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[1] We use a coupled Earth system model to simulate and quantify the impact of the
El Niño–Southern Oscillation (ENSO) on monthly to interannual variations of steric and
eustatic global mean sea level (GMSL), surface mass loading, and on the corresponding
degree-two geoid coefficients (C21, S21, and C20). GMSL is dominated by eustatic
variations on monthly to interannual timescales, but less than 10% of the eustatic variance
is related to ENSO. In contrast, steric GMSL correlates linearly in phase with ENSO with
an explained variance of nearly 46%. Together these results imply that total GMSL
variations are only weakly correlated with ENSO. Despite this small correlation, we find a
distinct ENSO pattern of sizable surface mass load anomalies. Over the continents, this
pattern is similar to typical ENSO-related precipitation anomalies. Over the oceans, the
pattern features a global, albeit weaker, response, with generally increased loading in the
Arctic and Pacific oceans, and decreased loading in the Atlantic and Indian oceans. These
surface loading anomalies lead to statistically significant ENSO-related variations in the
S21 and C20 geoid coefficients, but not in C21. In analyzing the individual subsystem
contributions, we find that S21 is influenced by both ocean mass redistribution and soil
moisture loading, whereas C20 is mainly influenced by soil moisture loading. Our results
highlight the importance of high-amplitude regional loading anomalies that integrate to
low-degree geoid anomalies.
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1. Introduction

[2] Global mean sea level (GMSL) is greatly influenced
by the variable water exchange between the oceans, atmo-
sphere and continents. This mass exchange is largely
modulated by the global hydrological cycle via precipita-
tion, evapotranspiration and river runoff. In the atmosphere,
water is mainly stored in the form of water vapor, the
holding capacity being mainly a function of air temperature
[e.g., Gill, 1982]. On the continents, water can be stored in
various reservoirs, e.g., in rivers and lakes, in the ground
and soil, or as snow and ice [Cazenave et al., 2000]. The
exchange of water between the different subsystems not
only affects GMSL, but it also induces variations in Earth’s
geopotential field. The link between GMSL, surface mass
redistribution, and geodetic variations is not an obvious one,
but in particular degree-two coefficients of Earth’s gravity
field, which are related to Earth rotation parameters, can
provide an independent constraint on GMSL variations

[Munk, 2002]. As these geodetic variables represent an
integral measure of all relevant geophysical processes
within and above the solid Earth, it is necessary to resolve
this ambiguity by explicitly evaluating plausible mecha-
nisms of mass redistribution in the Earth system.
[3] Seasonal freshwater flux imbalances between the

oceans, continents and atmosphere, which result in equiva-
lent sea level variations, are relatively well quantified [e.g.,
Chen et al., 1998; Cazenave et al., 2000;Willis et al., 2008].
On interannual timescales, however, much less is known
about the mechanisms and magnitudes of natural sea level
and water storage variability. Quantifying these effects is
essential in order to infer accurate rates of longer-term sea
level trends, in particular those related to global warming
[Nerem et al., 1999; Church et al., 2001]. A dominant mode
of interannual climate variability is the El Niño–Southern
Oscillation (ENSO) [e.g., McPhaden et al., 2006]. ENSO
involves large-scale reorganizations of the atmospheric and
oceanic circulation that originate in the equatorial Pacific,
leading to temperature and precipitation anomalies extend-
ing across the entire globe [e.g., Soden, 2000; Trenberth and
Caron, 2000; Trenberth et al., 2005]. If these reorganiza-
tions lead to freshwater flux imbalances, ENSO will also
imply mass-related GMSL changes. Moreover, ENSO is
associated with significant ocean temperature changes,
which result in density-related GMSL anomalies. For the

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, C08014, doi:10.1029/2008JC004767, 2008

1Max Planck Institute for Meteorology, Hamburg, Germany.
2International Max Planck Research School on Earth System Model-

ling, Hamburg, Germany.
3Jet Propulsion Laboratory, California Institute of Technology,

Pasadena, California, USA.

Copyright 2008 by the American Geophysical Union.
0148-0227/08/2008JC004767

C08014 1 of 16



remainder of the paper, we follow typical standard conven-
tion and distinguish between steric (density-related) and
eustatic (mass-related) sea level changes [e.g., Cazenave
and Nerem, 2004]. Aweak tendency of positive correlations
between ENSO and GMSL over the last 50 years was
reported by Chambers et al. [2002], but the magnitude of
GMSL changes appeared not to be linearly related to ENSO
strengths. One of the strongest and particularly well ob-
served ENSO events occurred in 1997/1998. This promi-
nent event was marked by a large positive GMSL anomaly.
On the basis of altimetry observations and model simula-
tions, Nerem et al. [1999] concluded that this anomaly was
mainly of steric origin. Willis et al. [2004], on the other
hand, reported in their objective analysis of oceanic hydro-
graphic profile observations that large amounts of heat were
redistributed within the ocean during the 1997/1998 El
Niño, but since the total global ocean heat content was
not changed, they concluded that the observed GMSL
anomaly was largely eustatic. However, no direct observa-
tions of the hydrologic contribution to this GMSL anomaly
exist. Regardless of its eustatic or steric nature, trend
estimates of sea level rise can be significantly affected by
ENSO-related sea level anomalies [Nerem et al., 1999].
Coinciding with the GMSL anomaly during the ENSO
event in 1997/1998, a prominent anomaly in the Earth’s
geodetic oblateness (C20) was also observed. This anomaly
was consistent with a mass transport from high to low
latitudes [Cox and Chao, 2002], and Dickey et al. [2002]
argued that a substantial part of the C20 anomaly could be
attributed to subpolar glacial melting and to dynamic ocean
mass redistribution. While the latter process does not
change GMSL, the former should lead to an increase of
GMSL. Others [e.g., Cox and Chao, 2002] have argued
against ice sheet changes as a major source for the observed
1997/1998 C20 anomaly, because the implied GMSL signal
would have been larger than observed. Subsequently, Cheng
and Tapley [2004] argued that changes in terrestrial water
storage contributed significantly to the anomalous C20 event
in 1997/1998. In any case, the dynamic links between such
mass shifts, GMSL, and large-scale climate modes, such as
ENSO, remain to be established and quantified.
[4] In what follows, we investigate two issues that are

still unresolved in terms of sea level change and large-scale
hydrological mass redistribution: First, does ENSO system-
atically change steric and eustatic GMSL, and how is the
eustatic sea level anomaly balanced? Second, to what extent
are interannual anomalies in the degree-two geopotential
coefficients explained by ENSO-related surface mass redis-
tributions, and what are the geographical patterns and
contributions of the individual storage reservoirs that lead
to these anomalies? We explore these two issues in a novel
approach by using an unconstrained state-of-the-art Earth
system model. Our approach aims at understanding typical
magnitudes and mechanisms of these signals, rather than
comparing the results directly to observations. The main
challenge in observing and simulating the water cycling
between the oceans, atmosphere and continents is the closure
of the total water budget. Coupled global atmosphere-ocean
general circulation models have been extended to include
land-surface and river routing schemes, which allow for the
storage of water in the soil and as snow. Although many of
the governing processes of the hydrological cycle, especially

on land, are still poorly understood (and therefore highly
parameterized in their numerical representation), these
models offer the advantage of consistent fresh water fluxes
between the hydrological reservoirs without the need of
artificial flux adjustments. Additionally, the models feature
global coverage, which is essential to capture the total Earth
system response in light of large-scale ENSO teleconnec-
tions [Hughes and Stepanov, 2004; Trenberth et al., 1998].
[5] This paper is organized as follows: in section 2, we

briefly review the model setup and methods used in the
analysis; in section 3, we present our detailed results; in
section 4, we summarize our results and discuss their
implications; in section 5, we list our final conclusions.

2. Model and Methods

2.1. ECHAM5/MPI-OM Model

[6] We use monthly data from 200 years of a climate
simulation computed with the coupled ECHAM5/MPI-OM
atmosphere-ocean general circulation model (see special
section ‘‘Climate Models at the Max Planck Institute for
Meteorology’’ in Journal of Climate, 19(16), 3792–3987,
2006 for ECHAM5/MPI-OM details), which also served as
the unperturbed reference climate for the projections includ-
ed in IPCC 4th assessment report [Meehl et al., 2007]. No
anthropogenic or volcanic forcing is included; the concen-
trations of well-mixed greenhouse gases are set to prein-
dustrial values (year 1860). The ocean component MPI-OM
[Marsland et al., 2003] has a vertical resolution of 40 levels,
20 of which are distributed over the upper 700 m; partial
grid cells resolve the bottom topography. Horizontally, the
resolution varies between 12 km and 180 km. MPI-OM is
coupled to the ECHAM5 atmosphere model [Roeckner et
al., 2003] at T63 horizontal resolution (1.875� � 1.875�)
with 31 vertical levels; the coupling of the atmosphere to the
ocean requires no flux adjustments. However, we do need to
subtract a drift of �0.142 mm/a (where a is years) of the
global mean fresh water flux over the ocean, which would
otherwise lead to an unphysical mass loss in the ocean. This
drift correction is small and does not influence any of the
results presented here. A dynamic/thermodynamic sea ice
model with viscous-plastic rheology is embedded in MPI-
OM. More details on the ocean model formulation is given
by Marsland et al. [2003] and Jungclaus et al. [2006]. Note
that the ocean component has not yet reached its equilibrium
state in this simulation, which is largely related to insuffi-
cient Antarctic Bottom Water formation [Jungclaus et al.,
2006; Landerer et al., 2007a]. This results in a slow
warming of intermediate and deep waters (about 2.6 �
1021 J/a or steric sea level drift of 0.4 mm/a). As the trend
weakens over time, we apply a quadratic drift correction to
the ocean heat content and steric sea level, rather than a
simple linear fit. On the continents, surface runoff and
drainage are calculated by a runoff scheme [Dümenil and
Todini, 1992], and fed into a hydrological discharge (HD)
model [Hagemann and Dümenil, 1998], with the limitation
that growing and melting of land ice is not considered,
effectively excluding cryospheric variability in the simula-
tions. Over the ice sheets, precipitation (minus evaporation)
is routed to the nearest ocean grid point as runoff. Water on
the continents can be stored as snow or in the soil; the
maximum soil moisture bucket depth extends to about 2 m,
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and varies according to land surface parameters [Hagemann,
2002].
[7] The spatial structure of ENSO-related interannual sea

surface temperature (SST) anomalies in the tropical Pacific
is well simulated. However, the magnitude of the variability
is overestimated by a factor of up to 1.4 [Guilyardi, 2006;
Jungclaus et al., 2006]. Likewise, the precipitation response
to ENSO events captures most aspects of the observed
distribution, but the simulated amplitude is somewhat too
large [Hagemann et al., 2006]. For the following regression
analysis, we use the Nino3 index, which is defined as
monthly SST anomalies averaged over the region of 5�S–
5�N and 150�W–90�W [Trenberth, 1997]. We identify an
El Niño (positive values) or La Niña (negative values)
event if the 5-month running average of the index exceeds
one standard deviation for at least 6 consecutive months
(Figure 1). A 5-month running average is used to smooth
out variations in SST not associated with ENSO. In order to
extract the ENSO contribution in the signals of interest, we
project them onto the 1s-normalized Nino3 index using a
lagged linear least squares regression (see section 2.3 for
details); positive lags mean that the Nino3 index leads the
variable of interest.
[8] Mass conservation of fresh water requires that the

sum of fresh water storage terms for the ocean (Moce),
atmosphere (Matmo) and continents (Mterra) does not change
over time. We compute Moce by integrating the net global
mean ocean freshwater flux. The atmospheric water content,
Matmo, is given prognostically by ECHAM5. Here, we use
only the vertically integrated water vapor, because the
contributions from cloud water and cloud ice to the water
mass budget in ECHAM5 are smaller by a factor of about
1000 (not shown). The change in terrestrial water storage
(TWS), DMterra, is equal to (P � E � R)Dt, where P is
precipitation, E is evaporation, R is runoff over land and Dt
is a time step. Here, we diagnose DMterra from the anoma-
lies of the water stored as soil moisture and snow in our

coupled model. However, some surface water directly enters
into the lateral flow scheme of the HD model. Also, the HD
model temporarily stores runoff and drainage fluxes in
buffer reservoirs that account for the residence times of
water in the different flow processes within an HD model
grid box, and between grid boxes (S. Hagemann, 2007,
personal communication). The inter-grid box flow may also
be interpreted as the water stored in the river network. As
the buffer reservoir terms are not saved to disk in the
standard ECHAM5 configuration, we correct for this runoff
bias by computing the balance between eustatic sea level,
atmospheric water storage, and water storage in the soil and
snow on the continents; the amplitude and relevance of the
runoff bias is discussed in section 3.1.
[9] In this paper, we distinguish between variations in

total ocean mass (or, equivalently, eustatic sea level) and
variations in local ocean bottom pressure. The latter are
associated with dynamic ocean mass redistribution, where
the global ocean mass remains constant. As will become
clear shortly, ocean mass load is synonymous to ocean
bottom pressure, the two being related linearly. Some
implicit model assumptions warrant a detailed description
of the calculation of ocean bottom pressure; in our deriva-
tion, we follow Ponte [1999]. The integration of the
hydrostatic equation over the whole water column gives

pb ¼ g

Zh

�H

rdzþ pa � gr0hþ g

Z0

�H

rdzþ pa; ð1Þ

where g is the mean surface gravitational acceleration, pa is
the surface atmospheric pressure, r is the density, r0 is the
mean density of sea water, and h the sea level above a
reference level. Under the inverted barometer (IB) assump-
tion, which holds on time scales longer than a few days
[Ponte et al., 1991; Wunsch and Stammer, 1997], it can be
shown that h = hIB + hdyn, where hdyn is a dynamic signal

Figure 1. Simulated Nino3-SST index, with a 5-month running mean applied. The dashed line is the 1s
standard deviation; El Niño (red) and La Niña (blue) events are defined as periods where the index
exceeds 1s for at least 6 consecutive months.
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related to pressure, wind, or any other forcing. The IB term
is defined as

hIB ¼ 1

gr0
pa � pað Þ; ð2Þ

where pa is the area averaged pressure over the global
oceans and IB is inverted barometer. Equation (1) then
reduces to

pb ¼ gr0hdyn þ g

Z0

�H

rdzþ pa: ð3Þ

The term hdyn in MPI-OM is calculated from the vertically
integrated continuity equation under the Boussinesq
approximation. While this formulation yields correct
relative horizontal sea level gradients, volume rather than
mass is conserved in the ocean [Gill, 1982]. Therefore, two
spatially uniform, but time-varying correction terms must be
applied to the calculated sea level to make up for missing
physics in the model: one is the ‘‘steric correction’’ (h0s),
which accounts for any net expansion or contraction of the
global ocean due to changes in the density structure, and the
second correction is ‘‘eustatic’’ (h0Q) and accounts for global
ocean mass (or eustatic sea level) changes by adding a
uniform layer of water over the oceans determined from the
global integral of fresh water flux over time [Greatbatch,
1994]. Since both corrections are spatially uniform, they are
not relevant dynamically. Introducing the correction terms
into equation (2) then yields

p0b
gr0

¼ h0dyn � h0s þ h0s þ h0a þ h0Q; ð4Þ

where the prime indicates the anomaly relative to a time
mean or an unperturbed state, and bottom pressure is
normalized to units of equivalent water column height
(which we use throughout the rest of this paper). The term
hs

0 = r0
�1

R
r0dz is the steric height anomaly, h0a is the

bottom pressure contribution due to changes of the total
atmospheric mass over the oceans (subsequently referred to
as atmospheric ocean loading). Therefore, in a stratified
ocean, sea level and bottom pressure can be very different
[Condi and Wunsch, 2004]. Generally, steric effects become
more important at longer periods and toward the equator,
indicating that oceanic variability in these regions is more
baroclinic, whereas the shallow ocean is characterized by
barotropic variability [Vinogradova et al., 2007]. Conse-
quently, the term h0dyn � hs

0 + h0s represents bottom pressure
variations due to dynamic ocean mass redistribution at
constant global ocean mass, which we will refer to as
dynamic bottom pressure in this paper. The seasonal
dynamic bottom pressure variability in MPI-OM agrees
well with that described by Condi and Wunsch [2004]: high
variability is found in Northwest Pacific, Southern Pacific,
high-latitude Atlantic oceans, and shallow regions in
general (not shown).

2.2. Geopotential and Stokes Coefficients

[10] Earth’s geopotential field U can be expanded into
spherical harmonics, the so-called Stokes coefficients,

which are related to Earth’s density distribution [Heiskanen
and Moritz, 1967]. In the special case of mass load
variations, Dq, at or near Earth’s surface (thin shell approx-
imation), the Stokes coefficients Clm and Slm of degree l and
order m are given by [Heiskanen and Moritz, 1967;
Eubanks, 1993; Wahr et al., 1998]

DClm

DSlm

� �
¼ 1þ klð Þ

2l þ 1ð ÞM

Z
S

DqPlm sinfð Þ cos mlð Þ
sin ! mlð Þ

� �
dS; ð5Þ

where Dq = pb
0(l, f)g�1, S is Earth’s surface area, f is

latitude, l longitude, M Earth’s mass, Plm(sin f) are the
fully normalized associated Legendre polynomials, and kl is
the Love number, taken here as k2 = �0.301 [Chen et al.,
2005]. The Love number takes into account the yielding of
the solid Earth to the surface mass load changes, assuming
an elastic load response [Wahr et al., 1998]. In the case of a
spatially uniform mass load change, Dquni, over the oceans
(either through h0a or h0Q, see equation (3)), the associated
geopotential degree-two coefficient anomalies are given by

DC21

DS21
DC20

9=
; ¼ Dquni � 1:0�10 �

4:76
7:62
7:22;

8<
: ð6Þ

where Dquni = h0r0. Therefore, the relative contribution of a
eustatic GMSL or a global mean IB anomaly is about 40%
larger in S21 relative to C21. Note that the degree-two Stokes
coefficients are directly proportional to Earth rotational
excitations that are induced by surface mass load variations
[Barnes et al., 1983; Chen et al., 2005]. Also note that
sometimes the nonnormalized zonal coefficients Jl are used
instead of Cl0, where Cl0 = �Jl/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1ð Þ

p
. Measurements

of time varying gravity aim at the inversion of equation (4)
to determine the surface mass load distribution Dq(f, l, t),
but this inversion cannot uniquely determine the cause of
gravity anomalies. Nonetheless, the Stokes coefficients
place an integral constraint on possible mass load distribu-
tions, which must then be tested for consistency with
independent observations or models.

2.3. Linear Regression

[11] We use a linear least squares approach to project the
monthly water storage and degree-two coefficient anomalies
on the Nino3 index. The Nino3 index is normalized by its
standard deviation, denoted sN3, and the regression coef-
ficients are calculated for lags up to ±60 months; positive
lags mean that the Nino3 index leads. In order to remove
decadal and longer-period variability that is not related to
ENSO, we apply a high-pass Butterworth filter with a cut-
off period of about 11 years to all time series prior to the
regression analysis. The significance (set here to 95%) of
the regression is computed from the regression model’s F
statistic by testing against the null hypothesis that there is no
regression relationship between the variables [von Storch
and Zwiers, 1999]. This estimate depends on the degrees of
freedom in the time series, which for independent samples is
equivalent to N � 2, where N is the total sample size.
However, not all samples in the present analysis are truly
independent. Intrinsic low-frequency variability or low-pass
filtering (e.g., applying a running mean, as used here)
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introduces serial correlation into the time series, which
would make any statistical test less stringent [Trenberth,
1984]. The number of degrees of freedom is reduced to the
effective number of independent observations, Neff, defined
as [Trenberth, 1984]

Neff ¼ N
Dt

T0
: ð7Þ

Here, Dt is the sampling interval, and T0 denotes the time
between effectively independent observations. There are
various possibilities (and difficulties) in estimating T0 [von
Storch and Zwiers, 1999], but for large numbers of

observations, N, and under the assumption of a process
with a red spectrum, we can approximate T0 by

T0 ¼
1þ a
1� a

; ð8Þ

where a is the product of the lag 1 autocorrelation values of
the regression time series [Trenberth, 1984]. Intuitively, T0
can be thought of as an integral timescale representing
physical memory in the system [von Storch and Zwiers,
1999].

3. Results

3.1. ENSO Signals in the Global Mean Sea Level and
Water Budget

[12] For the assessment of ENSO-related variability in
Earth’s water mass budget, we need to subtract the seasonal
cycle from all relevant terms. The monthly climatology of
the sea level and water budget terms (Figure 2), computed
from 200 years of ECHAM5/MPI-OM simulated data, is
consistent with published observational or other simulated
estimates within the standard deviation determined from our
simulation (Table 1). However, the mean seasonal eustatic
GMSL contribution in ECHAM5/MPI-OM is above the
observed range, while the seasonal steric GMSL contribu-
tion is below. Since the eustatic and steric GMSL variations
are about 180� out-of phase, the total seasonal GMSL
variation (steric plus eustatic GMSL) is therefore consider-
ably above the observed range (7.5 mm compared to 5.0 mm;
Table 1). Note, though, that ice sheets are not dynamically
coupled in our simulation, so their contribution to eustatic
GMSL variations is not included. Cazenave et al. [2000]
estimated a seasonal sea level contribution from Antarctica
of about 3 mm (maximum in December), and a seasonal sea
level contribution from Greenland of about 0.6 mm (max-
imum in July), but error bars on both estimates are rather
large. The seasonal signal of steric GMSL is representative
of the seasonal cycle of ocean heat content, which is
basically confined to the ocean volume above the upper
thermocline. In ECHAM5/MPI-OM, the seasonal cycle of
ocean heat uptake and release is smaller than observed, and
therefore the steric GMSL amplitude is also underestimated.
This appears to be a typical shortcoming of climate models,
which tend to have too little ocean heat storage variability
on seasonal to decadal timescales [Gregory et al., 2004].
Consistent with the overestimated eustatic GMSL varia-
tions, the seasonal atmospheric and terrestrial water storage
amplitudes in ECHAM5/MPI-OM also tend to be larger
than published estimates (Table 1). The contributions of soil
moisture and snow to seasonal TWS variations are about
equal in ECHAM5/MPI-OM, which is quite different from
estimates published by Cazenave et al. [2000]. Recent
estimates [e.g., Syed et al. 2008], however, suggest a more
equal contribution of soil moisture and snow to seasonal
TWS variations. Soil moisture and snow mass are probably
the least well observed water storage quantities, and are
often crudely approximated in models, so error bars of these
estimates should be rather large. As explained in section 2.1,
not all terrestrial water storage terms necessary to close the
water storage budget are available as model output. This
runoff bias has a maximum seasonal sea level contribution

Figure 2. (a and b) Global mean seasonal mass balance
terms. In Figure 2a, atmospheric water vapor is the black
curve, soil moisture is the blue curve, and snow is the red
curve. In Figure 2b, steric sea level is the green curve, sum
of seasonal atmospheric and terrestrial water storage terms
are the red curve, eustatic sea level is the black curve, and
difference between them (runoff bias) is the blue curve. In
Figures 2a and 2b, the error bars are the monthly standard
deviation. Units are mm of equivalent sea level height.
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of about 2.5 mm in May (Figure 2); during this time,
precipitation or melting snow enters runoff directly without
being stored in the soil or as snow. Note also that in
comparing seasonal cycle amplitudes between model simu-
lations and observations, a considerable source of uncertainty
comes from the use of different averaging periods; in
general, averaging periods in observation-based estimates
are much shorter than in our simulations. In light of the
discussed uncertainties and model limitations, the compar-
ison in Table 1 shows that the seasonal GMSL budget in
ECHAM5/MPI-OM is well captured.
[13] After subtracting the monthly climatology (Figure 2),

we proceed with analyzing whether nonseasonal sea level,
water storage and loading anomalies are correlated with
ENSO. All time series have been filtered as described in
section 2.3. In terms of overall monthly anomalies, eustatic
sea level and soil moisture have the largest amplitudes, and
also the largest temporal variability (Table 2 and Figures 3a
and 3c). A correlation of c = �0.95 indicates that the largest
fraction of nonseasonal water storage anomalies is exchanged
between the oceans and the soils. Snow and atmospheric
water vapor anomalies contribute considerably less to eu-
static sea level (Figures 3b and 3d). As in the calculation of
the seasonal cycle, we need to account for the monthly
anomalies of the runoff bias to close the mass budget. The
amplitude of this term is generally small, with larger values
occurring concurrently with strong changes in soil moisture
and snow storage. Correcting the sum of soil moisture and
snow storage with the runoff bias does not alter the
amplitude and phasing of the total terrestrial storage signif-
icantly: the correlation between corrected and uncorrected
terrestrial water storage is c = 0.93.
[14] For all storage terms in Figure 3, we perform the linear

regression on the Nino3 index as described in section 2.3.
From the total of 2400 time steps, only between 33 to 157 are
effectively independent, reducing the number of degrees of
freedom significantly (Table 2). These estimates are rather
conservative and make the significance test quite stringent,

but it prevents incorrect rejections of the null hypothesis that
there is no regression relation between the storage terms and
ENSO. For eustatic sea level, the regression on Nino3 around
lag zero is marginally significant with about 0.5 mm/sN3, but
the explained variance is very low at only 7% (Figures 4a and
4b). In contrast, significant correlation exists between global
atmospheric water storage and ENSO. At a lag of three
months, the regression coefficient of global atmospheric
water storage on ENSO is maximum with 0.6 mm/sN3, and
80% of the variance can be explained by Nino3. Significant
correlation also exists when the atmospheric water storage
leads ENSO by 15 months, but the explained variance drops
to 28% (Figures 4c and 4d). The regression of total soil
moisture storage on ENSO is maximum at about �0.9 mm/
sN3, when the soil moisture storage lags ENSO by five
months. Although statistically significant, ENSO explains
only a maximum of about 26% of the total soil moisture
storage variance. Snow storage does not have a significant
regression at any lag (Figures 4e–4h). The total terrestrial
storage, including soil moisture, snow and the runoff bias,
leads to a maximum regression of almost �1.1 mm/sN3
(explained variance: 25%), lagging ENSO by four months
(Figures 3i and 3j). The results of the regression analysis can
be nicely illustrated in a single plot (Figure 5). Since the
water budget is mainly balanced between terrestrial storage
and eustatic sea level, the two reservoirs anomalies project
onto each other with a slope of nearly minus one. However,
El Niño and La Niña events do not separate along the
regression line, but instead above and below, demonstrating
that atmospheric water storage as the remaining reservoir is
tightly correlated with ENSO, whereas the water distribution
between the ocean and continents is not.
[15] So far, we have considered contributions to the

eustatic sea level signal. The GMSL is also influenced by
steric sea level anomalies, which have no bearing on the
global ocean mass. We have computed the steric anomalies
here from the fully time-dependent density changes, as
opposed to a climatological background salinity distribution
(which is often done in observations due to sparse salinity
measurements). Steric GMSL is closely related to ocean

Table 1. Seasonal Amplitude, Standard Deviation, and Phase of

the Maximum of the Reservoir Storage and Sea Level Terms in

ECHAM5/MPI-OM, Compared to Published Estimates Based on

Observations and Other Modelsa

ECHAM5/MPI-OM Published Values

Total GMSL 7.5 ± 3.8 (Oct) 3.2b–5.0c

Eustatic GMSL 9.8 ± 3.7 (Sep) 6.8b–8.5d

Steric GMSL 3.4 ± 1.3 (Apr) 3.7b–5.6c

Atmopsheric water vapor 2.7 ± 1.0 (Dec) 2.0e

Snow 5.3 ± 0.6 (Aug) 7.0e

Soil moisture 5.8 ± 2.9 (Aug) 2.6e

Total TWS 10.0 ± 3.2 (Oct) 9.0e–9.7f

Ocean heat content 2.96 ± 1.4 (Apr) 4.2g

aAll values are given in mm of equivalent sea level height, except for
ocean heat content, which is in J � 1022. The seasonal cycle amplitude is
determined from (maximum � minimum)/2. GMSL is global mean sea
level and TWS is terrestrial water storage.

bWillis et al. [2008].
cLombard et al. [2006].
dChambers et al. [2004].
eCazenave et al. [2000].
fMilly et al. [2003].
gGleckler et al. [2006].

Table 2. Maximum Nonseasonal Amplitude, Standard Deviation,

Memory Timescale, and Effective Number of Independent

Observations (Equation (6)) of Monthly Anomalies of GMSL

and Loading Contributionsa

Amplitudeb sb T0
c Neff

c

Total GMSL 7.5 2.2 53 45
Eustatic GMSL 5.4 1.7 42 57
Steric GMSL 3.0 0.9 72 33
Atmospheric water vapor 2.2 0.6 49 49
Soil moisture 5.0 1.6 49 49
Snow 0.9 0.2 20 120
Total TWSd 7.2 2.0 46 52
Wet atmospheric ocean loading 1.6 0.5 51 46
Dry atmospheric ocean loading 3.6 1.2 15 157

aA high-pass filter with a cutoff period of 11 years and a 5-month running
mean have been applied to all time series. GMSL is global mean sea level
and TWS is terrestrial water storage.

bValues given in mm of equivalent GMSL.
cValues in months.
dCorrected for runoff bias.
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heat content (OHC). Here, the correlation between monthly
anomalies of OHC and steric GMSL is 0.95. The regression
of the high-pass filtered global OHC on Nino3 shows a
significant signal of about 2.7 � 1021 J/sN3 when OHC
leads Nino3 by four months (Figures 6a and 6d). Steric
GMSL has a maximum regression of about 0.65 mm/sN3
when it leads Nino3 by one month, with an explained
variance of nearly 46% (Figures 6b and 6e; for the unfiltered
anomalies, this value drops below 8%). The fact that the
maximum OHC regression leads the steric GMSL regression
by about 4 months could be related to the nonlinear equation
of state, but as the relative lag difference is within individual
regression error bars, this assertion is somewhat speculative.
The regression of the total (eustatic plus steric) GMSL
variations on Nino3 yields a significant maximum response

of about 1 mm/s at zero lag. However, the variance of the
total GMSL anomalies explained with ENSO is only 18%
(Figures 6c and 6f).
[16] In contrast to steric sea level, mean atmospheric

loading changes over the oceans (h0a in equation (3)) have
no bearing on GMSL, but they do affect the mean mass load
at the sea floor. Therefore, and in anticipation of the dis-
cussion of the degree-two geopotential signals in section 3.3,
we briefly examine the relation of h0a to ENSO. Additionally,
we split the term h0a into its dry and wet air load contribution
(h0a

dry and h0a
wet, respectively). We find that h0a

dry can be a
factor two larger than h0a

wet, and h0a
dry contains considerably

more high-frequency variability compared to h0a
wet (Table 2).

The regression of h0a
wet on Nino3 is very similar to that of the

global atmospheric water vapor content (Figure 7b, compare

Figure 3. Nonseasonal monthly anomalies of (a) eustatic sea level, (b) atmospheric water vapor, (c) soil
moisture, (d) snow, and (e) total terrestrial water storage (corrected with the ‘‘runoff bias’’). A high-pass
filter with a cutoff period of 11 years and a 5-month running mean have been applied to all time series.
Units are mm of equivalent sea level height.
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to Figure 4c). The explained variance of h0a
wet with ENSO is

nearly 80%, so we can conclude that most of the ENSO-
related global atmospheric water vapor anomalies are located
over the oceans, which increase ocean bottom pressure in a
globally uniform way under the IB assumption. However, the
sum of the combined ocean loading response (h0a

wet + h0a
dry) is

less prominent because h0a
dry and h0a

wet tend to cancel each
other (Figure 7c). The regression of the full atmospheric
loading onNino3 is still statistically significant at lags around
±10 months, but the explained variance is less than 10%
(Figure 7f).

3.2. ENSO Signals in the Surface Loading Patterns

[17] So far, we have considered the spatially integrated
loading anomalies of the individual reservoirs and their
relation to eustatic GMSL, without resolving the spatial
pattern. In this section, we analyze the geographic patterns
of all simulated loading anomalies, as these patterns deter-
mine the degree-two geoid anomalies (equation (4)). We
also take dynamic ocean and atmospheric mass redistribu-
tion into account, because they affect ocean bottom and
surface pressures, respectively, but without changing the
total mass of either one.
3.2.1. Ocean Loading Pattern
[18] While the eustatic sea level anomalies represent a

uniform ocean bottom pressure anomaly, dynamic ocean
mass redistribution leads to spatially nonuniform bottom
pressure changes. We estimate the dynamic bottom pressure
anomalies by subtracting the simulated steric sea level fields
from the dynamic sea level fields (equation (3), but
excluding h0a and h0Q). The sea level pattern related to
ENSO is well established [Nerem et al., 1999]: during El
Niño, sea level rises in the eastern and central Pacific, and
falls in the western Pacific (Figure 8a). Since altimetric sea
level is well correlated with heat content in the tropical
Pacific region [e.g., Willis et al., 2004], this pattern mainly
reflects the deepening and shoaling of the thermocline in
the eastern/central and western Pacific, respectively. Accord-
ingly, the simulated sea level signal is almost entirely
explained by thermosteric anomalies (Figure 8c); halosteric
sea level anomalies often have an opposing sign, but are
much smaller in amplitude (Figure 8d). Only the western
tropical Pacific features a noticeable halosteric anomaly of
2 mm/sN3, but this is still a factor 3 less than the
corresponding thermosteric anomaly in this region.
[19] The pattern of bottom pressure anomalies is very

different from the sea level anomalies, which suggests that
ENSO-related ocean variability is baroclinic rather than
barotropic (Figures 8a–8e). The largest bottom pressure
signals appear on the shallow shelf areas (Figure 8e; we
focus on the pattern lagging Nino3 by 4 months, because
this is the dominant large-scale signal). On the Sunda shelf
and on the shelves along Northern Australia, bottom pres-
sure changes are in opposite phase to ENSO, with regres-
sions up to �50 mm/sN3; on the Bering Sea shelf, bottom
pressure changes are in-phase with ENSO, with a maximum
amplitude of 20 mm/sN3. In the northwest Pacific basin we
find a small negative bottom pressure regression coefficient.
Prominent signals are also visible northwest of Drake
passage and southwest of Australia. While these regions
are associated with large seasonal bottom pressure variability
of 20 mm (RMS) [Condi and Wunsch, 2004], a smaller

fraction of this signal could arise from ENSO variability.
An intriguing aspect of Figure 8e is the large-scale pattern of
positive bottom pressure correlations in the Pacific, and
negative correlations in the Atlantic and Indian Ocean. It
appears that the mass balance between these ocean basins is
influenced by ENSO, although the amplitude of this large-
scale bottom pressure pattern is generally very small, with a
maximum of only 2 mm. In their estimate of the ocean’s
seasonally varying geoid contribution, Wahr et al. [1998]
found a qualitatively similar large-scale pattern, but they did
not discuss a causative physical mechanism. The associated
necessary mass transport between the basins is very small
(about 4 orders of magnitude less than the typical Drake
Passage transport [Wahr et al., 1998]). Our result here
suggests that at least part of this interbasin mass transfer is
related to ENSO processes (or, more generally, to tropical
Pacific variability).
[20] Over most areas, ENSO explains at the most 5% of

the nonseasonal bottom pressure variance. Along the tropical
Pacific, the explained variance increases up to 30%, but the
regression coefficients are small at 0–4 mm/sN3; on the
Sunda and north Australian shelves, the explained variance
increases up to 55–60%, and the bottom pressure signals
reach relatively high amplitudes of 40–50 mm/sN3. In
previous work, we have shown that steric sea level changes
arising from deeper ocean layers involve a horizontal mass
redistribution within the ocean, and can therefore contribute
to regional mass load (and therefore geoid) changes,
contrary to what is sometimes stated [Landerer et al.,
2007b]. In particular, this mechanism can account for the
high-amplitude bottom pressure signal on the shallow shelf
areas.
3.2.2. Atmospheric Loading Pattern
[21] The general pattern of the atmospheric surface pres-

sure variations associated with ENSO is well established
[e.g., Trenberth and Caron, 2000]: during El Niño episodes,
lower than normal pressure is observed over the eastern
tropical Pacific and higher than normal pressure is found
over Indonesia and northern Australia; during La Niña, the
pattern reverses. This pressure pattern is associated with the
anomalous wind pattern, and ECHAM5/MPI-OM reprodu-
ces it well (Figures 9a and 9b). The regression of the dipole
in the Southern Ocean and the northwest Pacific anomaly
on ENSO yields large amplitudes, but the explained vari-
ance in these regions is below 5%.
[22] Since we showed in section 3.1 that the global mean

water vapor content is strongly dependent on ENSO, we
estimate its contribution to the total surface pressure sepa-
rately. The ENSO-related anomaly pattern of this wet
atmospheric pressure closely resembles the shifts of precip-
itation patterns observed during El Niño, with positive
anomalies in the eastern and central Pacific, and negative
anomalies in the western part and over Indonesia and
Australia (Figure 9c). Over the central tropical Pacific, the
regression of vertically integrated water vapor reaches values
up to 8 mm/sN3, with explained variance over 60% (Figure 9d).
Negative regression values over Indonesia and Australia are
generally smaller, and explained variances are below 5%.
[23] Over the central and eastern part of the tropical

Pacific, the wet atmospheric pressure anomalies partly
compensate the dry atmospheric pressure anomalies. How-
ever the general pattern and sign of the anomalous dry
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surface pressure pattern is not changed. Note that atmo-
spheric surface pressure variations over the oceans cause a
spatially uniform mass load anomaly at the ocean bottom
under the IB assumption (see section 2.1), and degree-two
geopotential signals from this part of atmospheric variability
must be accounted for with equation (5). Therefore,
the effective atmospheric ocean loading is obtained from
the regression coefficients in Figure 7, rather than from the
regression coefficients in Figure 9.
3.2.3. Terrestrial Loading Pattern
[24] In contrast to the pattern of atmospheric surface

pressure, the large-scale pattern of terrestrial water storage
anomalies due to ENSO is poorly known; recent satellite

gravity measurements cover too short a time span to give
the full range of nonseasonal storage variability. In our
model simulation, we find that terrestrial water storage
shows large-scale ENSO-related variability, with local re-
gression amplitudes between �50 to +30 mm/sN3. Com-
pared to an estimated seasonal water storage amplitude of
nearly 400 mm water equivalent height in the Amazon basin
[Schmidt et al., 2006], our results indicate that ENSO
modulated water storage variability can be substantial.
[25] The Amazon Basin, Australia, southeast Asia and

parts of southern Africa have less soil water in phase with
Nino3, while North America, southeastern South America
and parts of western Africa have more soil water in phase

Figure 4. (left) Lagged regression coefficients and (right) explained variance of (a and b) eustatic sea
level, (c and d) atmospheric water vapor, (e and f) soil moisture, (g and h) snow, and (i and j) total
terrestrial water storage (soil moisture + snow + runoff bias). Solid black lines in the Figure 4 (left)
indicate that the regression coefficient is significant at the 95% level; the formal uncertainty of the
regression coefficient is indicated by the shading.
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with Nino3 (Figure 10). This large-scale pattern is roughly
consistent with the typical pattern of precipitation anomalies
expected during the warm and cold ENSO phases. The

explained variance of the monthly soil moisture anomalies
for these regions is between 10–20%, in parts of the
Amazon basin the explained variance reaches up to 30–
35%. The regression pattern of snow is much more geo-
graphically confined and the explained variance does not
exceed 10% (not shown), indicating that snow variability is
mostly driven by processes other than ENSO. Note, again,
that snow variability over continental ice sheets is not
included here.
[26] In principle we also have to account for the pattern of

the runoff bias that was discussed in section 3.1. Although
we only know its globally integrated value, we can make
some inference about its geographical distribution because it
is related to the runoff field, but its grid point storage
anomalies should be considerably smaller than those of
the total runoff field. We find that the regression of the total
runoff field on Nino3 has small regression amplitudes
(mostly well below 2 mm/sN3), and the explained variance
of 2–3% in most areas is negligible (not shown). Therefore,
the runoff bias should not contribute significantly to ENSO-
related local terrestrial water storage, andwe neglect this term
in what follows.

3.3. ENSO Signals in the Degree-Two Stokes
Coefficients

[27] Surface mass load variations lead to changes in
Earth’s geopotential field, which can be expressed in
spherical harmonics, the so-called Stokes coefficients. The
degree-two Stokes coefficients are particularly interesting as
they are related to Earth rotation parameters [Barnes et al.,
1983; Chen et al., 2005]. We compute the coefficients C21,
S21 and C20 from the surface mass load anomalies as

Figure 5. Scatterplot of nonseasonal eustatic sea level
versus sea level equivalent total terrestrial water storage.
Blue crosses indicate cold La Niña phases, and red crosses
indicate warm El Niño phases (see also Figure 1). A high-
pass filter with a cutoff period of 11 years and a 5-month
running mean have been applied.

Figure 6. (top) Lagged regression coefficients and (bottom) explained variance of (a and d) ocean heat
content, (b and e) steric sea level, and (c and f) total sea level (eustatic + steric). The solid black line
indicates that the regression is significant at the 95% level.
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detailed in section 2.2. All time series have been filtered as
described in section 2.3. Table 3 summarizes the nonsea-
sonal temporal standard deviation of all loading terms that
contribute to the combined degree-two Stokes coefficients;
similar variability in the nonseasonal coefficients was found
by Chen et al. [2005]. In our simulation, the largest
contribution to C20 comes from atmospheric loading,
whereas S21 and C21 are mainly influenced by terrestrial
water storage and dynamic ocean bottom pressure fluctua-
tions. Loading signals from eustatic sea level and atmo-
spheric IB changes contribute comparatively little to the
degree-two Stokes anomalies. Since the total atmospheric
signal is much larger than that because of IB loading over
the oceans, most of the variability of the total atmospheric
degree-two Stokes signal must be excited over land. Also,
there is only minor compensation between the degree-two
coefficients from wet atmospheric IB loading and eustatic
sea level, as the larger fraction of the eustatic sea level
anomaly is balanced with water storage on the continents
(see Figure 5). For the combined signal with all individual
contributions taken into account, the single largest anomalies
do not occur concurrently in the different degree-two coef-
ficients. A few strong ENSO events appear to have a coherent
response in the time series of S21 and C20, but less so in C21

(not shown). For a quantitative assessment of ENSO-related
variability in the degree-two geoid coefficients, we calculate
their linear regression on ENSO. We do this for each
subsystem contribution separately (oceans, atmosphere
and continents), and also for the combined Earth system
response (Figure 11).

3.3.1. Regression of C21

[28] The largest contribution to C21 comes from soil
moisture anomalies, but the regression is only marginally
significant. Atmospheric loading, ocean bottom pressure,
and snow all significantly contribute to C21 at the 95% level
near zero lag, but since their contribution is about 180� out
of phase with that from soil moisture, the ENSO signal in
the combined C21 coefficient is very weak and statistically
not significant; the maximum explained variance for non-
seasonal C21 anomalies is extremely low at less than 1.5%
(Figure 11g).
3.3.2. Regression of S21
[29] The largest contribution to S21 comes from dynamic

ocean bottom pressure, and this signal is significant for lags
between �5 to +12 months (Figure 11b, red line). The
contribution from soil moisture is about 30% smaller, lags
the ocean bottom pressure signal by about 5 months, and is
significant only between lags of +3 to +12 months
(Figure 11b, blue line). Regressions for atmospheric and
snow loading are formally significant, but comparatively
small in amplitude. Since the individual contributions are
largely in phase near zero lag, the regression of the
combined S21 coefficient is maximum at about 1.35 �
10�11/sN3, lagging Nino3 by 4 months and explaining about
30% of the variance (Figure 11h).
3.3.3. Regression of C20

[30] The largest contribution to C20 comes from soil
moisture, with significant regression lags between �2 to
+15 months (Figure 11c, blue line). The maximum atmo-
spheric loading contribution is about 65% smaller, and 90�
out of phase (Figure 11c, black line). Note that atmospheric

Figure 7. (top) Lagged regression coefficients and (bottom) explained variance of (a and d) dry IB, (b
and e) wet IB, and (c and f) total IB (wet plus dry IB) signals. The solid black line indicates that the
regression is significant at the 95% level.
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loading contributes most to temporal nonseasonal variability
in C20 (Table 3), but much of it is apparently not related to
ENSO. Degree-two Stokes signals from dynamic ocean
bottom pressure and snow storage contribute comparatively
little to the total C20 signal, and are not significant (Figure 11c).
Therefore, the total C20 signal is largely determined by the
amplitude and phase of the soil moisture anomalies. Lagging
Nino3 by 2 months, the regression coefficient is maximum at
1.1 � 10�11/sN3, but the maximum explained variance is
rather low at 9.5% (Figure 11i).

4. Summary and Discussion

[31] The first issue we address in this paper is whether
ENSO can be systematically associated with a global steric
or eustatic GMSL anomaly, and how the hydrologic mass
balance between oceans, atmosphere and continents is
achieved. Using simulations from an unconstrained coupled

climate model with consistent water exchange between the
subsystems, we find a small positive regression of steric
GMSL anomalies on ENSO with 0.65 mm/sN3, leading
ENSO by 1 month. Even for strong ENSO events, such as
during 1997/1998, we would therefore not expect a net
global steric sea level change of more than 2–3 mm. This is
in contrast to the study of Nerem et al. [1999], but
consistent with the study of Willis et al. [2004]. Note,
however, that our regression coefficients for steric GMSL
could be too conservative since our model underestimates
seasonal ocean heat uptake.
[32] An important result of this study is that the simulated

eustatic changes dominate monthly to interannual GMSL,
but they are not strongly correlated with ENSO variability
(Figure 5). Our inferred large contribution of eustatic
GMSL variations on these relatively short timescales is
consistent with the most recent observations of GMSL

Figure 8. (a and b) Regression (mm/sN3) on the Nino3 index and explained variance (in percent) of
nonseasonal dynamic sea level (lag = 0), regression of nonseasonal (c) thermosteric and (d) halosteric sea
level, and regression of (e) nonseasonal dynamic bottom pressure (Nino3 leading by 4 months) and
(f) explained variance (in percent). Note that the color scale in Figure 7e is not linear.
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variations from satellite altimetry, gravity measurements,
and hydrographic floats [Willis et al., 2008]. Regressing the
total (steric plus eustatic) GMSL variations on ENSO yields
a significant signal of about 1 mm/s at zero lag, but the
explained variance is rather low at 18%. This implies that
observed interannual GMSL changes cannot be attributed
straightforwardly to ENSO by using a standard ENSO
index, which in turn complicates the attribution of such
GMSL variations. While it is well established that ENSO
has profound impacts on the hydrological cycle [Trenberth

et al., 2002], our results indicate that the relative distribution
of the precipitation anomalies over land or over the oceans
varies for different ENSO events. A moderate 25% of the
total terrestrial water storage variance can be explained with
ENSO, with a regression coefficient of about �1.1 mm/sN3.
[33] The atmosphere as the third water storage subsystem

can hold only a very limited amount of water, but up to 80%
of the variance of total atmospheric water vapor can be
explained with ENSO. With a maximum regression of
0.6 mm/sN3 lagging the Nino3 index by 3 months, the role

Figure 9. Regression (mm/sN3) on the Nino3 index of (a) nonseasonal total atmospheric surface
pressure anomalies (lag = 0) and (b) explained variance (in percent) and regression on the Nino3 index of
(c) nonseasonal wet atmospheric surface pressure anomalies only (lag = 0) and (d) explained variance (in
percent).

Figure 10. (a) Regression of nonseasonal soil moisture anomalies on the Nino3 index (Nino3 leading
by 4 months). Units are mm/sN3. (b) Explained variance (in percent).
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of the atmosphere is mainly that of a mediator between the
terrestrial and oceanic subsystem. Most of the atmospheric
water vapor anomaly is located over the tropical Pacific. As
mentioned in section 2.1, our model simulation cannot

account for eustatic GMSL variations that arise from the
growing or melting of land ice sheets. In order to assess the
possible impact of this limitation on ENSO-related eustatic
GMSL, we have regressed the patterns of surface temper-
ature and precipitation anomalies onto the simulated Nino3
index. Since we do not find significant correlations over the
Greenland and Antarctic ice sheets, we do not expect the
cryosphere to influence our results.
[34] The second purpose of this paper is to identify the

simulated geographical patterns of ENSO-related hydrologic
mass load anomalies and to quantify their impact on the
degree-two geopotential coefficients C21, S21 and C20. We
find statistically significant correlations to ENSO for S21
(explained variance up to 30%) and C20 (explained variance
up to 9.5%), but not for C21 (explained variance less than
1.5%). In terms of contributions from the individual sub-
systems, anomalies in dynamic ocean bottom pressure and
soil moisture storage are the most important contributors to
ENSO-related anomalies in S21; anomalies in soil moisture
storage are also the main contributor in C20. This result is

Table 3. Standard Deviation of the Nonseasonal Degree-Two

Stokes Coefficients From the Combined Individual Surface

Loading and Uniform Sea Level Termsa

Source s(C21)
b s(S21)

b s(C20)
b

Combined loading 1.36 2.35 3.45
Dynamic ocean bottom pressure 0.80 1.28 1.47
Total atmospheric loading 1.29 3.81 3.00
Terrestrial storage 0.89 1.25 1.40
Eustatic GMSL 0.08 0.14 0.07
Wet atmospheric ocean loading 0.02 0.04 0.02
Dry atmospheric ocean loading 0.06 0.10 0.05

aA high-pass filter with a cutoff period of 11 years and a 5-month running
mean have been applied to all time series.

bValues are in �10�11.

Figure 11. Regression on Nino3 (a–c) of the individual loading contributions to the nonseasonal Stokes
coefficients, (d–f) of the total Stokes coefficients, and (g–i) explained variance (in percent) of the total
nonseasonal Stokes coefficients: (left) C21, (middle) S21, (right) and C20. The legend in Figure 11a applies
to Figures 11b and 11c as well. Ocean bottom pressure does not include eustatic sea level and IB. In
Figures 11d–11f, the solid black lines indicate regressions significant at the 95% level.
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consistent with Cheng and Tapley [2004], who also high-
lighted the importance of interannual soil moisture anomalies
for C20 qualitatively, but we can now quantify this contri-
bution. As discussed in the introduction, the dynamic links
between large-scale climate modes and near-surface mass
shifts that led to the observed C20 anomaly during 1997/
1998 have not been fully resolved. Dynamic mass redistri-
bution in the oceans, as simulated here, can lead to C20

anomalies similar to those observed during 1997/1998.
However, the simulated ocean signal is not significantly
correlated to ENSO. This can, of course, also be a short-
coming of the ECHAM5/MPI-OM model. For the subpolar
North Pacific gyre region, others (Y. T. Song and
V. Zlotnicki, Subpolar ocean-bottom-pressure oscillation
and its links to the tropical ENSO, submitted to Interna-
tional Journal of Remote Sensing, 2007.) have found ocean
bottom pressure signals that are well correlated to ENSO,
whereas the variance explained with ENSO of our signals
(Figure 8) are below 5%. Whether this discrepancy has any
bearing on latitudinal ocean mass redistribution and there-
fore on C20 variations is presently not clear and should be
subject of further research. Overall, the large-scale pattern
of ENSO-related surface loading anomalies has the highest
amplitudes over the continents. Here, the explained variance
reaches 30–35% over regions where ENSO typically influ-
ences precipitation. The large-scale surface loading anoma-
lies from the atmosphere and oceans have a considerably
smaller amplitude and might be difficult to detect with
current satellite observational systems (e.g., GRACE).
[35] A prominent anomaly in C20 was observed concur-

rently with the strong ENSO event of 1997/1998. In
analyzing the surface mass redistribution associated with
this anomaly, Dickey et al. [2002] found a significant
contribution from dynamic ocean mass redistribution. In
contrast, we do not find a significant impact of ENSO-
related oceanic mass redistribution on C20 variations in our
simulations. On the premise that the studies of Dickey et al.
[2002] and our present one are correctly representing the
examined processes, this discrepancy would have to inter-
preted such that climate modes other than ENSO (e.g., the
Pacific Decadal Oscillation) caused the oceanic mass redis-
tribution that lead to the observed 1997/1998 C20 anomaly.
Moreover, our results show that the ENSO impact on
terrestrial water storage, especially on soil moisture, has
the potential to significantly affect C20 (and also S21).
However, the regression amplitude of C20 on ENSO from
the coupled model simulation is too small to account for the
magnitude of the 1997/1998 C20 event. Therefore, we
cannot rule out other excitation sources, such as mass
imbalances of the large Antarctic or Greenland ice sheets
or solid Earth processes during 1997/1998.

5. Conclusions

[36] On the basis of simulations with a coupled Earth
system model, we conclude the following:
[37] 1. Monthly to interannual variations of global mean

sea level are dominated by eustatic rather than steric
variations. However, these dominant eustatic variations are
not strongly linked to ENSO variability in a linear fashion.
[38] 2. The simulated eustatic global mean sea level

anomalies are mostly balanced with the terrestrial water

storage. Therefore, the distribution between eustatic global
mean sea level and terrestrial water storage is also not
strongly linked to ENSO variability in a linear fashion.
[39] 3. Surface loading anomalies from ocean mass redis-

tribution and soil moisture both contribute to ENSO-related
anomalies in the S21 and C20 geoid coefficients, whereas soil
moisture loading is effectively the only source for ENSO-
related anomalies in the C20 coefficient.
[40] 4. Atmospheric loading anomalies are of second-

order importance for ENSO-related degree-two geoid coef-
ficient variations from, because these loading anomalies are
mostly located over the oceans, and are therefore effectively
damped under the inverted barometer effect.
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