CO2, clouds absorb and re-emit longwave radiation. A significant

amount of outgoing longwave radiation is trapped by the presence of clouds leading

to a warming effect.

Numerical experiments using one-dimensional climate models showed that for

high clouds the warming effect is larger than the cooling effect. Hence high clouds

have a net warming effect. On the other hand middle and low clouds exert a net

cooling effect on the climate system. The cooling effect caused by the high albedo

of the optically thick middle and low clouds generally outweighs the warming

greenhouse effect (Liou, 2002).

In the noise-experiment we find fewer tropical high clouds and more tropical low

clouds. Overall this combination results in a cooling of the tropics in comparison

to the control-experiment (ctrl1x). In the tropics more low clouds amplify the net

cooling effect, and the net warming effect of high clouds is reduced. In contrast, in

the mid- and high-latitudes the fractional cloud cover is reduced throughout the

entire vertical column. The temperature response caused by the changed clouds

is not as clear as in the tropics. However, from the change of the mean net cloud

radiative forcing (Figure 3.6) we see in the mid-latitudes a warming effect caused

by the changed cloud cover in the noise-experiments (red lines). The warming

26



3.2 Comparison of the 1×CO2-experiments

a) b)

c) d)

Figure 3.7: a) Pressure-latitude cross-section of the annual-mean mass stream

function in 1010 kg/s obtained from ctrl1x, and mass stream function differences

of b) diffus1x 36 - ctrl1x, c) noise1x 3 - ctrl1x, and d) noise1x 6 - ctrl1x

also in 1010 kg/s. Positive (negative) values in a) indicate clockwise (anticlockwise)

circulation. The results are based on 50-year averages of model years 101-150.

effect is larger in the southern hemisphere than in the northern hemisphere.

3.2.4 General atmospheric circulation

The mean meridional circulation of the 1×CO2-experiments are compared in Fig-

ure 3.7. Similar to the previous figures we find that the changes imposed by

reducing the horizontal diffusion on the mean climate state are much smaller than

those caused by the noise. In both kinds of experiments, diffusion- and noise-

experiments, the Hadley cell and the Ferrel cell are weakened.

The weakening of the Hadley cell in the noise-experiments is related to the

changes in the net heating. The clouds decrease the heating in the tropics and
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a) b)

c) d)

Figure 3.8: a) and b) transient eddy heat fluxes, [T ′v′], of ctrl1x and

noise1x 3; c) and d) transient eddy momentum fluxes, [u′v′], of ctrl1x and

noise1x 3. (The transient eddy fluxes are computed from daily mean values from

which the mean annual cycle was subtracted.)

the cooling in the midlatitudes (Figure 3.6). Thus the forcing of the Hadley cell

is weakened. Also the lower water vapour content in the atmosphere (last column

of Table 3.1), resulting in less moist convection, has a share in the weakening of

the Hadley cell.

The decreased intensity of the Ferrel cell is in line with weaker eddy momentum

fluxes and eddy heat fluxes in the two noise-experiments. The transient eddy heat

flux [T ′v′] and the transient eddy momentum flux [u′v′] of ctrl1x and noise1x 3

are shown in Figure 3.8. (The prime denotes anomalies of the time average,

x′ = x − x; the overbar indicates the time average; the brackets [ ] refer to

the zonal average.) The diminished maxima and minima of the eddy fluxes in the

noise-experiment implicate a weaker eddy forcing of the Ferrel cell. If, for example,

the maximum of the transient eddy heat flux at 50N is weakened, the divergence
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3.2 Comparison of the 1×CO2-experiments

a) b)

c) d)

Figure 3.9: a) Pressure-latitude cross-section of the zonally averaged annual-

mean zonal wind component, u, in m/s obtained from ctrl1x, and zonal wind dif-

ferences of b) diffus1x 36 - ctrl1x, c) noise1x 3 - ctrl1x, and d) noise1x 6

- ctrl1x also in m/s. The results are based on 50-year averages of model years

101-150.

and the convergence zones south and north of the maximum are weakened, too.

Thus the meridional temperature gradient and with it the thermal wind balance

is not as much perturbed by the eddy heat fluxes as in the control-experiment.

The indirect Ferrel circulation need not be so strong in noise1x 3 to compensate

this perturbation of the thermal wind balance. A similar argument can be given

for the eddy momentum fluxes. For more details on the relation of the Ferrel cell

and the eddy fluxes see, e.g., Holton (1992).

The zonal mean of the eastward component of the wind, [u] (Figure 3.9) is

also considerably influenced by the additional noise. The strength of the jets

are reduced by 15 % in noise1x 3 and by 40 % in noise1x 6. In the diffusion-

experiments the jets are hardly changed. The zonal wind changes are consistent
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Figure 3.10: Atlantic meridional overturning at 30◦N in a depth of 1020m in

Sv (=106 m3/s), annual means

with the changes in the meridional temperature gradient caused by the additional

noise.

3.2.5 Ocean circulation

Figure 3.10 shows the evolution of the Atlantic meridional overturning circulation

(MOC) at 30◦N at the depth of 1020 m. In the control-experiment (ctrl1x)

the Atlantic MOC has a strength of about 15 Sv (1 Sv=106 m3/s) with a standard

deviation of 2.3 Sv computed from annual means. In the experiments with reduced

horizontal diffusion (diffus1x 24 and diffus1x 36) and with moderate noise

(noise1x 3) the strength and variability of the MOC is similar to that of ctrl1x.

We conclude that moderately enhanced atmospheric small-scale variability does

not influence the MOC.

In contrast, in the experiment with high noise intensity (noise1x 6) we observe

considerable changes of the Atlantic MOC (orange line). In response to the strong

noise the strength of the Atlantic MOC increases up to about 19 Sv in the first

50 years. In the last 50 years of the 150-year long simulation the MOC strength

decreases slightly below the MOC strength of the other experiments (see also

Figure 3.11a,b).

Given the large atmospheric changes in the experiment noise1x 6, changes in

the ocean circulation are not surprising. Further analyses reveal that the ocean

30



3.2 Comparison of the 1×CO2-experiments

a) b)

c) d)

Figure 3.11: Mean Atlantic meridional overturning circulation in Sv of a)

ctrl1x and b) noise1 6, as well as mean Pacific meridional overturning cir-

culation in Sv of c) ctrl1x and d) noise1 6; All quantities are based on 50-year

means of model years 101-150.
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a) b)

c) d)

e) f)

Figure 3.12: Mean horizontal distributions of ctrl1x (a,c,e) and the difference

noise1x 6–ctrl1x (b,d,f) of a,b) sea surface temperature in ◦C, c,d) sea surface

salinity in psu, and e,f) fractional sea ice cover; All quantities are based on 50-year

means of model years 101-150.
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circulation of noise1x 6 has changed considerably compared to the control exper-

iment. Besides deep water formation in the North Atlantic we find also sinking in

the North Pacific. A Pacific overturning circulation develops in the North Pacific

(Figure 3.11d).

Since we did not alter the ocean model, the differences found in the ocean cir-

culation must originate from different atmosphere-ocean interactions. The lower

atmospheric temperatures in noise1x 6 generally result in a cooling of the ocean

(Figure 3.12a,b). Due to the much lower temperatures in the North Atlantic,

sea ice reaches much further South in noise1x 6 (Figure 3.12e,f). The sea ice

acts like a lid over the ocean surface restricting heat and water exchange between

atmosphere and ocean. Owing to less evaporation, the North Atlantic freshens

(Figure 3.12c,d). In general, the density of sea water depends strongly on its tem-

perature and salinity. The water is the denser, the cooler and saltier it is. Hence,

the cooling of the North Atlantic surface water tends to increase the density, but

the freshening tends to decrease the density. In the last 50 years of noise1x 6

the freshening outweighs the cooling, since we find shallower mixing depths in the

North Atlantic (not shown) and a weaker Atlantic MOC compared to ctrl1x.

The convection in the North Pacific is related to higher salinities. The warmer

temperatures in this areas do not inhibit the convection.

3.2.6 Kinetic energy spectrum

An important property of the horizontal diffusion is to ensure a realistic kinetic

energy spectrum. Kinetic energy spectra derived from observations show generally

a spectral slope of ≈ -3 in the total wavenumber range 10 ≤ l ≤ 30 (Koshyk and

Boer, 1995). A slope of -3 is consistent with an enstrophy-cascading inertial sub-

range as predicted by the theory of two-dimensional turbulence (Kraichnan, 1967).

Reducing the strength of the horizontal diffusion will directly affect the kinetic

energy spectrum. Figure 3.13 displays the kinetic energy spectrum at 500 hPa for

all 1×CO2-experiments.

The reduction of the horizontal diffusion leads to an increase of the kinetic

energy in small-scale components. While the spectral slope in the experiment

ctrl1x approximates -3 for total wavenumbers l ≥ 10, it flattens in the experi-

ments diffus1x 24 and diffus1x 36 for total wavenumbers l > 20. Besides this

difference the spectra of the experiments with reduced horizontal diffusion are

very similar to the spectrum of ctrl1x.

Adding noise to the small-scale components results in broader changes. The

spectral coefficients on which the noise was added (l ≥ 26) clearly stick out with
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Figure 3.13: Kinetic energy spectrum at 500 hPa obtained from 6 hourly averages

for the different 1×CO2-experiments; The dashed straight line marks a spectral

slope of -3.

very high values. Overall the kinetic energy is significantly reduced for small

wavenumbers (l < 10). The very different curve of the noise-experiment with high

noise intensity (noise1x 6) are consistent with the big changes of the simulated

climate found in the previous subsections.

3.3 Discussion

We showed that reducing the horizontal diffusion or adding white noise to the

small scales indeed results in enhanced small-scale variability. When noise is

added to the small scales the mean climate state is considerably altered. We

observe changes in the fractional cloud cover and in the zonal mean temperatures

as well as a weakening of the mean meridional circulation and the jets. In the

experiment with high noise intensity the ocean circulation changes. Reducing

the horizontal diffusion also results in changes of the mean climate state. The

changes are, however, by far not as big as in the noise-experiments. Since the

noise enhances the small-scale fluctuations much more than does the reduction of

the horizontal diffusion, its larger effect on the mean climate state is plausible. A
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Figure 3.14: Conceptual illustration how enhanced variability of the temperature

caused by additional noise can influence the mean of the saturation vapour pressure

eSAT. eSAT in black (red) indicates the mean of the saturation vapour pressure in a

system without (with) additional noise. T is the mean of the temperature, which

is not changed by the additional noise.

smaller noise intensity would scale down the effects on the mean climate.

The changed mean states in the experiments with enhanced small-scale fluctu-

ations are not necessarily more realistic. Especially, the mean state found in the

experiment noise1x 6 is quite unrealistic. The strong noise causes large unre-

alistic changes in the fractional cloud cover. Compared to observations (Peixoto

and Oort, 1993) the atmospheric mean meridional circulation and the jets are

too weak in noise1x 6. The unrealistic mean state in noise1x 6 is not surprising

since by adding white noise to the system we chose a very simple way of enhancing

the small-scale fluctuations, which provides only a crude parameterisation of the

induced variability by subgrid-scale processes.

In general, it is difficult to identify the detailed cause-and-effect chain leading

to the changes of the mean climate. Since the mean of the noise itself is zero, the

nonlinear nature of the climate system must be responsible for the changes.

Nonlinear interactions between temperature and cloud formation are one exam-

ple how noise with zero mean may alter the mean state. Cloud formation generally

depends on the relative humidity RH . When RH reaches values close to 100%,

clouds are formed. RH is defined as the ratio of the partial pressure of water

vapour e to the saturation vapour pressure eSAT: RH = e/eSAT. The saturation

vapour pressure depends exponentially on the temperature. If we now disturb the
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temperature T with white noise being symmetrically distributed around the mean

temperature, the mean of eSAT will change. A positive anomaly of T leads to a

larger disturbance of eSAT than the same negative anomaly (Figure 3.14). In the

long run the mean of eSAT in the system with noise is higher than the mean of eSAT

in the system without noise. Under the assumption that the partial pressure of

water vapour remains unaffected by the noise, RH decreases on average. Hence

less clouds form.

Another mechanism for how enhanced variations may influence the mean state

is that an important threshold is crossed more frequently. Due to enhanced vari-

ability of the temperature the vertical stratification of the atmosphere is more

variable. On the one hand this leads more often to an unstable atmosphere,

which in turn results in more convection. On the other hand the atmospheric

layering is also more often more stable than usual. Unlike the unstable situation,

a more stable atmosphere has no direct consequences on, e.g., cloud formation,

since the atmosphere is stable most of the time anyway. Thus, if the variability

of the lapse rate increases, we expect on average more convection.

Note that the above considerations serve primarily as illustrative examples of

how enhanced variability might affect the mean state. Although we, e.g., find

reduced cloud cover in many regions of the noise-experiments, we are not sure that

the reduction of clouds can completely be explained by the mechanism described

above (higher temperature fluctuation → lower eSAT → smaller RH → less clouds).

Even in noise1x 6 the noise added to the temperature has only an amplitude of

0.06 K. It is likely that other nonlinear processes are also involved. The noise

could, e.g., serve as a trigger initiating a positive feedback loop.
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4 Impact of small-scale fluctuations

on the climate sensitivity

4.1 Introduction

The representations of nonlinear thermodynamical feedback processes (e.g., cloud

feedbacks, surface albedo feedback) have a large impact on the modelled climate

sensitivity. Different models incorporating various parameterisations simulate dif-

ferent global warming although they are forced in the same way (IPCC (2007)).

However, not only the parameterisations of thermodynamical feedback processes

are important for the modelled climate sensitivity, also the representation of dy-

namical small-scale processes near the truncation scale could play a crucial role.

All climate models have finite spatial and temporal resolutions. The impacts

of not resolved processes must be parameterised. Different parameterisations of

these unresolved scale-interactions could lead to different model sensitivities. Since

the implemented parameterisations often do not take the variability induced by

subgrid-scale processes into account, we want to investigate the impact of en-

hanced small-scale fluctuations on the climate sensitivity by artificially increasing

the variability near the truncation scale.

The experiments with and without enhanced small-scale fluctuations are de-

scribed in Chapter 2. For the analyses in this chapter we use from each integration

the last 50 years, which are considered to be in quasi-equilibrium. We calculate

the response to the doubled CO2 concentration as the difference between the mean

over the last 50 years of the 2×CO2-experiments and the 50-year mean obtained

from the respective 1×CO2-experiment.

Section 4.2 shows that enhanced small-scale fluctuations affect the temperature

response to a doubled CO2 concentration. In Section 4.3 we investigate how the

thermodynamical feedback processes are changed due to the enhanced small-scale

fluctuations. We conclude this chapter with a discussion.
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Figure 4.1: Temperature response to doubled CO2 concentration (i.e., T2×CO2 −
T1×CO2) obtained from experiments with different representations of small scale

fluctuations. The results are based on the temperature means over the last 50

years of the integrations.

4.2 Temperature response

Figure 4.1 shows the temperature response to a doubled CO2 concentration. Dou-

bling the CO2 concentration leads to a warming of the entire troposphere for all

pairs of experiments.

This warming is stronger in the experiments with reduced horizontal diffusion in

comparison to that in the control experiments (ctrl2x-ctrl1x). In other words,

a reduction of the horizontal diffusion causes an increased climate sensitivity.

In general, a larger reduction of the horizontal diffusion results also in a larger

increase of the climate sensitivity. Reducing the horizontal diffusion by a factor

of two (three) leads to a maximum amplification of the temperature response at

250 hPa by 11% (16%). By contrast, adding white noise to the small scales weakens

the temperature response. The temperature response in the experiments with high

noise intensity (noise2x 6 - noise1x 6) is much smaller than the temperature

response of the control experiments. In the experiments with the lower noise

intensity (noise2x 3 - noise1x 3) the temperature response decreases only in

the high troposphere, with a maximum reduction at 200 hPa from 4.8 K to 4.1 K
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4.2 Temperature response

1x 2x – 1x 1x 2x – 1x

Ts ΔTs T300 ΔT300

ctrl 288.0 3.8 232.2 5.6

diffus 24 288.2 4.1 232.6 6.1

diffus 36 288.3 4.3 232.8 6.4

noise 3 287.9 3.9 230.8 5.1

noise 6 285.9 3.3 230.1 3.6

Table 4.1: Time mean of the global mean temperatures at the surface, Ts, and

at 300 hPa, T300, both in Kelvin. ΔTs and ΔT300 represent their differences

between the 2×CO2 and 1×CO2 experiments in Kelvin. All numbers are based on

50-year averages.

(15%). The changes in the mean temperature responses are statistically significant

in all tropospheric levels except for the experiments noise2x 3 - noise1x 3 in the

vertical range of 1000 hPa to 450 hPa.

The climate sensitivity at the surface, as defined by the change of the equilib-

rium surface temperature due to the doubled CO2 concentration, is 3.8K in the

control integrations (Table 4.1). This value increases to 4.1 K (4.3 K) if the hori-

zontal diffusion is reduced by a factor of two (three). The response of the mean

surface temperature in the noise-experiments with moderate noise intensity does

not change significantly, but it decreases to 3.3K in the experiments with high

noise intensity.

The surface climate sensitivity varies in the experiments with enhanced small-

scale fluctuations by up to 13%. This change of the surface climate sensitivity is

not as large as, e.g., changes of the surface climate sensitivity caused by different

cloud parameterisations (Soden and Held (2006), Webb et al. (2006)). Soden and

Held (2006) reported that inter-model differences in cloud feedbacks provide the

largest source of uncertainty in the predictions of the climate sensitivity. They

analysed the climate feedbacks in 14 different coupled ocean-atmosphere models

forced by the A1B emission scenario of the IPCC1. The standard deviation of

the cloud feedback in this multi-model ensemble is 0.37 (W/m2)/K. Assuming

that the multi-model mean effective feedback λ of 1.27 (W/m2)/K were enhanced

(weakened) by 0.37 (W/m2)/K due to different cloud feedbacks, the mean surface

temperature response ΔTs = ΔQ/λ would increase (decrease) by 40% (23%).

For this estimation we used the radiative forcing ΔQ=4.3 W/m2 as given in the

1Intergovernmental Panel on Climate Change, IPCC (2007)
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4 Impact of small-scale fluctuations on the climate sensitivity

mentioned paper.

4.3 Thermodynamical feedback processes

Although we have increased the CO2 concentration in all experiments by the

same amount, the experiments show different temperature responses. Hence the

enhanced small-scale fluctuations must have changed the sensitivity of the system

to increased CO2 concentration. Several nonlinear thermodynamical feedback

processes influence the climate sensitivity. In this section we want to analyse how

these thermodynamical feedback processes, such as those related to the planetary

albedo, clouds and water vapour, are altered by the different representations of

small-scale fluctuations.

Albedo

To get an impression of how the radiation balances are changed in the different

experiments we use a simple global energy balance model (EBM)2:

SWTOA
down (1 − αp) = εσT 4

s (4.1)

where SWTOA
down=341.29 W/m2 denotes the globally averaged incident shortwave

radiation at the top of the atmosphere (TOA). αp is the planetary albedo, ε

the effective planetary emissivity, σ = 5.67051×10−8 W/(m2K4) is the Stephan-

Boltzmann constant and Ts represents the globally averaged surface temperature.

Equation (4.1) describes the balance between the net incoming shortwave radiation

and the outgoing longwave radiation at the top of the atmosphere for an earth

system in radiative equilibrium.

The planetary albedo αp is a measure of the amount of shortwave radiation

reflected from the earth system. It is defined as the ratio between the globally av-

eraged outgoing shortwave radiation (SWTOA
up ) and the globally averaged incident

shortwave radiation at the top of the atmosphere: αp = SWTOA
up /SWTOA

down . Later

we will also refer to the surface albedo: αs = SWBOA
up /SWBOA

down , where SWBOA
up

denotes the globally averaged amount of shortwave radiation reflected from the

earth’s surface and SWBOA
down is the incoming globally averaged shortwave radiation

reaching the earth’s surface. (Note that αp and αs are not defined as the average

of albedos computed for each grid box separately. Rather they are computed as

the ratios of the already globally averaged radiation fluxes.) In contrast to αp,

2For a review of EBMs see North et al. (1981).
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4.3 Thermodynamical feedback processes

1x 2x – 1x 1x 2x – 1x 1x 2x – 1x

αp Δαp αs Δαs ε Δε

ctrl 0.3166 -0.0095 0.1400 -0.0110 0.5979 -0.0227

diffus 24 0.3161 -0.0103 0.1392 -0.0113 0.5966 -0.0242

diffus 36 0.3163 -0.0113 0.1392 -0.0116 0.5956 -0.0249

noise 3 0.3305 -0.0104 0.1396 -0.0123 0.5865 -0.0221

noise 6 0.3801 -0.0065 0.1514 -0.0149 0.5584 -0.0194

Table 4.2: Planetary albedo αp, surface albedo αs, and effective planetary emis-

sivity ε obtained from the 1×CO2-experiments denoted by ’1x’. Their differences

between the 2×CO2 and 1×CO2 experiments are shown in the columns named

’2x – 1x’. All numbers are based on 50-year averages.

αs excludes all reflective processes occurring in the atmosphere (e.g., reflectance

of shortwave radiation by clouds). Since SWTOA
up , SWBOA

up , and SWBOA
down can be

diagnosed from the ECHAM5-model output, we are able to compute αp and αs

for each experiment. Given αp and Ts we can estimate the effective planetary

emissivity ε by using the EBM (4.1). The parameter ε can principally range from

0 to 1. It accounts for the reduction of outgoing longwave radiation mainly due

to greenhouse gases and clouds.

While the planetary albedo of the experiments with 1×CO2 concentration and

reduced horizontal diffusion (diffus1x 24 and diffus1x 36) changed only lit-

tle compared to ctrl1x, αp considerably increases in noise1x 3 and noise1x 6

(Table 4.2). Thus, in the noise-experiments more shortwave radiation is reflected

by the earth system leading to a cooling. Because αs remains almost unaffected

in noise1x 3, different cloud patterns must be the reason for the high planetary

albedo in this experiment (see also Section 3.2.3). In noise1x 6 an increased sur-

face albedo (i.e., more sea ice and snow) as well as different cloud patterns are

responsible for the higher planetary albedo.

Doubling the CO2 concentration leads to a decrease of αp by -0.0095 in the

control experiments. Compared to the control experiments this decrease of αp is

larger in diffus 36 by 0.0018. Using the rearranged equation (4.1),

Ts = 4

√
(SWTOA

down (1 − αp))/(εσ) (4.2)

we estimate the temperature difference ΔT , which would occur, if αp decreased

in the control experiments as much as in diffus 36.

ΔT = Ts(α
ctrl1x
p + Δαdiffus 36

p , εctrl2x) − Ts(α
ctrl2x
p , εctrl2x) = 0.2K (4.3)
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4 Impact of small-scale fluctuations on the climate sensitivity

1x 2x – 1x 1x 2x – 1x 1x 2x – 1x 1x 2x – 1x

CRF ΔCRF CRFSW ΔCRFSW CRFLW ΔCRFLW qv Δqv

ctrl -23.6 -0.72 -52.2 -0.31 28.6 -0.41 25.7 8.4

diffus 24 -23.5 -0.50 -52.2 -0.13 28.7 -0.37 26.4 9.1

diffus 36 -23.5 -0.24 -52.3 +0.13 28.8 -0.37 26.7 9.6

noise 3 -27.4 -0.46 -57.5 +0.12 30.1 -0.58 25.8 7.7

noise 6 -37.5 -1.57 -73.5 -1.14 36.0 -0.43 24.3 6.1

Table 4.3: Globally averaged net cloud radiative forcing at the top of the atmo-

sphere, CRF, and its shortwave CRFSW and longwave CRFLW part in W/m2, as

well as the globally averaged vertically integrated water vapour content qv in kg/m2

for the 1×CO2 experiments. ΔCRF, ΔCRFSW, ΔCRFLW, and Δqv represent the

differences between the 2×CO2 and 1×CO2 experiments also in W/m2 or kg/m2.

All numbers are based on 50-year averages.

In (4.3) Δαdiffus 36
p denotes the change in αp due to a doubled CO2 concentration

in the experiments diffus 36. The above estimate shows that the small differ-

ence of 0.0018 between Δαctrl
p and Δαdiffus 36

p explains an increase of the surface

temperature response by 0.2 K. This increase corresponds to 40% of the observed

difference of 0.5K between the responses of ctrl and diffus 36. The stronger

surface temperature responses in the experiments with reduced horizontal diffu-

sion can thus be partly explained by changes in the planetary albedo responses

Δαp. Similar considerations show that the smaller Δαp in noise 6 accounts for

0.3 K (60%) of the differences found in the surface temperature responses between

ctrl and noise 6.

The remaining differences are due to altered longwave radiation processes in-

volving water vapour and clouds. These changes of the longwave radiation budget

are expressed by the different Δε.

Clouds

The changes in fractional cloud cover caused by doubling the CO2 concentration

are shown in Figure 4.2. The patterns of the cloud cover changes due to CO2 dou-

bling are approximately the same for the different experiments. We find increased

fractional cloud cover at high altitudes near the tropopause and mostly reduced

fractional cloud cover in the lower troposphere, indicating an upward shift of the

clouds. These results are similar to the multi-model mean changes presented in

Meehl et al. (2007). The cloud cover changes due to CO2 doubling are in the
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4.3 Thermodynamical feedback processes

a) b)

c) d)

Figure 4.2: Pressure-latitude cross-section of the response to doubled CO2 con-

centration of the zonally averaged fractional cloud cover for a) ctrl2x-ctrl1x, b)

diffus2x 36-diffus1x 36, c) noise2x 3-noise1x 3 d) noise2x 6-noise1x 6.

The results are based on 50-year averages.
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4 Impact of small-scale fluctuations on the climate sensitivity

noise-experiments not as strong as in the control- and diffusion-experiments.

Because of the complicated cloud structures, it is difficult to draw conclusions on

how the clouds affect the temperature response, from Figure 4.2 alone. The best

way to quantify the effect of the clouds on the temperature response would be to

estimate the radiative perturbation caused by the changed clouds ΔC (Wetherald

and Manabe, 1988):

δCR = R(T 1x, C1x + ΔC, w1x, α1x
s ) − R(T 1x, C1x, w1x, α1x

s ) (4.4)

where R is the globally averaged net radiation flux at the top of the atmosphere.

T 1x,C1x,w1x, and α1x
s represent temperature, clouds, water vapour and surface

albedo of the 1×CO2-experiment, respectively. The computation of δCR involves

offline radiation calculations in which we take all input data from the 1×CO2-

experiment except of the clouds, which are taken from the corresponding 2×CO2-

experiment. Unfortunately, the radiative transfer component of ECHAM5 could

not be used in an offline mode without considerable extra effort.

To still get an idea of the effect of clouds on the temperature response we look

at the cloud radiative forcing (CRF) at the top of the atmosphere. The CRF is

defined as the difference between the radiation budget with clouds and without

clouds in a certain experiment. In contrast to δCR, CRF depends not only on

the clouds but also on non-cloud feedbacks (Soden et al., 2004). The CRF in

an atmosphere with, for example, high water vapour content is different than

the CRF induced by the same clouds in an atmosphere with lower water vapour

content.

Table 4.3 gives the CRF and its difference due to a CO2 doubling. In the 1×CO2

concentration control experiment the clouds exert globally averaged a net cooling

effect of -23.6 W/m2 on the climate. As discussed above, if the CO2 concentra-

tion is doubled, the fractional cloud cover changes considerably throughout the

troposphere (Figure 4.2a). Due to the altered clouds (and possibly also non-cloud

feedbacks) the net cooling effect amplifies by -0.72 W/m2. Hence the larger neg-

ative CRF in ctrl2x acts against the global warming caused by the higher CO2

concentration.

The negative change of CRF, ΔCRF, observed in the experiments diffus 24,

diffus 36 and noise 3 is not as strong as in the control experiments. Thus

ΔCRF does not weaken the global warming as much as in ctrl. In the ex-

periment noise2x 6, however, the cooling effect opposing the global warming is

strengthened.

To distinguish between the shortwave and the longwave effect of the clouds

onto the radiation budget, we split the net CRF into the shortwave CRF and the
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4.3 Thermodynamical feedback processes

longwave CRF. The shortwave CRF is always negative, since shortwave radiation

is mainly reflected back to space by the clouds. In the experiment ctrl2x more

shortwave radiation is globally reflected by the clouds than in ctrl1x. This effect

is weakened and even reversed in the experiments with reduced horizontal diffusion

or with moderate noise intensities. In the experiment noise2x 6 the cooling effect

by shortwave CRF is intensified.

The longwave CRF is always positive. It describes the absorption and emis-

sion of longwave radiation by the clouds similar to the warming effect caused by

the greenhouse gases. The change of the longwave CRF caused by doubled CO2

concentration in ctrl2x–ctrl1x is negative, resulting in a reduction of the cli-

mate sensitivity. Depending on the way of enhancing the small-scale fluctuations

this change of the longwave CRF is decreased or increased. In the diffusion-

experiments the cooling is decreased, which leads to a warming effect compared

to the control experiment. In the noise-experiments the cooling effect is increased.

To summarise, in the experiments with reduced horizontal diffusion the changes

of the shortwave and longwave CRF both foster a larger temperature response.

In the noise-experiments noise 3, however, the changes of the shortwave and

longwave CRF take opposite effects, with the shortwave CRF dominating. Hence,

if we were considering only the CRF, the experiments noise 3 would show a larger

temperature response. In contrast, the change of the net CRF in the experiments

noise 6 is in line with the weaker climate sensitivity found in Section 4.2.

Water vapour

The mean amount of water vapour in the atmosphere closely depends on the

atmospheric temperature. The warmer the air, the more water vapour can be

held by the atmosphere. Furthermore, water vapour is an effective greenhouse

gas. The combination of these two properties leads to a positive feedback process.

If the atmosphere warms due to increased CO2 concentration, the water vapour

content will rise; because of its greenhouse-gas-property a higher water vapour

concentration leads to a further warming of the atmosphere. This feedback process

is also partly responsible for the different climate sensitivities found in Section

4.2. When the CO2 concentration is doubled, the globally averaged vertically

integrated water vapour content in the control experiments increases by 8.4 kg/m2

(last column in Table 4.3). In the experiments with reduced horizontal diffusion

this value is higher, indicating a stronger feedback, whereas in the experiments

with noise it is smaller, implying a weaker feedback.
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4.4 Discussion

In this chapter we showed that enhancing the small-scale fluctuations changes the

temperature response to a CO2 doubling. The sign of the change depends on

the method used to enhance the small-scale fluctuations. Reducing the horizontal

diffusion leads to a strengthening of the temperature response. Adding noise to

the small scales tends to weaken the temperature response.

Differences of the two approaches

At first sight it is surprising that the climate sensitivity increases when using

a reduced horizontal diffusion but it decreases when adding noise to the small-

scale components. Both methods enhance the small-scale variability and should

therefore have a similar effect on the climate. However, a closer look at the two

methods reveals that they change the small-scale spectral coefficients in very dif-

ferent ways. The reduced horizontal diffusion results in less damping of small-scale

eddies. Therefore, small-scale eddies are stronger and can interact more effectively

with large-scale processes. These intensified small-scale eddies are correlated in

time and across wavenumbers, and they are consistent with the governing equa-

tions of the model. In contrast, adding white noise to the small-scale components

artificially perturbs the model, and the resulting fluctuations are uncorrelated in

time and spectral space.

Direct and indirect effects on climate sensitivity

In Section 4.3 we showed how the changes in albedo, clouds and water vapour con-

tent affect the temperature response to doubled CO2 concentration. Compared to

the control experiments we find in the experiments with reduced horizontal diffu-

sion larger decreases of the planetary albedos, smaller reductions of the longwave

CRFs and more intense positive water vapour feedbacks. All these effects lead

to a stronger global warming. In the experiments noise 3 the larger decrease of

the planetary albedo works against a larger reduction of the longwave CRF and a

weaker water vapour feedback, resulting in almost no change of the temperature

response at the surface. In the experiments with high noise intensity, noise 6,

we find a smaller decrease of the planetary albedo and a larger reduction of the

longwave CRF as well as a weaker water vapour feedback, leading all to a weaker

temperature response.

The only differences in our response experiments are the representations of

the small-scale processes. There are basically two ways how the enhanced small-
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scale fluctuations can influence the thermodynamical feedback processes described

above. First, the thermodynamical feedbacks are directly influenced by the repre-

sentation of the dynamical small-scale processes. Second, the enhanced small-scale

fluctuations change the mean state of the model and owing to the new climate the

thermodynamical processes are altered.

To check how important the indirect influence via the altered mean state is,

we could perform additional response experiments. In these new experiments

all 1×CO2-experiments are tuned, by varying certain model parameters, to have

the same climate (e.g., the same global mean surface temperature and similar

clouds). In this conceived experiments we would, however, face the problem of

distinguishing between the effects of the enhanced small-scale fluctuations and

the influence of the varied model parameters on the climate sensitivity. The

disentanglement of these different effects would be very difficult.

In general, it is hard to distinguish between the direct and indirect effects of

enhanced small-scale fluctuations on the climate sensitivity. We cannot make a

definite statement about the mechanisms altering the thermodynamical feedback

processes. Nevertheless, since the mean climate states of the noise experiments

are much more altered than the mean states of the diffusion experiments (Chapter

3), the noise experiments might be affected more by indirect effects than the runs

with reduced horizontal diffusion.

Horizontal diffusion

Our results suggest that a reduction of the horizontal diffusion leads to a higher cli-

mate sensitivity. The question arising is, how well established is the strength and

structure of the horizontal diffusion. Several studies (e.g., Leith (1971), Koshyk

and Boer (1995), Kaas et al. (1999), Frederiksen and Kepert (2006)) sought to

improve the parameterisation of the nonlinear interactions between subgrid scales

and resolved scales. Besides confirming the idea of damping high wavenumbers

stronger than lower wavenumbers, they found also a ’negative damping’ at inter-

mediate wavenumbers. This suggests that certain scales are enhanced instead of

damped through the scale-interactions with subgrid scales. The damping strength

of the horizontal diffusion in climate models is generally tuned to ensure a kinetic

energy spectrum close to observations. But, as mentioned by Stephenson (1995),

why should the kinetic energy spectrum of a discrete and truncated model (espe-

cially near the truncation scale) look like the spectrum of a continuous system?

Enhanced small-scale energy might even be necessary to simulate the large-scale

circulation and future climate changes correctly.
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Given the uncertainty of the form and strength of the horizontal diffusion in

climate models, our results suggest that the modelled climate sensitivity to CO2

forcing does not only depend on parameterisations related to thermodynamical

feedback processes but also on the parameterisation of nonlinear interactions be-

tween dynamical subgrid-scale processes and resolved scales.
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5 Stochastic model for the global

mean temperature at 300 hPa

5.1 Introduction

In the previous chapter we found that enhanced small-scale fluctuations influence

the temperature response to a CO2-doubling. To assess whether the influence of

enhanced small-scale fluctuations on the temperature response can be explained

via the fluctuation dissipation theorem (as mentioned in the introduction (Chapter

1)), we will in this chapter fit a stochastic model to the ECHAM5/MPI-OM data.

The stochastic model should reproduce basic statistical properties of the global

mean temperature at the pressure level 300 hPa. We choose the temperature at

300 hPa, because at this level the largest response to CO2 forcing occurs (Figure

4.1).

Stochastic modelling means that certain parts of the system are approximated

by a stochastic process. The state of the climate system at a certain time can

be represented by a state vector 	x = (x1, x2, ..., xN) consisting of a finite set of

variables. The variables x1, x2, ..., xN are, e.g., temperature, wind vectors and

humidity at every grid point. In a spectral representation the variables are the

spectral coefficients. The time evolution of, e.g., x1 is generally given by:

ẋ1 = f(	x), (5.1)

where ẋ1 denotes the time derivative of x1. f(	x) denotes a generally nonlinear

function depending on the state vector. Assuming that x1 acts on a much longer

time scale than the other variables 	xfast ≡ (x2, ..., xN ) we can approximate the

interactions between 	xfast and x1 as noise.

ẋ1 = g(x1) + h(x1, 	xfast) (5.2)

= g(x1) + noise (5.3)

The construction of the second equation above is based on the idea that on time

scales relevant for x1, 	xfast fluctuate so rapidly that the variables are from one

time step to the next not correlated anymore.
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If the system includes besides x1 also other variables 	xslow acting on similar

long time scales as x1 equation (5.2) can be written as:

ẋ1 = g(x1) + h1(x1, 	xslow)︸ ︷︷ ︸
g′(x1)

+h2(x1, 	xfast) (5.4)

= g′(x1) + noise (5.5)

In the above case g′(x1) parameterises the overall effect of the interactions between

x1 and 	xslow.

In this study we are mainly interested in the behaviour of the global mean

temperature at 300 hPa. The time evolution of this large-scale variable is, however,

a result of complex dynamical and thermodynamical interactions with many other

components of the climate system. By using a stochastic model we parameterise

small-scale processes as stochastic forcing. Hence we are able to describe the main

characteristics of the global mean temperature in a very simple way.

Using stochastic models to describe basic characteristics of physical systems

has a long tradition. A prominent example in climate sciences is the stochastic

climate model introduced by Hasselmann (1976). Hasselmann’s model divides

the complex earth system into two parts. The slowly responding climate system

(represented, e.g., by the sea surface temperature) is acting as an integrator of

the rapidly varying atmospheric weather system, which is modelled as stochastic

forcing. Since Hasselmann’s paper stochastic models have been used in many

other research projects to model atmospheric and oceanic processes. The aim

of most studies is to reduce a complex system with many degrees of freedom to

simpler stochastic models, which are still able to reproduce the main features of

the original system (e.g., Penland and Matrosova (1998), Branstator and Haupt

(1998), Vallis et al. (2004)). Several studies used stochastic models based on

Hasselmann’s to investigate the interplay of ocean and atmosphere in the mid-

latitudes (e.g., Barsugli and Battisti (1998)). Those studies mainly focus on the

potential predictability of climate variations on seasonal and longer time scales in

the mid-latitudes. Stochastic models are also used to explain the El Niño-Southern

Oscillation (ENSO) variability (Penland and Sardeshmukh, 1995).

Most of the above-mentioned studies are based on simple linear stochastic mod-

els. More recently published results suggest that nonlinear stochastic models

might be better suited for certain applications. Berner (2005) used a nonlinear

stochastic model to investigate the importance of the nonlinearities in the model

parameters when explaining the behaviour of large-scale planetary waves. She

concludes that the nonlinearities play an important role. Sura (2003) showed
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that the variability of mid-latitude winds can be well described by a univariate

stochastic model with a nearly linear deterministic damping term but a state-

dependent white noise term. In the tropics, however, it was not possible to fit

such a stochastic model to the wind data. As a reason Sura (2003) argued that

tropical variability might be non-Markovian.1 A univariate stochastic model is not

able to describe the long-term variability resulting from the interactions between

the atmosphere and the tropical ocean.

Using a similar approach as Sura (2003) and Berner (2005) we want to model

the global mean temperature at 300 hPa. Because the tropical ocean covers a

large part of the earth’s surface, the global mean temperature is largely influ-

enced by it. Hence before fitting the stochastic model to our data we will filter

out the long-term variability caused by the interactions of the atmosphere with

the ocean. We primarily filter out the El-Niño-Southern Oscillation. Later we

want to use the stochastic model to analyse the differences in the climate sen-

sitivities of our experiments with and without enhanced small-scale fluctuations

(Chapter 6). Therefore filtering out the long-term variability is only suitable for

our application, if we assume that the short-term feedback processes (e.g., black-

body feedback, cloud feedbacks) are primarily responsible for the amplitude of the

climate sensitivity.

In the next section the stochastic model and the fitting method are described.

In Section 5.3 we investigate how well the model reproduces the main statistics.

A discussion follows in Section 5.4.

5.2 The stochastic model

5.2.1 Nonlinear Langevin equation

As a stochastic model for the global mean temperature at 300 hPa, x, we use a

nonlinear Langevin equation:

ẋs(t) = h(xs) + g(xs)η(t) [S]. (5.6)

In this equation xs represents the global mean temperature at 300 hPa from which

the mean daily and annual cycles are removed and the long-term variability as-

sociated with the interactions between the ocean and the atmosphere are filtered

out. The filtering-procedure is described in Appendix A. ẋs denotes the time

1A system is called to be non-Markovian if the future state of the system depends not only on
the present state but also on other previous states.
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5 Stochastic model for the global temperature at 300 hPa

derivative of xs; t denotes time; η(t) represents white noise. White noise is a

rapidly fluctuating Gaussian random variable with zero mean and δ-correlation

function.2 h(xs) and g(xs) are deterministic functions which need to be estimated.

The meaning of [S] will be explained in the next section.

Equation (5.6) models the time evolution of xs in a compact way. The first term

on the right hand side represents the overall effect of the interactions between xs

and variables on similar time scales. The stochastic forcing, g(xs)η(t), comprises

mainly the interactions of the small-scale processes with the large-scale variable

xs.

5.2.2 Method: Fitting the stochastic model

To determine h(xs) and g(xs) of (5.6) we follow the approach of Siegert et al.

(1998). Equation (5.6) is a stochastic differential equation, i.e., a differential

equation including a stochastic process. Hence the solution of (5.6) contains a

random term. Since for each integration of (5.6) different random numbers are

used, each integration represents a different trajectory in phase space. After ob-

serving a large number of trajectories we can assign each point xs in phase space a

probability dw = ρ(xs)dxs that the infinitesimal interval (xs, xs +dxs) will be vis-

ited by the next trajectory. In this way a probability density function ρ(xs) can be

defined for each time step. The time evolution of the probability density function

of a Langevin equation is generally governed by a Fokker-Planck equation:

∂ρ(xs, t)

∂t
=

∂

∂xs
[A(xs)ρ(xs, t)] +

∂2

∂x2
s

[B(xs)ρ(xs, t)] (5.7)

in which A(xs) is called the drift coefficient and B(xs) is called diffusion coef-

ficient. (For a comprehensive introduction to statistical physics and the Fokker-

Planck equation see, e.g., Gardiner (1985) and Risken (1984).)

The coefficients A(xs) and B(xs) can directly be estimated from data. The drift

coefficient is equal to the local mean tendencies

A(xs) = lim
τ→0

1

τ
〈xs(t + τ) − xs(t)〉

∣∣∣∣
xs(t)=xs

, (5.8)

and the diffusion coefficient is defined as

B(xs) = lim
τ→0

1

2τ

〈
(xs(t + τ) − xs(t))

2
〉∣∣∣∣

xs(t)=xs

. (5.9)

2δ-correlated means that any η(t) and η(t′) are uncorrelated except for t = t′. It also implies
that η(t) has infinite variance. In practise we will always deal with discrete random num-
bers, which have a finite variance. The concept of white noise is an idealised mathematical
formulation of continuous uncorrelated random fluctuations.
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5.2 The stochastic model

〈...〉|xs(t)=xs denote conditional ensemble averages. Our climate experiments are

assumed to be stationary and ergodic. Therefore the ensemble averages can be

replaced by time averages.

By knowing the Fokker-Planck equation, we can in the univariate case deduce

the explicit form of the corresponding Langevin equation. In the Stratonovich3

system A(xs) and B(xs) are related to h(xs) and g(xs) in the following way

(Risken, 1984)

A(xs) = h(xs) + g(xs)
∂g(xs)

∂xs
,

B(xs) =
1

2
(g(xs))

2 . (5.10)

In the Itô system, however,

A(xs) = h(xs)

B(xs) =
1

2
(g(xs))

2 (5.11)

is true. The question arises which of these two definitions should we use for our

system. Should the integral of the stochastic term in (5.6) be interpreted in the

Stratonovich sense or in the Itô sense?

The issue of Stratonovich or Itô calculus is closely related to the definition of

continuous white noise. While the Stratonovich definition implies a small but

finite correlation between two random numbers, the Itô definition sticks to the

strict mathematical definition that white noise is totally uncorrelated. For a com-

prehensive definition see Gardiner (1985). Stratonovich calculus should generally

be used for systems continuous in time, in which rapid fluctuations with small but

finite correlations times are treated as white noise (Penland, 2003). Itô calculus

is best suited for discrete systems.

According to the above argumentation our system has to be interpreted in the

Stratonovich sense. We want to model the time evolution of the continuous quan-

tity temperature. The white noise term represents the stochastic forcing of the

rapidly fluctuating small-scale processes (which have small but finite correlation

times) onto the global mean temperature. The [S] in (5.6) symbolises that this is

a Stratonovich stochastic differential equation (SDE). In the following an [I] will

mark an Itô SDE.

3For a short description of the terms: ’Stratonovich’ and ’Itô’ see next paragraph. A detailed
discussion on the differences between Stratonovich and Itô is given in the cited literature
(Gardiner, 1985; Risken, 1984).
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5 Stochastic model for the global temperature at 300 hPa

All Stratonovich SDEs can easily be transformed into Itô SDEs and vice versa.

In the Itô system (5.6) can be written as (Gardiner, 1985)

ẋs(t) = h(xs) + g(xs)
∂g(xs)

∂xs
+ g(xs)η(t) [I]. (5.12)

Equations (5.6) and (5.12) yield the same results, if (5.6) is integrated in the

Stratonovich sense and (5.12) is integrated in the Itô sense.

Inserting the definitions (5.10) into the above equation (5.12) yields

ẋs(t) = A(xs) +
√

2B(xs)η(t) [I]. (5.13)

Note that if we had defined our system to be an Itô system, we would use (5.11)

with (5.6) marked with [I]. The resulting equation is the same. No matter whether

we choose the Stratonovich or the Itô system we always end up with the Itô SDE

(5.13). The main difference lies in the interpretation. If we state that our system

is a Stratonovich system, A(xs) is not only determined by the deterministic drift

term h(xs) but also by the noise-induced drift g(xs)
∂g(xs)

∂xs
. The noise-induced drift

results from the fact that during a change of η(t) also xs(t) changes, and therefore

〈g(xs)η(t)〉 is no longer zero (Risken, 1984). Empirically it is not possible to

separate the deterministic drift and the noise-induced drift when estimating A(xs)

from data. In contrast, if the explicit form of the Langevin equation were given and

we wanted to derive A(xs) and B(xs) of the corresponding Fokker-Planck equation,

it would be important to know whether to use Stratonovich (i.e., relations (5.10))

or Itô (i.e., relations (5.11)) calculus.

The method of fitting the stochastic model to the ECHAM5/MPI-OM data can

be summarised as follows

1. Determine xs by subtracting the mean daily and annual cycle and filtering

out the long-term variability from x

2. Estimate A(xs) and B(xs) by using their definitions (5.8) and (5.9).

3. Insert A(xs) and B(xs) into (5.13)

4. New time series can be generated by integrating (5.13)

5.2.3 Time scale τ

In practice, it is not very straightforward to carry out point 2 of the list above. As

can be seen from (5.8) and (5.9) the definitions of the drift and diffusion coefficients
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5.2 The stochastic model

involve the limes of the time lag τ → 0. When using discrete model output it is

not possible to do τ → 0. We must estimate the drift and diffusion coefficient

from:

A(xs) =
1

τ
〈xs(t + τ) − xs(t)〉

∣∣∣∣
xs(t)=xs

(5.14)

B(xs) =
1

2τ

〈
(xs(t + τ) − xs(t))

2
〉∣∣∣∣

xs(t)=xs

(5.15)

By using a finite time lag we will introduce a systematic finite-difference error.

The question arises which time lag τ we should actually take for the estimation

of the drift and diffusion coefficient. When fitting a stochastic model to a system

that is by nature continuous, it is not necessarily the best strategy to use the

smallest available time step. By using a stochastic model we assume that we can

treat rapid fluctuations with small correlation times, such as small-scale processes,

as white noise. To be able to do this approximation we should estimate the

parameters for the Fokker-Planck equation not from the smallest available time

step (Berner, 2005). In every deterministic system adjacent time steps are highly

correlated. We must take care that the time step is sufficient large in the way that

the assumption of δ-correlated small-scale fluctuations can be fulfilled.

One way to estimate the appropriate time step is to look at the behaviour of

the decorrelation rate at different time lags (DelSole (2000), Berner (2005)). The

decorrelation rate α is defined as

α(τ) = −1

τ
ln c(τ) (5.16)

in which c(τ) denotes the autocorrelation function at time lag τ . A simple Markov

model following the linear Langevin equation

ż1(t) = −α0z1(t) + β0η(t) (5.17)

with α0 and β0 being constant, has for example the decorrelation rate α(τ) = α0.

In this model the decorrelation rate α0 is independent of the time lag τ . DelSole

(2000) investigated a “red noise model” in which the white noise term η(t) is

replaced by random fluctuations rγ(t) with a small but finite decorrelation time

τγ : ż2(t) = −α0z2(t) + β0rγ(t). In this model the decorrelation rate increases

linearly with time lags τ < τγ and asymptotes to α0 for τ > τα0 ≡ 1/α0. For

our results this means, as long as the decorrelation rate increases linearly with

time lag we cannot assume that the deterministic small-scale fluctuations can be

approximated as white noise because they are not yet decorrelated.
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Figure 5.1: Decorrelation rate of xs from the control integration with 1×CO2

concentration
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Figure 5.2: Sample time series of xs from ctrl1x, black: values are displayed

for each time step (40 minutes), red: values are taken with a time step of 5 days
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Figure 5.3: Estimated coefficients of the Fokker-Planck equation for model data

xs obtained from the control integration with 1×CO2 concentration (coloured solid

lines). Different curves correspond to different time lags τ . For the evaluation we

used one chunk of data including 100 years. The grey dashed line represents the

number of data points per interval. a) drift coefficient A(xs) b) diffusion coefficient

B(xs), same colour scale as in a)

In Figure 5.1 the decorrelation rate of ctrl1x against the time lag is shown.

For small time lags the decorrelation rate increases nearly linearly. After reaching

a maximum at 5-6 days α slowly decreases again. Because of the above consider-

ations the time lag at which the maximum occurs is chosen as the shortest time

step for which the stochastic model can be fitted. A time step of 5 days is large

enough to eliminate strong correlations between adjacent time steps and is small

enough to still capture the main excursions contributing to the variance of the

time series (Figure 5.2).

5.3 Results

5.3.1 A(xs) and B(xs)

Although we have decided to use τ = 5 days as the appropriate time lag for the

estimation of the drift and diffusion coefficients, A(xs) and B(xs), we will in the

following still have a look at the results with other time lags. In this way we get

a feeling for the dependency of the results on the time lag.

We estimate the drift and diffusion coefficient by dividing the phase space into

20 equidistant intervals. The main results described below do not change when we
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Figure 5.4: Estimated coefficients of the Fokker-Planck equation for model data

xs obtained from the control integration with 1×CO2 concentration. Different

curves correspond to different temperature values. a) drift coefficient A(xs) b)

diffusion coefficient B(xs)
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Figure 5.5: Illustration of the finite-difference error, black: original estimates

using Eq.(5.14) and Eq.(5.15) with standard error bars (stddev/
√

N), red: cor-

rected coefficients using centred differences, blue: polynomial fit, magenta: cor-

rected polynomial fit, a) drift coefficient A(xs) b) diffusion coefficient B(xs)
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use 25, 30 or 35 intervals. Figure 5.3 shows the estimated coefficients A(xs) and

B(xs) of the Fokker-Planck equation for different time lags τ of the experiment

ctrl1x. As a first approximation the drift coefficient can be characterised by a

straight line. Its slope depends on the time lag τ . With increasing time lag the

slope steepens. This steepening abates for larger time lags approaching τ = 5 days.

The diffusion coefficient is by definition everywhere positive. In general, a con-

stant diffusion coefficient would correspond to additive noise in the Langevin equa-

tion. Figure 5.3 b) clearly shows that B(xs) is not constant especially for large

time lags. That means that large temperature anomalies are on average accom-

panied by high noise intensities. Similar to the drift coefficient the change of the

diffusion coefficient abates with increasing time lags.

Figure 5.4 shows the drift and diffusion coefficients as functions of time lags.

Now different lines correspond to different temperature values, which represent

certain points on the x-axis of Figure 5.3. Both A(xs) and B(xs) experience

strong changes for small time lags. However, at a time lag of 5 days the curves

reach extrema and then start to decay very slowly towards zero.

As mentioned in Section 5.2.3, estimating the drift and diffusion coefficient from

finite time lags leads to systematic finite-difference errors, since (5.8) and (5.9)

are only valid for the limes τ → 0. The error made can be estimated up to first

order (Sura and Barsugli, 2002), and following Berner (2003) we can correct the

drift and diffusion coefficient:

Anew = A − 1

2

(
A

dA

dxs
+ B

d2A

dx2
s

)
τ (5.18)

Bnew = B − 1

2

(
A2 + 2B

dA

dxs
+ A

dB

dxs
+ B

d2B

dx2
s

)
τ (5.19)

When we correct A(xs) and B(xs) for the finite-difference error, we derive new

drift and diffusion coefficients describing a continuous stochastic process, which

has the same or similar statistical properties at time lags τ ≥ 5 d as our system

at time lags τ ≥ 5 d.

Because the estimation of the finite-difference error involves the first and second

derivatives it is difficult to compute the finite-difference error without introduc-

ing new errors. One way is to fit a polynomial function to the data. However,

this proves to be difficult if the data show small nonlinear features. The second

approach is to compute the derivatives numerically (e.g., by using centred differ-

ences). This method leads to a loss of data at the boundaries and can introduce

numerical errors larger than the error that we wanted the data to correct for.

59



5 Stochastic model for the global temperature at 300 hPa

230 231 232 233 234 235 236 237 238 239 240 241
0

0.5

1

1.5

2

2.5

temperature [K]

pr
ob

ab
ili

ty
 d

en
si

ty

 

 

ctrl1x
ctrl2x
noise1x_3
noise2x_3
diffus1x_36
diffus2x_36

Figure 5.6: Probability density functions of six different ECHAM5/MPI-OM

experiments (black, blue and red lines with closed and open circles) and the corre-

sponding probability density functions of the stochastic models with τ = 5 d (brown

lines without circles)

Figure 5.5 gives an impression of how big the finite-difference errors are. Al-

though the time lag that we use to estimate A(xs) and B(xs) is quite large,

the error made in the drift coefficient is small. For the diffusion coefficient we

find larger errors. B(xs) is systematically underestimated for small and median

temperature anomalies. Since the estimation of the error itself introduces new

uncertainties and the finite-errors made are not very large, in the further analysis

we will use uncorrected estimates of A(xs) and B(xs).

5.3.2 Statistical properties of the fitted stochastic model

To get an impression of how well the nonlinear Langevin equation (5.13) is able to

reproduce main statistical properties, we compare in the following xs, that is the

filtered global mean temperature at 300 hPa obtained from ECHAM5/MPI-OM,

with data generated by integrating the stochastic model (5.13). The stochastic

differential equation is numerically integrated by using the stochastic Euler scheme

(Kloeden, 1992).

In Figure 5.6 the probability density functions (PDFs) of six different experi-

ments and the PDFs of the corresponding stochastic models are shown. In general,

the PDFs are reproduced well by the stochastic models. However, there is a sys-

tematic overestimation of the maximum of the PDF by the stochastic models.
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Figure 5.7: Probability density functions of different stochastic models (coloured

lines) and of xs extracted from ctrl1x (black line). The coloured lines differ in

τ , which is used to evaluate A(xs) and B(xs) from ctrl1x data

Figure 5.7 compares the probability density function of the experiment ctrl1x

with PDFs obtained from data generated by different stochastic models. The

stochastic models differ only in the time lag τ that was used to estimate A(xs)

and B(xs). It can be seen that the agreement of the coloured lines (stochastic

models) with the black line (ECHAM5/MPI-OM data xs) worsens with larger

time lag τ . In general the kurtosis increases, i.e., the tails become heavier (Table

5.1).

The power spectrum of xs and of different stochastic models are displayed in

Figure 5.8. The spectrum for τ = 0.67 h, which matches the smallest available

time lag, does not reproduce the spectrum of xs very well. For τ = 5 d we

observe the best agreement in the range of medium and low frequencies. For high

frequencies the 5 d-curve disagrees considerably from the xs-spectrum. This is

mainly due to the steep slope of the xs-spectrum in that frequency-range. Since

we fitted the stochastic model to time scales larger than 5 days this discrepancy

is not surprising.

The autocorrelation function (Figure 5.9) of the stochastic model fitted to xs

resembles well the autocorrelation function of the filtered ECHAM5/MPI-OM

data xs up to a time lag of τ ≈ 20 days. For larger time lags the ECHAM5/MPI-

OM data xs show still some long-term variability, which cannot be simulated by

the stochastic model. The stochastic model fitted to xs reproduces, however, the

61
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mean variance skewness kurtosis

ECHAM5/MPI-OM (ctrl1x) 232.21 0.14 0.14 3.17

stochastic model (τ = 12 h) 232.21 0.14 0.10 3.18

stochastic model (τ = 2 d) 232.21 0.14 0.11 3.38

stochastic model (τ = 3 d) 232.21 0.14 0.11 3.56

stochastic model (τ = 5 d) 232.21 0.14 0.10 4.16

Table 5.1: Statistical moments of the filtered global mean temperature at 300 hPa

obtained from ctrl1x and of time series generated by different stochastic models.

The stochastic models differ only in the time lag τ used to estimate A(xs) and

B(xs)
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Figure 5.8: Power spectrums obtained from different stochastic models (coloured

lines) and of xs extracted from ctrl1x (black line). The coloured curves differ in

τ which is used to estimate A(xs) and B(x) from ctrl1x data.
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Figure 5.9: a) Autocorrelation functions of the unfiltered ECHAM5/MPI-OM

data x (dashed black) and filtered ECHAM5/MPI-OM data xs (solid black) as

well as the autocorrelation function of the stochastic model fitted to x (dashed red)

and xs (solid red); b) same as a) but with different axes

time evolution of xs much better than a stochastic model which was fitted to the

unfiltered model data x.

5.4 Discussion

In this chapter we introduced and fitted a stochastic model to the global mean

temperature at 300 hPa obtained from ctrl1x. Since a univariate stochastic model

is not able to reproduce the long-term variability induced by the interactions

between the ocean and the atmosphere, we filtered out the long-term variability

beforehand. From Figure 5.9 we saw that filtering out the long-term variability is

necessary in order to obtain a stochastic model with roughly a similar temporal

statistics as the filtered data. Despite the filtering, the autocorrelation function

of xs and of the stochastic model still disagree for larger time lags. To avoid

this problem we could filter out not only the long-term variability related to the

ocean but all variability longer than for example 1 year. Such a rigorous filtering

would change the autocorrelation function both of the stochastic model and of the

filtered data at all time lags. The new autocorrelation functions would decay much

quicker. We would throw away long-term and medium-term processes that are

relevant for the analysis of the system’s response to a change in CO2 concentration.

Despite the limitations of the stochastic model we believe that it is still a useful
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5 Stochastic model for the global temperature at 300 hPa

tool for investigating the impact of small-scale fluctuations on the temperature

response to a CO2 increase (see next chapter).

For the estimation of the model parameters A(xs) and B(xs) we decided to use

not the smallest available time lag. On the basis of the decorrelation rate we chose

the time lag τ = 5 d. This time scale is rather large, but the way in which the drift

and diffusion coefficient depend on τ supports the choice of τ = 5 d. For time lags

smaller than 5 days A(xs) and B(xs) greatly change with increasing τ . For time

lags larger than 5 days the dependency is reversed and much weaker. Furthermore,

the power spectrum of the stochastic model with τ = 5days agrees better with the

spectrum of xs. In contrast, the probability density functions corresponding to

stochastic models with time lags close to 5 days experience systematic mismatches.

One explanation for this discrepancy is the erroneous computation of the drift

and diffusion coefficient due to finite-difference errors. The diffusion coefficient

is systematically underestimated and the magnitude of the drift coefficient is too

small for large temperature anomalies. These uncertainties could be the reason

for too heavy tails of the PDFs, especially since the error grows with increasing

time lag.
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on the large-scale statistics

6.1 Introduction

One approach to finding a connection between the small-scale variability and the

large-scale response of the global mean temperature to increased CO2 concen-

tration can be made via the fluctuation dissipation theorem (FDT). The FDT

originates from statistical physics. Although the climate system does not satisfy

all conditions required for the theorem, Leith (1975) first argued that the FDT

could be used to approximate the climate response to small changes in external

forcings. Since Leith’s paper several studies obtained promising results when test-

ing the FDT in climate-like systems (Bell (1980), North et al. (1993), Cionni et al.

(2004), Langen and Alexeev (2005)). Gritsun and Branstator (2007) introduced

a less restrictive derivation of the FDT than Leith, which is better suited for the

climate system. They also find the FDT to be a useful tool in approximating the

response of a climate model to changed external conditions.

The fluctuation dissipation theorem states that the response of a system to a

changed external forcing can directly be deduced from the statistics of the unper-

turbed system. This is possible because the recovery of the system from an artificial

perturbation is assumed to have about the same temporal behaviour as the re-

covery from a natural fluctuation. Although the climate system is in a stationary

state, it is frequently driven away from its mean state due to internal instabilities.

The way in which the system returns from these excursions back to the mean

state is determined by the overall effect of several feedback processes. The FDT

assumes that these same feedback processes also determine the response of the

system to small artificial impulsively-forced perturbations. Hence from observ-

ing the naturally fluctuating system and with that the stability-altering feedback

processes (i.e., processes that determine how the system in equilibrium reacts to

an impulsively-forced perturbation (Bates, 2007)), we can draw conclusions about

the sensitivity of the system to a constant increment in external forcing.

If in our experiments the enhanced small-scale fluctuations affected the statis-
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tics of the global mean temperature in the unperturbed system, the tempera-

ture response to increased CO2 concentration would also be influenced. In other

words, because the climate response depends on the statistical properties of the

pre-industrial climate, the response would be changed, if the statistical proper-

ties were varied by enhanced small-scale fluctuations. Indeed, a study by von

Storch (2004) indicates that stronger small-scale fluctuations can lead to different

statistics of large-scale variables.

In this chapter we want to analyse whether enhanced small-scale fluctuations

alter the statistical properties of the global mean temperature in our experiments

and thereby cause different climate sensitivities. We also hope to gain insight

into the different behaviour of the two different ways of enhancing the small-scale

variability, which are reducing the horizontal diffusion or adding white noise to

the small-scale components.

In the next section we argue that a linear stochastic model will be sufficient

for our application. We also derive a simple form of the FDT and show how the

temperature response can depend on the statistics of the unperturbed system. In

Section 6.3 we describe how the parameters of the stochastic model are affected

by a CO2 doubling and enhanced small-scale fluctuations.

6.2 Method

6.2.1 Linear stochastic model with additive noise

In Figure 5.3 (previous chapter) we saw that the drift coefficient pictures as a

first approximation a straight line. The diffusion coefficient, however, indicates

multiplicative noise. The question arises, how important are the small deviations

of the drift coefficient from a straight line and the temperature-dependency of the

diffusion coefficient for our application. Using a Langevin equation with a linear

drift coefficient and with additive noise would very much simplify the analysis.

Inserting a linear drift coefficient (A(xs) = −αxs + F ) and a constant diffusion

coefficient (B(xs) = B = 1
2
g2

0) into the stochastic model (5.13) yields the linear

Langevin equation

ẋs(t) = −αxs + F + g0 η(t). (6.1)

We estimate the parameters α and F by linearly least-squares fitting −αx + F to

the original drift coefficient (Figure 6.1). The linear Langevin equation (6.1) has

the variance

σ2 =
g2

0

1 − (1 − α)2
.
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Figure 6.1: Coefficients of the Fokker-Planck equation of ctrl1x for time lag

τ = 5d (solid black) and the corresponding linear fits used for the linear stochastic

model (dashed green). a) drift coefficient A(xs), b) diffusion coefficient B(xs)
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Figure 6.2: Probability density function of the full nonlinear stochastic model

(solid black) and of the linear stochastic model with additive noise (dashed green).

Both models are fitted to xs obtained from ctrl1x. The vertical lines mark the

time means of the stochastic processes.
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Figure 6.3: a) Probability density function of three fictitious Langevin equations

with the same linear drift coefficient A(x) = −1·10−3x+0.1 and different nonlinear

diffusion coefficients shown in b); The vertical dotted line marks the mean of the

stochastic processes.

By choosing g0 =
√

σ2
nlin[1 − (1 − α)2] we ensure that the stochastic process de-

scribed by (6.1) has the same variance σ2
nlin as the nonlinear stochastic model

(5.13).

The probability density function (PDF) of the new linear Langevin equation

(6.1) is normally distributed. It differs considerably from the PDF of the nonlin-

ear stochastic model (Figure 6.2). Unlike the variance, the mean of (6.1) is not

tuned to be the same as that of the nonlinear stochastic model. The difference

between the two means tells us how big the impact of the nonlinearities in the

drift coefficient on the mean value is. From Figure 6.2 we see that the mean tem-

perature of the linear stochastic process (6.1) is almost the same as the mean in

the nonlinear case. It is only 0.02 K higher in comparison to the nonlinear model.

The difference between the means is small, because the drift coefficient obtained

from the ECHAM5/MPI-OM data is already almost linear. Generally, if the drift

coefficient of the nonlinear stochastic process (5.13) is linear, the mean is always

independent of the form of the diffusion coefficient. Figure 6.3a) illustrates this

statement by means of three example stochastic processes. All shown PDFs result

from stochastic processes with the same linear drift coefficient but very different

diffusion coefficients (Figure 6.3b). Although the PDFs deviate from each other,

they all have the same mean marked by the dotted line.

We conclude, since the drift coefficient of our data is nearly linear, the temper-

ature dependency of the diffusion coefficient is not important for our application.
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We are only interested in the mean and its change due to increased CO2 concen-

tration. If we, however, cared, e.g., about extreme values, the form of the diffusion

coefficient would play a crucial role.

6.2.2 Response to a change in external forcing

Given the linear stochastic model with additive noise we can derive formulas for

the mean and the mean response to changed external forcing. Applying a time

average on (6.1) yields

ẋs(t) = −αxs + F + g0 η(t). (6.2)

Since the system is stationary, the average of the time derivative ẋs(t) is zero. The

third term on the right hand side involving white noise also vanishes, because g0

is a constant and η(t) has zero mean. We get:

μ1 ≡ xs =
F

α
(6.3)

The time mean μ1 is solely determined by the parameters F and α. In a descrip-

tive, physical sense their meaning can be seen as follows. F represents a constant

forcing on xs, which results from external factors such as CO2 concentration and

solar irradiance. Note that F is generally not independent of the climate state 	x.

The radiative forcing related to the CO2 concentration depends for instance on

the temperature and cloud distribution. The parameter α is on the other hand

related to the internal feedbacks and interactions in the system. The term −αxs

is often referred to as statistical dissipation or damping. The negative slope −α

ensures the stationarity of the system. It always drives the system back towards

its mean. α is a measure for the climate’s ’spring constant’ as introduced in the

introduction (Chapter 1).

Doubling the CO2 concentration modifies the forcing F in equation (6.2) to

F + ΔF . After a certain time the system will reach a new equilibrium μ2:

μ2 =
F + ΔF

α

The response Δμ to the doubled CO2 concentration is determined by:

Δμ ≡ μ2 − μ1 =
ΔF

α
(6.4)

The above relation represents a very simple form of the fluctuation dissipation

theorem. Note that it is only valid if the CO2 increase does not alter the statis-

tical damping coefficient α. In general, equation (6.4) means, from knowing the
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statistics of the unperturbed system, namely α, and the change in external forcing

ΔF , we can determine the mean response Δμ. Thus, if the enhanced small-scale

fluctuations in, e.g., the diffusion-experiments decreased α, the higher tempera-

ture response in the diffusion-experiments could be explained with the aid of the

fluctuation dissipation theorem.

In the following we will estimate for each experiment the drift coefficient and

its slope −α. By comparing the results we see whether the enhanced small-scale

fluctuations alter the statistics of xs and with it the response Δμ. We determine

the drift coefficient from the last 100 years of data of each experiment (model years

51–150 corresponding to ≈ 1, 314, 000 time steps) by using relation (5.14) with

τ = 5 days. To get a good estimate of the slope −α, we take the mean of three

linear least-squares fits differing in the number of data points used. For the fitting

we omit the outer points, namely on each edge 5, 6, or 7, since we are interested

in the slope drawn by the inner points.

6.3 Results

6.3.1 Impact of increased CO2 concentration

Figure 6.4 shows the drift coefficient A(xs) obtained from the control experiments

with 1×CO2 concentration and with 2×CO2 concentration. As expected from

the above given meaning for F and α, the increased CO2 concentration results

mainly in a horizontal shift of the drift coefficient. The external forcing F is

increased. The slope of the drift coefficient −α changes only little. We find

αctrl1x = 1.84 × 10−3 1/h and αctrl2x = 2.03 × 10−3 1/h. To get an idea of the

uncertainties involved when estimating α, we perform a non-parametric statistical

test.

As null hypothesis we assume that αctrl2x is not significantly different from α-

estimates obtained from ctrl1x solely. In other words, the difference between

αctrl1x and αctrl2x occurred just by chance. We extend the experiment ctrl1x

by 650 years and split the now 800 year long ctrl1x-experiment into 71 chunks

of data. Each chunk has a length of 100 years and overlaps the previous chunk

by 90 years. For each chunk we estimate the statistical damping coefficient α as

described above. The 71 resulting values are estimates of the parameter αctrl1x,

which we could have gotten, if we by chance had used another chunk of 100y-

data instead of year 51–150 of the ctrl1x-experiment. Since each chunk contains

also data from adjacent chunks, the estimates are not independent. We include

estimates obtained from overlapping chunks, because we also want to account for
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Figure 6.4: Drift coefficients A(xs) of the experiments ctrl1x (closed circles)

and ctrl2x (open circles) as well as a linear fit of ctrl1x (green dashed line on

the right). The left green dashed line displays the linear fit of ctrl1x shifted along

the x-axis.

the uncertainty introduced, when data from somewhat shifted chunks are used.

The empirical cumulative distribution function obtained from the 71 α-estimates

is shown in Figure 6.5. The vertical dotted lines mark the 2.5th and 97.5th per-

centiles. If αctrl2x were smaller than the 2.5th percentile or larger than the 97.5th

percentile, we would reject the null-hypothesis with 5% risk and accept the alter-

native hypothesis that αctrl2x is statistically significant different from αctrl2x. The

dashed vertical line marks the estimate of αctrl2x. It lies within the uncertainty

range of αctrl1x. Hence we conclude, a higher CO2 concentration does not signifi-

cantly alter α. Our results are consistent with equation (6.4). The response Δμ

is mainly due to an increase of F .

6.3.2 Impact of small-scale fluctuations

Considering the relation (6.4) we find three possible ways in which the climate

response Δμ can be influenced via enhanced small-scale fluctuations:

case 1: The enumerator ΔF could be changed by the different representation of

small-scale fluctuations. In other words, ΔF results not only from changes
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Figure 6.5: Cumulative distribution function (cdf) of the parameter α obtained

from the experiment ctrl1x. The cdf is estimated from 71 drift coefficients, which

were calculated by using 71 overlapping 100-year chunks. The dotted, vertical lines

mark the 2.5th and 97.5th percentiles. The dashed vertical line corresponds to the

estimate of α for ctrl2x
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Figure 6.6: Drift coefficients A(xs) of the experiments ctrl1x (black closed

circles), ctrl2x (black open circles), diffus1x 36 (blue closed circles),

diffus2x 36 (blue open circles), noise1x 3 (red closed circles) and noise2x 3

(red open circles); The dashed lines show linear fits of the respective drift coeffi-

cient.

in CO2 concentration but also from the representation of small-scale fluctu-

ations.

case 2: The enhanced small-scale fluctuations could lead to a larger or smaller

statistical dissipation coefficient α. The ’spring constant’ of the system were

changed. As discussed in the introduction this would mean that the statistics

of the global mean temperature are altered.

case 3: Both α and ΔF are influenced by the representation of the small-scale

fluctuations.

Figure 6.6 shows the drift coefficients A(xs) of the control experiments and

experiments with enhanced small-scale fluctuations. Similar to the impact of

doubled CO2 concentration on A(xs) the drift coefficients are primarily shifted

along the x-axis. A closer comparison of the slopes reveals differences between the

experiments (Table 6.1).

From Figure 6.7 we see which changes of α are significant and which not.

Overall we find distinct behaviours of the diffusion-experiments and the noise-

experiments. Reducing the horizontal diffusion does not significantly change the
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Figure 6.7: Cumulative distribution function (cdf) of the parameter α obtained

from the experiment ctrl1x as shown in Figure 6.5. The dotted, vertical lines

mark the 2.5th and 97.5th percentiles. The dashed vertical lines correspond to the

estimates of α for different experiments (see also Table 6.1)

α Δμ ΔF

[10−3 1/h] [ K] [10−3 K/h]

experiment 1xCO2 2xCO2 2xCO2 – 1xCO2 2xCO2 – 1xCO2

ctrl 1.87 2.03 5.6 10.5

diffus 24 1.85 1.79 6.1 11.4

diffus 36 1.78 1.89 6.4 12.0

noise 3 1.69 2.30 5.1 –

noise 6 2.52 2.35 3.6 8.8

Table 6.1: Estimates of the statistical dissipation coefficient α, global mean tem-

perature response at 300 hPa to a doubling of CO2 Δμ, and the parameter ΔF

defined in Eq.(6.4); The value of αctrl1x corresponds to the mean obtained from

the 71 α-estimates used to create the cumulative distribution function in Figure

6.5. All other statistical dissipation coefficients are estimated from 100-year long

data chunks. For the sets of experiments ctrl, diffus 24, and diffus 36 ΔF

is evaluated by using αctrl1x = 1.87× 10−3 1/h and Δμ of each set of experiments.

For noise 6 ΔF is evaluated by using (αnoise1x 6 + αnoise2x 6)/2 = 2.44.

74



6.3 Results

statistical damping coefficient. Adding noise to the small scales, however, may

result in a different statistical damping. With the exception of the experiment

noise1x 3 all noise-experiments have a larger α. This means that the slopes of

the corresponding drift coefficients are steepened. Thus the noise strengthens the

statistical damping of the global mean temperature at 300 hPa. On average the

system with noise is stronger driven back towards the mean state than the system

without noise.

Getting back to the question of how the enhanced small-scale fluctuations alters

the climate response Δμ, we conclude that for the diffusion-experiments case 1 is

true. Since the reduction of the horizontal diffusion does not change α, ΔF must

be different. The difference must result from the representation of small-scale

fluctuations, since otherwise Δμ in the diffusion-experiments would be the same as

Δμ in the control experiments. For the noise-experiments it is more complicated.

For the set of experiments with moderate noise (noise2x 3 – noise1x 3) none of

the above cases is applicable. Since α changes from the 1×CO2-experiment to

the 2×CO2-experiment, relation (6.4) is not valid. The experiments noise1x 3

and noise2x 3 violate the assumption that a CO2-doubling does not change the

statistical damping coefficient. We cannot say whether the change in Δμ is caused

by changes in α or ΔF . For the set of experiments with strong noise (noise2x 6 –

noise1x 6) cases 2 or 3 may be true, assuming that αnoise1x 6 and αnoise2x 6 are not

significantly different. (Seeing the uncertainty range of ctrl1x this is a reasonable

assumption.) The statistical damping coefficient in noise1x 6 and noise2x 6

changed, but we have to check whether the change of the statistical damping

coefficient alone is responsible for the decrease of Δμ by 2 K.

For the experiments in which α1xCO2 = α2xCO2 (within the range of uncertainty)

we evaluate ΔF using (6.4): ΔF = Δμ · α (Table 6.1). Since we found that the

statistical damping coefficients α are within the uncertainty range equal in the

sets of experiments ctrl, diffus 24, and diffus 36, we use for the diffusion-

experiments also αctrl1x = 1.87 × 10−3 1/h. αctrl1x denotes the mean of the 71α-

estimates used to create the cumulative distribution function in Figure 6.5. For

the set of experiments noise 6 we evaluate ΔF by using the average of αnoise1x 6

and αnoise2x 6. We get ΔFnoise 6 = 8.8 × 10−3 K/h, which is smaller than ΔFctrl =

10.5× 10−3 K/h. Hence we infer that in the set of experiments noise 6 the noise

changes the statistical damping coefficient α as well as the change in the forcing

ΔF . Case 3 of the above consideration applies.
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Figure 6.8: Diffusion coefficient B(xs) of the experiments ctrl1x (closed circle)

and ctrl2x (open circle); For comparison the grey curve displays the diffusion

coefficient of ctrl2x minus the temperature response caused by the CO2 increase.
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Figure 6.9: Diffusion coefficients B(xs) of the experiments ctrl1x (black

closed circles), ctrl2x (black open circles), diffus1x 36 (blue closed circles),

diffus2x 36 (blue open circles), noise1x 3 (red closed circles) and noise2x 3

(red open circles)
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6.3.3 Diffusion coefficients

For the sake of completeness we show the diffusion coefficients B(xs) of the exper-

iments ctrl1x and ctrl2x in Figure 6.8. When doubling the CO2 concentration

the shape of the diffusion coefficient (black line with open circles) stays mostly the

same as in the experiment with 1×CO2 (line with closed circles). The diffusion

coefficient of ctrl2x is shifted towards higher temperatures. A closer comparison

of the diffusion coefficient from ctrl1x and ctrl2x reveals slightly larger values

for small temperature anomalies in the experiment ctrl2x.

Figure 6.9 shows the diffusion coefficients of the same experiments considered in

Figure 6.6. For better comparability all coefficients were computed from anoma-

lies, which results in an alignment around zero on the x-axis. In general the

diffusion coefficients of the 2×CO2-experiments are larger than the diffusion co-

efficients of the corresponding pre-industrial runs. Whereas the experiments with

reduced horizontal diffusion show roughly similar results as the control experi-

ments, the coefficients of the noise-experiments are significantly smaller.

6.4 Discussion

Doubling CO2 concentration

In this chapter we investigated how a doubled CO2 concentration and enhanced

small-scale fluctuations affect the statistical properties of the global mean temper-

ature at 300 hPa as modelled by a linear Langevin equation. As expected, when

doubling the CO2 concentration the statistical damping (−αx) remains within the

uncertainty range unchanged in most experiments. The change in external forcing

leads primarily to an increase of the constant forcing F . In the experiments with

moderate noise intensity (noise 3) the higher CO2 concentration, however, alters

the statistical damping. This finding indicates that in noise 3 doubling the CO2

concentration essentially changes the statistics of the global mean temperature

at 300 hPa. The ’spring constant’ varies with external forcing. The fluctuation

dissipation theorem is not applicable in noise 3.

Enhancing small-scale fluctuations

The reaction of the system to enhanced small-scale fluctuations depends on the

method used to enhance the small-scale fluctuations. Reducing the horizontal dif-

fusion mainly affects ΔF . The statistical damping is not changed in the diffusion-

experiments. In contrast, when we add white noise to the small scales the statis-
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tical damping is different. In the experiments with high noise intensity the higher

statistical damping is partly responsible for the decreased sensitivity of the system

to a CO2-doubling.

When the statistical damping is changed, the enhanced small-scale fluctuation

change the ’spring constant’ of the system. The ’spring constant’ describes how

fast the stationary system returns from a natural fluctuation to its mean. Gener-

ally, changes in the ’spring constant’ are related to changes in internal feedback

and interaction processes. For example, negative cloud feedbacks acting in the

stationary system could be strengthened resulting in an overall larger negative

feedback towards the mean. The system then returns faster from a natural dis-

turbance to its mean.

When ΔF is changed due to enhanced small-scale fluctuations, the small-scale

fluctuations do not alter the temporal behaviour of xs in the unperturbed system

but they directly change the mean response of the system to CO2 doubling. A

change in ΔF indicates that the change in Δμ cannot be (solely) explained by

changes in the internal feedback processes. We distinguish between the internal

feedback processes present in the stationary undisturbed system and feedback

processes only acting when the CO2 concentration is increased. The change in

ΔF indicates that the latter feedback processes are altered independently of the

internal feedbacks.

Validity of the FDT

During this study we assumed that the fluctuation dissipation theorem (FDT) and

with it relation (6.4), Δμ = ΔF/α, is applicable to our system. The FDT as given

in the form here is only valid if we can describe the main statistical properties of

the global mean temperature at 300 hPa by the linear Langevin equation (6.1).

From Figure 5.9 we see, however, that the autocorrelation function of the unfiltered

global mean temperature at 300 hPa is not decaying exponentially. Filtering out

the long-term variability related to the atmosphere-ocean interactions improves

the picture, but especially for larger time lags the autocorrelation function decays

too slow.

The Langevin equation is only a crude approximation. An imperfect represen-

tation of the autocorrelation function means that equation (6.1) is not an appro-

priate model. Thus the application of the FDT to the global mean temperature is

questionable. However, to truly test the validity of relation (6.4) we would need

to obtain independent estimates of Δμ, α, and ΔF . Whereas we are able to de-

termine Δμ and α, it is difficult to estimate ΔF . We determined ΔF by using the
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relation (6.4). Thus ΔF is not an independent parameter. ΔF directly depends

on Δμ and α.

Note that ΔF is not equal to the radiative imbalance ΔQ at the top of the

atmosphere arising from CO2 doubling if everything else is held constant. We

can relate ΔF to ΔQ by defining a transfer factor k: ΔQ = kΔF . k describes

how the radiative forcing ΔQ in W/m2 translates to ΔF in K/s. k includes,

for example, the ocean’s heat uptake, but it also includes atmospheric feedback

processes, which determine how strongly the global mean temperature at 300 hPa

is affected by changes in the radiative forcing.

Time scale

For the estimation of the ’spring constant’ we focus on the fast atmospheric vari-

ability and filter out large parts of the long-term variability related to the ocean,

because we assume that the short-term atmospheric feedback processes are most

relevant for the climate change to CO2-doubling. The importance of fast atmo-

spheric feedback processes is supported by the findings that, e.g., the parameter-

isations of cloud formation play a crucial role in modelling the correct climate

sensitivity (Bony et al., 2006). The long-term response of the ocean on the global

mean temperature is included in ΔF . In contrast to our approach, Schwartz (2007,

2008) argues that the long time scales related to the ocean are most important

for the climate change occurring on a multidecadal time scale.
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7.1 Conclusions

Since all climate models used for climate change studies have finite spatial and

temporal resolutions, the effects of subgrid-scale processes on the resolved scales

must be parameterised. Most of these parameterisations do not take into account

the variability that is induced by subgrid-scale processes. In this study we in-

vestigated how enhanced small-scale variability influences the modelled climate

response to increased CO2 concentration. To enhance the small-scale fluctuations

we reduced the horizontal diffusion or added white noise to spectral coefficients

with high total wavenumbers in ECHAM5/MPI-OM.

Enhancing the small-scale variability affects the mean climate state

We find that enhancing the small-scale variability changes the mean climate state.

The 1×CO2-experiments with noise have noticeably different mean climate states

compared to the 1×CO2-control-experiment without noise. Reducing the horizon-

tal diffusion also alters the mean climate state, but the changes are not as large

as in the noise-experiments. The larger effect of the noise is due to the rather

high noise intensities. In this study the noise enhances the small-scale fluctua-

tions much more than the reduction of the horizontal diffusion. Experiments with

lower noise intensity would result in smaller changes of the mean climate states.

The representation of small-scale fluctuations matters for the modelled

climate sensitivity

Furthermore, we find that the representation of small-scale fluctuations matters

for the modelled climate sensitivity to a CO2 doubling. The representation of

dynamical small-scale processes should therefore be considered as a source of un-

certainty for the modelled climate sensitivity.

Reducing the horizontal diffusion in ECHAM5/MPI-OM by a factor of two

(three) enhances the equilibrium climate sensitivity at the surface by 8% (13%).

Since the form and the strength of the horizontal diffusion is generally not very
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certain, it is important to note that changes in this parameterisation also affect

the model’s response to increased CO2 concentration.

Adding noise to the small scales also affects the temperature response to CO2

doubling. In the experiment with moderate noise intensity the temperature re-

sponse is mainly changed in the middle and upper troposphere. The surface

climate sensitivity remains unaffected. The decrease of the surface climate sensi-

tivity in the experiment with high noise intensity is likely caused by the strongly

modified mean climate state of the 1×CO2 experiment. Compared to the observed

present climate the mean climate state of noise1x 6 is not very realistic. The cli-

mate sensitivity of noise2x 6–noise1x 6 might therefore be not applicable for

the prediction of the future climate change.

The impact of the enhanced small-scale fluctuations on the modelled climate

sensitivity is not as large as, e.g., the impact of different cloud parameterisations.

To reduce the uncertainty of predicted climate change, future research should

therefore first focus on improving the representation of thermodynamical feedback

processes in climate models.

A Langevin equation is suitable to only a limited extent for the

representation of the global mean temperature at 300 hPa

To better understand how small-scale fluctuations alter the climate sensitivity,

we fitted a linear Langevin equation to the global mean temperature time series

at 300 hPa of each experiment and estimated the statistical damping coefficient

α for each experiment. A linear Langevin equation is sufficient since the drift

coefficients obtained from the temperature time series are approximately linear.

The slope −α of the drift coefficient is a measure for the ’spring constant’. It

describes how fast the system is, on average, driven back towards its mean state

after experiencing a natural fluctuation.

Before fitting the stochastic model to the data we filtered out the long-term

variability induced by atmosphere-ocean interactions. This is necessary because

the univariate stochastic model is not able to reproduce such long-term fluctua-

tions. Since we assume that the strength of the short-term atmospheric feedback

processes are most relevant for the climate change to CO2 doubling, we believe this

approach is suitable. While the stochastic model reproduces the probability den-

sity distribution well, the autocorrelation function is less satisfactory represented

for large time lags.
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We are able to distinguish between two mechanism of how the small-scale

fluctuations influence the climate sensitivity

The analysis based on the diagnostic of the statistical damping coefficient α and

the parameter ΔF makes it possible to distinguish between two mechanisms of

how the climate sensitivity can be influenced by the small-scale fluctuations. En-

hanced small-scale fluctuations can influence the climate sensitivity via altering

the ’spring constant’, i.e., feedback and interaction processes that are present in

the unperturbed system, or the small-scale fluctuations alter the feedback and

interaction processes that are directly coupled to the CO2 increase.

Reducing the horizontal diffusion does not alter the ’spring constant’, but

adding noise to the small scales changes it

Reducing the horizontal diffusion does not significantly alter the ’spring constant’,

i.e. the statistical damping coefficient α. Adding white noise to the small scales

influences the statistical damping coefficients. In the noise-experiments with mod-

erate noise intensity the statistical damping coefficients change from the 1×CO2-

to the 2×CO2-experiment. In the noise-experiments with high noise intensity

the statistical damping coefficients are considerably higher than in the control-

experiments.

A comparison of these findings with the results from Chapter 3 reveals that

changes of the statistical damping coefficient coincide with changes of the mean cli-

mate state in 1×CO2-experiments. Compared to the 1×CO2-control-experiment

the mean climate state of the diffusion-experiments is hardly changed. The statis-

tical damping coefficients of the diffusion-experiments remain also unaffected. On

the other side the mean climate state of the 1×CO2-noise-experiment with high

noise intensity (noise1x 6) is very different to that of ctrl1x, and also the statis-

tical damping coefficient in noise1x 6 is altered. The change in α indicates that

the temporal behaviour of the global mean temperature at 300 hPa is different.

The internal feedback processes determining the way in which the system returns

from a natural fluctuation to its mean are changed.

The results of the noise-experiments with moderate noise intensity (noise 3)

lie between the diffusion-experiments and the experiments with strong noise. The

moderate noise alters the mean climate state more strongly than the reduced

horizontal diffusion but less than the strong noise. Since the statistical damping

coefficients of noise 3 change when the CO2 concentration is increased, the fluc-

tuation dissipation theorem (FDT) is not applicable in these experiments. The

change in the statistical damping indicates that the mean temporal behaviour and
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with it the internal feedback processes are changed when increasing the CO2 con-

centration. Since the FDT is only valid for small changes in the external forcing,

the dependence of the statistical damping on the CO2 concentration might be an

indicator that the change in external forcing caused by the CO2 doubling is too

large. It remains, however, an open question why the CO2 doubling should be a

too strong forcing in noise 3 but not in the other experiments.

Changes in the temperature response are (partly) due to changes in

feedback processes, which cannot be observed in the unperturbed system

We assume that the temperature response Δμ is determined by Δμ = ΔF/α.

Since in the diffusion-experiments α is not changed although Δμ increases, ΔF

must be changed. ΔF is also changed in the noise-experiments with high noise

intensity. The larger α in noise 6 is not sufficient to explain the decrease of the

climate response.

ΔF represents the change of the net forcing on the global mean temperature

at 300 hPa. Differences in ΔF are due to changes in feedback processes, which

cannot be observed in the unperturbed system. Feedback processes, which are

only acting when the CO2 concentration is increased, are altered.

7.2 Outlook

Although we investigated in Chapter 4 which physical feedback processes are

influenced by the enhanced small-scale fluctuations, the exact cause-and-effect-

chain leading to the different climate sensitivities remains unclear. In general, it

is very difficult and maybe impossible to disentangle the processes leading to a

higher/lower climate sensitivity when enhancing the small-scale variability. The

difficulties arise from the complex interactions between the nonlinear processes

acting in the climate system. To get a more quantitative idea how strong each

thermodynamical feedback process changed, offline radiative transfer calculations

(as done in Colman (2003), Soden and Held (2006)) could be used for measur-

ing the climate change feedbacks in each pair of experiments. In this way we

could quantify the effects of the enhanced small-scale fluctuations on each climate

feedback altering the climate response to CO2 doubling.

Future work could also focus on relating the parameters of the stochastic model

to the physics of the system. We, for example, stated that the statistical damping

is related to the internal feedback processes, which are always present in the

stationary system. Showing that one or more of these internal feedback processes
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is actually different in a system with higher/lower statistical damping, would

demonstrate that this physical interpretation is justified.

It would also be interesting to see how the climate sensitivity was influenced

in experiments with lower noise intensity than used in noise 3. From the small

effect found in the experiments with moderate noise (noise2x 3–noise1x 3) we

expect that the climate sensitivity would not be influenced by a lower noise inten-

sity. It is, however, also possible that such an experiment would react more like

the experiments with reduced horizontal diffusion resulting in an increase of the

climate sensitivity.

Our results show that the representation of small-scale fluctuations near the

truncation scale influences the modelled climate response to higher CO2 concen-

trations. The representation of small-scale processes is generally more realistic in

climate models with high spatial and temporal resolutions. But since numerical

climate models will always have finite resolutions we encourage the development

and improvement of stochastic parameterisations schemes to ensure the proper

inclusion of small-scale variability.
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A Filtering out the long-term

variability

In the following we describe the derivation of xs from the global mean temperature

at 300 hPa x. We assume, the time anomalies of the global mean temperature at

300 hPa, x′ = x − x, can be divided into two parts:

x′ = x′
s + x′

l (A.1)

where x′
s describes the part which is associated with the internal short-term atmo-

spheric variations and x′
l is related to the long-term variations of the atmosphere

caused by the interactions of the atmosphere and the ocean. To estimate x′
l we

assume a linear relationship between x′
l and the anomalies of the global mean sea

surface temperature (SST) y′.

x′ = x′
s + βy′ (A.2)

Before carrying out a least-squares fit a 90 day-running mean is applied to the

data. In this way we can assure that we get hold just of the long-term variations.

Under the assumption that x′
s and y′

90d are uncorrelated β can be estimated by

using:

β =
〈x′

90d y′
90d〉

〈y′
90d

2〉 , (A.3)

where x′
90d and y′

90d denote the time series on which a 90 day-running mean was

applied. We determine x′
s by subtracting the scaled SST anomalies from x′

x′
s = x′ − β y′

90d (A.4)

The filtered global mean temperature at 300 hPa, xs, can now be defined as

xs = x′
s + x = x − βy′

90d (A.5)

Figure A.1 shows the autocorrelation functions of x′ and x′
s. The major part

of the longterm variability is filtered out by the filtering procedure. Some medi-

umterm variability remains, however, in the system.

87



A Filtering out the long-term variability

0 100 200 300 400 500
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time lag [days]

au
to

co
rr

el
at

io
n

 

 

ECHAM5/MPI−OM (x)
ECHAM5/MPI−OM (x_s)

Figure A.1: Autocorrelation function of filtered and unfiltered ECHAM5/MPI-

OM data
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