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Abstract

The Earth’s climate experienced long-term cycles during the late Quaternary. The climate varied

between relatively short warm interglacial climates and longer glacial cold phases, where the North-

ern Hemisphere was largely covered by continental ice. The last of these glacial cycles spans from the

Eemian interglacial phase at 125.000 years ago (125 kyr ago), via the last glacial maximum (LGM, 21

kyr ago), up to the still ongoing interglacial phase, the Holocene (the last 10 kyr). For the understand-

ing of processes that have caused this natural climate variability an integrated model-data approach is

proposed: in order to achieve a consistent interpretation of late Quaternary climate variability, a com-

bined assessment of simulations with atmospheric and oceanic general circulation models (GCM)

concomitantly with analysis of recent marine and terrestrial proxy data from the Eemian, the LGM,

and the Holocene climate is applied.

When investigating the tropical climate of the LGM, a series of atmospheric GCM simulations

with varying lower boundary condition are utilised to deduce inversely the best fit with terrestrial

temperature proxies derived from glacier debris stemming from the LGM. Such remainders from

tropical glaciers suggest, besides others, a much stronger cooling of air temperature at the height of

the snowline (near the 0◦C level) than at sea level. Motivated by various studies suggesting that the

estimates of glacial sea surface temperatures (SST) by the CLIMAP (Climate: Long-Range Investi-

gation, Mapping, and Prediction) project are too warm, simulations of the LGM climate are forced

by SSTs that are 3◦C colder in the tropical oceans than the CLIMAP distribution. In the Atlantic, the

recent reconstruction of SST by the Glacial Atlantic Ocean Mapping Project (GLAMAP) is also used.

Due to reduced water vapour in the tropical troposphere when driven by cooler SST, the simulated

environmental lapse rate increased. A further cooling occurred in the surface air temperature at the

snowline level due to a longer snow coverage and the snow-albedo feedback. The simulations exhibit

a possible coexistence of moderately cooler SSTs than supposed by CLIMAP and a tropical snowline

lowering of about 900 m during LGM.

For an assessment of the impact of the Earth’s orbital parameters on the evolution of long-term cli-

mate trends in the late Quaternary, a different model-data approach is applied. A coupled atmosphere-

ocean GCM is used in order to simulate surface ocean and air temperatures independently from

proxy-derived SST. Combined analysis of climate trend patterns from simulation data and globally

distributed alkenone-derived SST trends during the middle to late Holocene can elucidate the role of

the orbitally driven insolation forcing. Moreover, imprints of a major atmospheric circulation pattern

are deduced in the model simulations and related (1) to temperature patterns in the alkenone-derived

trends, and (2) to changes in the seasonal cycle as recorded in two fossil corals from the Eemian and

late Holocene periods.

Millennial-scale palaeoclimate simulations are enabled by the application of acceleration factors of

10 and 100 to the orbitally driven insolation forcing. This method can be justified by the explicitly

distinct timescales of the involved processes, which are 10 kyr for the orbital parameters and up to sev-

eral years for the near-surface feedback in the atmosphere-ocean system. Results from the transient

simulations with six ensemble members of the mid-Holocene climate at 6 kyr ago depict considerable

differences to atmosphere-alone model simulations: at high latitudes, the strongest warming relative

V



to the present climate takes place in October, when the upper ocean stored the warming of the pre-

ceding boreal summer insolation inducing a longer ice-free season and reduced snow cover. This

indicates a strong nonlinear response in the atmosphere-ocean-sea ice system to the radiative forcing.

The model results and the reconstructed SST trends derived from the alkenone-method both exhibit

a cooling of up to 3◦C in high latitudes, and minor warming in low latitudes during the last 7 kyr.

These surface temperature trends are driven to a large extent by the astronomical insolation signal.

Superimposed on this trend, a temperature pattern related to a change of the modern Arctic/North

Atlantic Oscillation (AO/NAO) is found. The signal of a change in this pattern is strong during winter,

but is also impressed upon the simulated Holocene annual mean trends in the European and North

Atlantic region. This signal can as well be identified in the alkenone-derived SST distribution. It is

found that changes in the entire seasonal cycle of insolation played an important role for the temporal

evolution of Holocene surface temperatures. In addition to the strong influence of summer insolation

on climate in high latitudes, a notable shift in the maximum insolation of the year in low latitudes

occurs. For understanding of marine proxy data, such a shift is important, because it can be able

to influence timing of phytoplankton production and thus to alter the seasonal origin of temperature

signals recorded in the proxies.

Three independent ensemble simulations of the transition from the Eemian interglacial to the onset

of the last glaciation have been performed using the acceleration technique for the orbitally driven

insolation forcing. In these simulations the AO/NAO pattern is enhanced corresponding to the much

stronger eccentricity of more than 4 % during that time. Seasonally resolved temperature reconstruc-

tions from fossil corals in the northern Red Sea corroborate the enhanced influence of a positive phase

of the AO/NAO-like pattern on the seasonal cycle. Northerly winds lead to an additional winter cool-

ing; simultaneously, warmer winter temperatures in central Europe of more than 5◦C exceed the little

effect of decreased winter insolation in middle latitudes.

The combined assessment of simulation data as well as marine and terrestrial palaeoclimate data

from the Eemian, the Holocene, and the LGM revealed that orbitally driven changes in the seasonal

cycle of insolation have substantially contributed to the climate variability during the last glacial

cycle. For a comparison of natural climate variability and anthropogenic change of the long-term

future by using climate models, the variation of the Earth’s orbital parameters have to be taken into

account.
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Zusammenfassung

Im Spätquatär hat das Klima der Erde regelmäßige Schwankungen zwischen relativ kurzen Warm-

phasen (Interglazialen) und langen glazialen Kaltphasen, mit großen Inlandeisen auf der Nordhalb-

kugel durchlaufen. Der letzte dieser Eiszeitzyklen reicht von der Eem-Warmzeit vor 125 000 Jah-

ren über das letzte glaziale Maximum (LGM, vor 21 000 Jahren) bis zum Holozän, der noch heute

andauernden Warmzeit (die letzten 10 000 Jahre). Um die Prozesse verstehen zu können, die diese

Klimaschwankungen verursacht haben, wird ein integrierter Modell-Daten Ansatz verfolgt: Hierfür

werden Simulationen mit Zirkulationsmodellen für Atmosphäre und Ozean (general circulation mo-

dels, GCM) sowie marine und terrestrische Proxy-Daten aus dem Eem, dem LGM und dem Holozän

für eine konsistente Interpretation der natürlichen Klimavariabilität im Spätquartär analysiert.

Für die Untersuchung des tropischen Klimas im LGM wird eine Serie von Simulationen mit ei-

nem atmosphärischen GCM mit unterschiedlichen Meeresoberflächentemperaturen (SST) als unterer

Randbedingung erstellt. Sie ermöglicht die Auswahl einer Simulation, die am besten mit terrestri-

schen Temperatur-Rekonstruktionen, abgeleitet von Gletscher-Moränen aus dem LGM, vereinbar ist.

Solche Rückstände von tropischen Gletschern lassen eine erheblich stärkere Abkühlung der glazialen

Lufttemperatur in Höhe der Schneelinie (nahe der 0◦ C Isotherme), als in Meereshöhe vermuten. Mo-

tiviert durch die vielfach diskutierte Ansicht, dass die vom CLIMAP Projekt (Climate: Long-Range

Investigation, Mapping, and Prediction) für das LGM rekonstruierte SST-Verteilung in den Tropen

zu warm ausfällt, wurden Simulation des LGM von einer SST-Verteilung angetrieben, die in den

niederen Breiten um 3◦C abgekühlt wurden. Durch den geringeren Wasserdampfgehalt der kühle-

ren tropischen Atmosphäre ergibt sich ein verstärkter vertikaler Temperaturgradient. Eine zusätzliche

Abkühlung wird in der bodennahen Luftschicht in Höhe der tropischen Schneelinie durch eine längere

Schneebedeckung ausgelöst. Die Simulationen zeigen, dass moderat kühlere SST und eine Schneeli-

nienabsenkung von etwa einem Kilometer an tropischen Gletschern während des LGM gleichzeitig

aufgetreten sein können.

Für eine Beurteilung des Einflusses erdgeschichtlicher Änderungen der astronomischen Erdbahn-

parameter auf das Klima, werden langfristige Simulationen mit Hilfe eines gekoppelten GCM erstellt,

das die Temperaturen an der Grenzschicht zwischen Atmophäre und Ozean unabhängig von Proxy-

daten berechnet. Die gemeinsame Analyse von Temperaturtends mit ihren typischen Mustern, sowohl

aus Simulationsergebnissen, als auch aus global verteilten Rekonstruktionen der Holozänen SST, ab-

geleitet nach der geochemischen Untersuchung von Alkenonen aus Tiefseebohrkernen, kann den Ein-

fluss der Erdbahnparameter auf das Klima des Holozäns aufklären. Hierbei wird auch das typische

Muster der nordhemisphärischen Winterzirkulation im Modell bestimmt und mit den (1) Mustern der

aus Alkenonen abgeleiteten Temperaturtrends sowie mit (2) einem veränderten Jahresgang, hergelei-

tet aus zwei fossilen Korallen aus dem Eem und dem späten Holozän, verknüpft.

Die erforderlichen paläoklimatischen Simulationen über mehrere Jahrtausende wurden dadurch

ermöglicht, dass die Änderung der orbitalen Parameter um den Faktor 10 bzw. 100 gegenüber den

vom Modell simulierten Klimavariationen beschleunigt wurden. Dies kann durch die eindeutige Tren-

nung der in den Prozessen involvierten Zeitskalen begründet werden, die etwa 10 000 Jahre für die

Orbitalparameter und wenige Jahre für die oberflächennahen Wechselwirkungen im System Atmo-
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sphäre-Ozean betragen. Ergebnisse aus den transienten Simulationen für das Klima des mittleren

Holozäns vor 6 000 Jahren (sechs unabhängige Simulationen) zeigen erhebliche Unterschiede zu den

Ergebnissen mit Atmosphäremodellen ohne Kopplung an ein Ozeanmodell. In hohen Breiten tritt die

stärkste Erwärmung im Oktober auf, indem die oberste Ozeanschicht die erhöhte Sonneneinstrahlung

der Sommermonate gespeichert hat. Dadurch verlängert sich die meereis- und schneefreie Jahreszeit.

Dies verdeutlicht die nichtlineare Wechselwirkung des gekoppelten Systems aus Atmosphäre, Ozean

und Meereis mit dem Antrieb durch die veränderliche Sonneneinstrahlung.

Der Vergleich von SST-Trends aus Modellergebnissen und Alkenonen zeigt großräumig überein-

stimmend eine Abkühlung von bis zu 3◦C in hohen Breiten und geringere Erwärmung in den niede-

ren Breiten, die durch den astronomischen Antrieb maßgeblich hervorgerufen werden. Diesen Trends

überlagert findet sich ein Temperatur-Muster, das mit einer Änderung der heutigen Arktischen bzw.

Nordatlantischen Oszillation (AO/NAO) verbunden ist. Das Muster dieser Änderung ist besonders

deutlich im Winter der Nordhemisphäre, es wird jedoch im Europäischen und Nortatlantischen Raum

den simulierten Temperatur-Trends auch im Jahresmittel aufgeprägt und findet sich ebenso in der

Verteilung der Holozänen SST-Trends aus Alkenonen. Diese Ergebnisse zeigen, dass Änderungen

im gesamten Jahresgang der Einstrahlung einen wichtigen Einfluss auf die zeitliche Entwicklung der

Holozänen Temperaturtrends ausüben. Neben der wichtigen Rolle der Sommereinstrahlung auf das

Klima in hohen Breiten, tritt eine Verschiebung des Maximums der Sonneneinstrahlung auch in den

niederen Breiten auf. Für die Interpretation von marinen Proxy-Daten ist diese Verschiebung wichtig,

weil sie zu einer Verschiebung in der Jahreszeit der Phytoplankton-Blüte, und damit zu einer neuen

Zuordnung einer SST Rekonstruktion zu einer Jahreszeit führen kann.

In drei unabhängigen Modellsimulationen des Überganges von der Eem-Warmzeit zur letzten Eis-

zeit, die ebenfalls mit beschleunigtem Antrieb durch die astronomischen Parameter angetrieben wur-

den, tritt das AO/NAO Muster mit erheblich verstärkter positiver Phase während des Eem auf, kor-

respondierend mit der extremeren Exzentrizität von über 4 %. Saisonal aufgelöste Temperaturre-

konstruktionen aus fossilen Korallen im nördlichen Roten Meer bestätigen den Einfluss einer stark

positiven Phase des AO/NAO-Musters auf den Jahresgang. Gleichzeitig mit westlicher Strömung und

über 5◦C wärmeren Wintern in Zentraleuropa, die trotz einer in mittleren Breiten geringeren Sonnen-

einstrahlung auftreten, führen nördliche Winde zu bis zu 3◦C kälteren Wintern im Roten Meer.

Die gemeinsame Interpretation von Modelldaten sowie marinen und terrestrischen Rekonstruktio-

nen des Paläoklimas aus dem Eem, dem Holozän und dem LGM haben gezeigt, dass die astrono-

misch ausgelösten Änderungen im Jahresgang der Sonneneinstrahlung einen wichtigen Beitrag zu

den natürlichen Klimaschwankungen während des letzten Eiszeitzyklusses geliefert haben. Für einen

Vergleich von langfristigen natürlichen Klimaschwankungen und der anthropogen beeinflussten Ent-

wicklung unseres Klimas der nächsten Jahrtausende mit Hilfe von Klimamodellen, müssen die be-

kannten Schwankungen der Orbitalparameter der Erde berücksichtigt werden.

VIII



Chapter 1

Introduction

During the late Quaternary, the Earth’s climate experienced long-term climate variations. The climate

varied between relatively short warm interglacial climates and longer cold phases, where the Northern

Hemisphere was largely covered by continental ice [e. g., Emiliani, 1955; Hays et al., 1976; Imbrie

et al., 1984]. Within at least the last 800,000 years (800 kyr), these variations operate to a large degree

on a timescale of 100 kyr. The causes of this long-term climate cycle are not yet fully understood.

Figure 1.1 depicts similar global and local climate fluctuations of the last 420 kyr derived from the

Vostok ice core in central Antarctica [Petit et al., 1999] and a deep sea core from the equatorial Pacific

[Lea et al., 2000]. The most recent of these glacial cycles lasted from the Eemian interglacial phase

(125,000 years before the present = 125 kyr BP) via the last glacial maximum (LGM, 21 kyr BP), to

the Holocene (the last 10 kyr, see marked periods in Figure 1.1). These time series exhibit natural

variability with a wide range of climate extremes that occurred during this time period.

In the discussion on how future environmental conditions will affect mankind, an important prob-

lem is whether human industrialisation with growing emissions of greenhouse gases have already

caused, or will have the potential, to induce a significant impact on the Earth’s climate. To properly

address this question it is necessary to separate natural climate variability from the additional anthro-

pogenic signal. This challenge requires detailed knowledge of amplitude and frequency of natural

variations of temperature or other temperature-related environmental properties in the ocean, over the

continents, and in the cryosphere. The best way to obtain this knowledge would be to analyse histori-

cal time series of temperature, precipitation, and other climate-related measurements. Unfortunately,

historical records for environmental observational data, which would allow consideration of natural

climate variability on a global scale, are too short and already fall within the period of human impact

on nature.

Information on earlier times can be obtained mainly from two strategies: on the one hand by de-

riving proxies that record past climate and environmental conditions, and on the other hand by simu-

lating climate, using comprehensive models of the climate system under appropriate external forcing.

Numerical climate models are clearly unrivalled in their ability to simulate a broad suite of vari-

ables across the entire world, but their reliability on multi-decadal and longer timescales requires

additional evaluation. Only climate records (proxy data) that are derived from palaeoenvironmental

climate-related parameters enable the test of these models because they provide records of climate
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Figure 1.1: Concentrations of the greenhouse gases CO2 (a) and CH4 (c) measured from air bubbles trapped

in the Vostok ice core, Antarctica. Also displayed is the surface air temperature (b), reconstructed for Antarctica

from the δ18O-record from this core, SST (d) derived from Mg/Ca-ratios in foraminifera shells of core ODP806b

from the equatorial Pacific warm pool, and the eccentricity of the Earth’s orbit (e), calculated after Berger

[1978]. The Eemian (E) and Holocene (H) interglacials and the last glacial period (G) are marked through

shading. Data sources are from Petit et al. [1999] (a-c) and Lea et al. [2000] (d). Data are plotted on the

“natural” modellers time axis (running from left to right), in contrast to the geological timescale where age

increases to the right.

variations that have actually occurred in the past. Even if well-known uncertainties in the proxy-

derived palaeoclimate records exist, e. g., age control, signal formation, and calibration issues, proxy

records are a valuable source of information against which models can be tested.

1.1 Synthesis of model simulations and data reconstruction

An important step in palaeoclimate research is the combination of climate modelling and proxy-based

reconstruction. In order to conduct a data-model synthesis, various perspectives are possible. One

kind of approach is to utilise a model simulation as a consistency-test for independent proxy data that

are available at different locations or vertical levels. For instance, an atmospheric general circulation

model (GCM) has the potential to test marine geological proxy data against climate reconstructions

from terrestrial sites. The atmospheric GCM could be forced by a distribution of marine palaeoclimate

2
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data (mainly sea surface temperatures, SST in the following), where its results could then be compared

with terrestrial climates, e. g. borehole temperatures or fossil pollen findings. In turn, a combination

of marine and terrestrial palaeoclimate data have the potential to be used for the validation of GCMs,

as long as their performance in simulating climate states that are strongly differing from the modern

one is not well known. In practise, both paths are often conducted in combination because a clearly

divided approach — validation of the model or consistency test of the proxy data — is often not

possible due to uncertainties in the models, as well as in the proxy data.

A further step could be an inverse modelling approach: different or inconsistent reconstructions

motivate to conduct a series of simulations using diverging or contradictory sets of palaeoclimate

data as boundary conditions for the same model. Comparing results from the different simulations

with independent terrestrial data can give clues to which marine and terrestrial geological conditions

best fit together with the picture of a particular palaeoclimate. Such consistency-tests help to improve

the understanding of discrepancies between proxy data derived with different methodologies and to

suggest how these could be reconciled. In Section 1.1.2, a particular problem is introduced where

an atmospheric GCM can be used in the sense of a consistency-test for marine and terrestrial data.

The following Sections (1.1.3, 1.1.4, and 1.1.5) then explain the approach of combining coupled

atmosphere-ocean GCM simulations with relevant proxy data for the interpretation of Holocene and

Eemian climate change.

1.1.1 The CLIMAP project: global mapping of proxy data

Atmospheric as well as oceanic circulation models need boundary conditions at the atmosphere-ocean

interface. For past climates, these boundary conditions are not generally available on a global scale.

In order to derive a marine data set applicable as boundary condition for a palaeoclimate simulation,

accurately dated proxy-records of the same time frame have to be collected from as many deep sea

cores as possible. Up to now, only a few such globally compiled data sets of a palaeoclimate time slice

exist: the first one is the reconstruction of SST, albedo and other surface parameters for the LGM. This

extensive work was conducted by the Climate: Long-Range Investigation, Mapping, and Prediction

(CLIMAP) project during the seventies [CLIMAP Project Members, 1976]. In this project, uniformly

utilised reconstruction methods were defined and results were provided as global and gridded digital

data sets. The CLIMAP reconstruction of the marine climate was based on transfer functions to

connect assemblages of planktic foraminifera from a large number of available deep sea cores with

near surface water temperature. One of the results of CLIMAP was that the decrease in tropical

SST during LGM was only moderate when compared with the decrease of SST in middle and high

latitudes (see Figures 1.2 and 2.1, p. 29).

An obvious limitation that is common to marine (as well as terrestrial) palaeoclimate records is

visible in Figure 1.2: their scarce distribution over the open oceans (see also distribution of Holocene

alkenone-derived temperature trends, Figure 4.4, p. 90). In Figure 1.2, the cores and their locations

as used for the CLIMAP reconstruction for the LGM are depicted. One reason for this is that the

deep sea floor falls below the lysocline (more exactly, below the calcite compensation depth, CCD)

for large parts of the oceans, especially in the Pacific, where no analogue to the Atlantic ridge exists.

The lysocline is the level of onset of dissolution of calcium carbonate, CCD is the depth at which
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calcite does not accumulate because the rate of carbonate supply is equal to the rate of carbonate

dissolution. Therefore, the carbonate shells of marine microfossils (e. g. foraminifera), which are the

most common marine proxy-recorders, are dissolved before they reach the sediment top at the ocean

floor.

A number of more recent climate reconstructions conflict with the CLIMAP result for tropical SST.

Colder glacial tropics have been detected from marine as well as from terrestrial sites [see Anderson

and Webb, 1994; Crowley, 2000a]: analyses of noble gases from groundwater in tropical lowlands

[Stute et al., 1995; Weyhenmeyer et al., 2000], isotopic measurements from tropical mountain glaciers

[Thompson et al., 1995], and analysis of strontium to calcium ratios (Sr/Ca) in Caribbean corals

[Guilderson et al., 1994], indicate surface temperatures that are 5 K (Kelvin) colder compared with

today. Furthermore, newly calculated transfer functions [Lee and Slowey, 1999; Mix et al., 2001] as

well as SST-reconstructions from alkenones result in 3–4 K tropical temperature difference between

LGM and today [Bard et al., 1997; Rühlemann et al., 1999]. This is remarkably or moderately lower

than CLIMAP in some tropical areas, respectively. In summary, different proxy methods (alkenones,

Figure 1.2: Position of a large part of the deep sea cores (marked by circles) used for the reconstruction

of the climate of the LGM by CLIMAP (data compiled by Prell [1985]). The figure also depicts the glacial

SST difference to the present climate and the sea ice distribution for boreal summer (August) as provided

by the Glacial Atlantic Ocean Mapping Project (GLAMAP, [Sarnthein et al., 2003]) for the Atlantic, and by

CLIMAP Project Members [1981] for the Indian and Pacific Oceans, which are displayed on the grid of the

ECHAM model in T42 resolution (Section 1.2.1). Furthermore, continental ice caps (green), distribution and

topography (contour level interval of 1 km) of continents during LGM are marked (see Figure 2.1, p. 29 for

different boundary conditions for the LGM).

4



1.1. SYNTHESIS OF MODEL SIMULATIONS AND DATA RECONSTRUCTION

magnesium and Sr/Ca ratios, oxygen isotopes, transfer functions) reveal discrepancies of a few Kelvin

in LGM temperature reconstructions [Bard, 2001; Mix et al., 2001].

1.1.2 Tropical snowlines and CLIMAP SST: atmospheric modelling of the LGM

Another indication that is thought to contradict the marginal tropical cooling at sea level during LGM

is the reconstructed height of the snowline of tropical mountain glaciers during LGM. The height

above sea level of the “equilibrium-line altitude” (ELA) of a glacier, where the glacier mass balance

equals zero, divides the accumulation from the ablation zone. On temperate and tropical glaciers

the ELA and the snowline are very similar in height and are in close vicinity to the zero-degree

(0◦C) isotherm. The ELA can be deduced from reconstructed extent and height of palaeoclimatic

moraines. Such moraines are built by deposit of detritus during periods of waxing glaciers. They are

left over after glacier retreat and can easily be observed, even though they are much harder to date.

In most palaeoclimate studies using snowline reconstructions, a change in ELA is translated into a

temperature variation by assuming a constant vertical temperature gradient, the environmental lapse

(120m)

today: 5.5 km height

LGM: 4.5 km height

today: 27 deg C

LGM: 26 deg C

Snowline level (0 deg C):

Sea level:

(800−1000m)

accumulation zone

ablation zone

LGM end−moraineabout 4–5 deg C
temperature bias
must be explained

tropical lapse rates: −Γtrop ≈ 6-8 K/1,000 m

Figure 1.3: On the discrepancy of tropical glacial SST and air temperature at the snowline level: the vertical

temperature gradient is between the dry adiabatic lapse rate (−Γd = g
cp

= 9.8 K/1,000 m) and the moist adi-

abatic lapse rate (−Γm ≈ 5−7 K/1,000 m). The estimated net vertical lowering of the snowline during LGM

(900± 135 m, [Porter, 2001] minus the sea level change of 120 m [Fairbanks, 1989]) leads to a temperature

reduction of ≈5-7 K at the snowline level, whereas the SST reduction at the sea level was estimated to be only

1 K. Therefore, a discrepancy of about 4 to 5 K remains.
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rate, which is typical for the large scale climate of the respective region.

Based on the evidence from tropical mountain sites in Africa, America, and the Pacific islands,

Porter [2001] concluded that glacial snowlines were 800 to 1,000 m lower than today. Taking into

account the glacial change in sea level of 120 m [Fairbanks, 1989; Rohling et al., 1998], the 900±
135 m change in ELA translates into a 780 m drop of the 0◦C isoline. Tropical lapse rates in the free

atmosphere lie between the dry adiabatic and the moist adiabatic lapse rate. Furthermore, near surface

temperatures over tropical mountains are anticipated to be colder than the free atmosphere [Farrera

et al., 1999]. Using a simplistic lapse rate approach, the snowline depression corresponds to a ∼5–7 K

mean annual temperature drop, which may at least provide a first-order approximation of regional and

global tropical temperature reduction at the LGM [Seltzer, 2001]. This leads to an inconsistency of at

least 4 K between tropical ocean temperature reconstruction at the surface by CLIMAP (1 K colder

than today) and the cooling at the height of the tropical snowline during LGM (Figure 1.3). The

apparent discrepancy between tropical SST reconstructed by CLIMAP and the depression of tropical

snowlines leads to the following question:

(1) What is the most probable scenario for tropical air temperatures at sea level in coexistence

with those at the level of the tropical snowline? How can the inconsistency between tropical

SST and air temperature at the snowline be explained?

For an independent comparison with these palaeo-reconstructions, the simulation of the atmosphere

with a GCM enables the investigation of its vertical structure under the boundary conditions of the

LGM. In Chapter 2, a synthesis of atmospheric GCM simulations, marine SST reconstructions, and

terrestrial evidence for glacial snowlines is discussed [Lorenz and Lohmann, 2006].

1.1.3 Coupled atmosphere-ocean modelling of the LGM time slice

A step forward in a model-data synthesis is to overcome the strong dependence of atmospheric and

oceanic GCMs on surface boundary conditions at the atmosphere-ocean interface. In order to derive

independent simulation data, an integrated model for the circulation of both atmosphere and ocean is

necessary. Coupled atmosphere-ocean general circulation models (AOGCMs) have the potential to

make boundary conditions at their interface superfluous. Driven by palaeoclimatic boundary condi-

tions apart from the ocean surface (e. g. solar radiation and land surface characteristics) coupled mod-

els should be able to generate independent sea surface data (temperature and salinity). This, however,

requires an accurate calculation of the exchange fluxes between atmosphere and ocean (heat, wa-

ter, momentum) for a reasonable simulation of the coupled atmosphere-ocean system under different

palaeoclimate forcing. The quality of model results and globally distributed proxy data, such as the

CLIMAP reconstruction or alkenone-derived SST, can be assessed.

1.1.4 Orbital forcing of late Quaternary climate: transient modelling

Coupled atmosphere-ocean models are able to simulate transient climate change driven by internal or

external forcing mechanisms, such as changes in greenhouse gas concentrations and astronomical pa-

rameters (Figure 1.1). But which forcing mechanisms could have contributed to the extreme climates
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of the late Quaternary glacial cycles? To address this question, long-term simulations of changing

climate running over at least several thousand years are necessary.

One of the most prominent candidates for triggering changes between the cold glacial phases and

the warm interglacials during the late Quaternary is the astronomical or “Milankovitch-forcing” of

the climate system [Milankovič, 1941; Imbrie et al., 1992]. It is caused by the varying parameters

of the Earth’s orbit around the Sun. On multi-millennial timescales, the forcing provides for large

imbalances in the seasonal distribution of sunlight. The change in orbital parameters have even been

regarded as the pacemaker of ice ages [Hays et al., 1976; Imbrie et al., 1992, 1993].

The astronomical or orbitally driven solar radiation (insolation) forcing is controlled by three main

parameters of the Earth’s orbit (Figure 1.4): the eccentricity, the time of the Earth’s passage through

its perihelion, and the tilt of its rotational axis. The eccentricity (today 1.67 %) has cycles with

periods near 100 kyr and exceeds 5 % during the late Quaternary (Figure 1.1). The precession of

the rotation axis through the fixed stars is caused by the gravitational force of mainly the Moon.

This leads to a change in the angle of the perihelion (the point on the orbit that is nearest to the

Sun in one of the foci of the ellipse, Figure 1.4) with respect to the moving vernal equinox (the so-

called longitude of perihelion, or true longitude) [Berger, 1978; Berger et al., 1993]. Therefore, the

precession determines the time during the year when the average insolation of the whole Earth is at

a maximum (today, this is during austral summer, Figure 1.5). Moreover, the precessional effect is

Figure 1.4: On the definition of the parameters of the Earth’s orbit around the Sun: the obliquity is the angle

of the Earth’s rotation axis with the normal of the orbit (δ); the precession of the rotation axis in space (arrow)

leads to the precession of the perihelion (P) relative to the vernal equinox (γ), measured with the angle ω, the

“longitude of perihelion”; the eccentricity of the Earth’s orbit (ε) is defined by using the two axes (a = MP,

the semi-major axis, b: semi-minor axis perpendicular to a) of the elliptic orbit: ε =
√

a2 −b2. Figure adapted

from Herterich [1990].
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today

10 kyr ago

Figure 1.5: Orbital configura-

tion through a half precessional

cycle: Today (upper panel) the

Earth is at its perihelion with

minimum distance to the Sun in

January (near the winter sol-

stice). Therefore, austral sum-

mers are warm, whereas the in-

solation on the Northern Hemi-

sphere during boreal summer is

relatively low. At about 10 kyr

ago (lower panel), the opposite

situation occurred and the North-

ern Hemisphere insolation was at

its maximum during boreal sum-

mer. Figure adapted from Hert-

erich [1990].

proportional to the eccentricity, i. e. the difference in the distance to the Sun between the perihelion

and the opposite aphelion is zero with vanishing eccentricity. It has its main effect in the tropics, with

cycles near 20 kyr (Figure 1.6). During the last million years, the Earth’s axis tilt (obliquity) varies

between 22 and 24.5◦ and has a main long-term cycle with a period of approximately 40,000 years.

It affects the amplitude of the seasonal cycle of both hemispheres, simultaneously (Figures 1.4 and

1.6).

The variation of these parameters in the Quaternary can easily be calculated with sufficient accuracy

using the algorithm described by Berger [1978], [see also Berger and Loutre, 1991; Berger et al.,

1993, 2006]. Newer calculations span much longer timescales, beyond millions of years [Berger

and Loutre, 1991; Laskar et al., 2004], or take into account short-term variability [Loutre et al.,

1992], which is generally far beyond the requirements of simulations of long-term palaeoclimate

variability. During the period from the Eemian interglacial to the onset of glaciation (130 kyr BP to

115 kyr BP) when eccentricity was at about 4 %, the seasonal insolation changes reached a maximum

of 100 Wm−2 (Figures 1.7 and 1.8). The insolation in its annual mean depends to only a small fraction

on the orbital parameters. The annual mean insolation integrated over the Earth’s surface is affected

by less than 1 % in periods with high eccentricity during the late Quaternary. The anomaly with

respect to today of the seasonal cycle for specific time slices is shown in Figure 1.8.

A direct comparison of natural climate trends during the Holocene as well as the Eemian climates

with marine and terrestrial temperature reconstructions can be accomplished through a series of tran-

sient model simulations including a part of the relevant forcing mechanisms. This permits the di-

rect relation of a well-known climate forcing mechanism, the astronomical forcing, to proxy-derived

Holocene temperature trends. In Chapter 3, ensemble simulations of Holocene temperature trends

8
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with a coupled AOGCM are introduced. They use an acceleration factor for the orbital forcing (Sec-

tion 1.2.2) that enables the simulation of long-term palaeoclimate temperature trends [Lorenz and

Lohmann, 2004].

1.1.5 Seasonal cycle of insolation and interpretation of proxy data

Palaeoclimate simulations using AOGCMs supply climate-related results with monthly or daily res-

olution over the whole globe. For Holocene and Eemian climates, difficulties arise from coarse tem-

poral resolution of deep sea cores, depending on relatively low sedimentation rates that limit the

resolution to be far beyond single years. Seasonally-resolving proxies are generally difficult to ex-

tract. Here, annually-banded coral data from the last interglacial and the late Holocene as well as SST

trends derived with the alkenone-method are taken into consideration for a combined analysis with

the model-derived results.

Recently, two fossil coral colonies (Porites) have been collected from an uplifted shore at the Jorda-

nian coast of the Gulf of Aqaba. They have been dated to 2.9 kyr BP (late Holocene) and 122 kyr BP,

which is near the warm peak of the Eemian interglacial in that area [Felis et al., 2004]. The Holocene

and Eemian coral provide climate data with seasonal resolution on a multi-decadal time window. This

allows for the extraction of seasonal signals, such as the amplitude of the annual cycle and relative

temperature shifts of the different seasons (Chapter 5).

Long-term surface temperature trends for the Holocene have recently been derived [Kim et al.,

2004; Rimbu et al., 2004] from a number of deep sea cores, using the alkenone method [Brassell

et al., 1986; Prahl and Wakeham, 1987] (Section 1.2.3). These trends are suitable for a direct com-

parison with the results of the AOGCM, using the acceleration technique for the orbital forcing. The

temporal resolution of ocean cores analysed with the alkenone method is relatively coarse. However,

a considerable number of core series are available for the late Quaternary.

 0

 2
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 23

 24

 0 20 40 60 80 100 120 140

time (kyr BP)

(a)

(b)

(c)

Figure 1.6: Evolution of the orbital parameters over the last 150 kyr calculated following Berger [1978]: (a)

eccentricity ε (in %), (b) the precessional parameter (in %) defined as p = ε sin(ω) with ω the longitude of the

perihelion measured from the moving vernal equinox, (c) the obliquity of the Earth’s rotation axis (in degrees),

compare Figure 1.4.
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Figure 1.7: Solar radiation (inso-

lation) forcing as an upper boundary

condition for the Earth’s climate, re-

sulting from changing orbital param-

eters: Insolation (Wm−2) at boreal

winter and summer solstice during the

latest period with high eccentricity

(see Figures 1.1 and 1.6). Note the

complementary latitude ranges with

respect to the hemisphere with inso-

lation at its maximum. An extended

series of insolation data and figures

(including the time series shown here)

has recently be collected in Berger

et al. [2006]; see also Figures 3.1

(p. 57) and 4.2 (p. 85) for Holocene

insolation, and Figure 1.8 for changes

in the entire annual cycle.

Since the development of the unsaturated alkenone index as a temperature proxy in the late 1980s,

the seasonal origin of alkenone-derived temperature signals in different latitudes remains an open

question. In high latitudes, maximum coccolithophorid production is observed during late spring

to early summer [Baumann et al., 1997]. This suggests that alkenone-derived SSTs should reflect

summer temperatures [Rosell-Melé et al., 1995; Sikes et al., 1997], but may be biased towards the

annual mean. In tropical to subtropical regions, seasonality in phytoplankton production is generally

less pronounced [Jickells et al., 1996] and alkenone-derived SSTs are more likely to record annual

mean values [Müller and Fischer, 2001]. During the Holocene, the orbital parameters provide for

shifts in the timing of the maximum insolation in the tropics as well as in middle to high latitudes.

Changes in the seasonal cycle of insolation could possibly influence the timing of phytoplankton

blooming, and can therefore be of interest for the interpretation of proxy data. With the simulated and

the proxy-derived temperature estimates the following questions are addressed:

(2) How does the orbitally driven insolation forcing affect the long-term climate trends from the

middle to the late Holocene? Are changes in the seasonal cycle of insolation reflected in

Holocene and Eemian proxy data?
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Figure 1.8: Annual insolation cy-

cle for distinct time slices during

the last glacial cycle. Seasonal dis-

tribution of insolation anomaly rel-

ative to modern conditions for (a)

3 kyr ago (late Holocene), (b) 7 kyr

ago (middle Holocene), (c) 21 kyr

ago (LGM), and (d) 124 kyr ago

(Eemian), calculated after Berger

[1978]. Shown is the latitudi-

nal distribution with respect to the

true longitude (angle between per-

ihelion and vernal equinox on the

Earths orbit). Note that following

Keplers Law the track speed on the

elliptical orbit varies.

(a) 3 kyr

(b) 7 kyr

(c) 21 kyr

(d) 124 kyr
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1.1.6 Orbital forcing of the AO/NAO circulation pattern

Investigation of teleconnection patterns and their underlying internal dynamic processes, such as

the Arctic Oscillation/North Atlantic Oscillation (AO/NAO), or the El Niño/Southern Oscillation

(ENSO), is a common approach when analysing results of GCMs. In order to understand these

mechanisms, the analysis of a series of parameters that are able to produce a complex mechanism

with global or continental imprint is essential. For palaeoclimate times it is difficult to identify the

signature of their teleconnection patterns, because proxy-parameters of different quantities (air and

water temperature, precipitation, air pressure) should be concomitantly available at high resolution in

time and space. Moreover, information on particular seasons is necessary.

Surface air temperature and related climatic parameters over the Northern Hemisphere during win-

ter time are strongly influenced by the AO/NAO circulation pattern. The Arctic Oscillation, also

known as the northern annular mode, is the dominant mode of the atmospheric circulation variability

in the northern extratropics [Thompson and Wallace, 1998]. This mode is characterised by a merid-

ional dipole in atmospheric sea level pressure between the polar regions and the mid-latitudes. The

North Atlantic Oscillation (NAO) can be regarded as a more regional pattern of a similar phenomenon

[Thompson and Wallace, 2001]. Conventionally, the NAO-index is defined as the normalised pressure

difference between the subtropical high over the Azores or Portugal, and the low over Greenland or

Iceland, respectively. This index has been used to characterise the atmospheric winter circulation in

the North Atlantic region. When the index is high (positive), strong westerly winds advect mild and

moist air over western and central Europe.

The AO/NAO circulation pattern with its short-term (interannual) variability and its impact on the

Atlantic/European climate has been studied intensively [e. g., Thompson and Wallace, 2001; Rimbu

et al., 2001; Franzke et al., 2001]. Most studies are based on instrumental records over the last 100

years. The relevance of this circulation pattern on long-term (orbital) timescales is difficult to acquire

in model simulations, since at least an atmospheric GCM is necessary to capture the internal feed-

backs involved. Recently, AO/NAO related patterns on centennial to millennial timescales based on

alkenone-derived SST during the Holocene have been investigated [Rimbu et al., 2003]. One possi-

ble step is the analysis of GCM simulations under astronomical forcing, resolving internal feedback

mechanisms on intraseasonal as well as on interannual and longer timescales. With the combined

interpretation of temperature-related records from GCM simulations as well as alkenone and coral

data the following question is addressed:

(3) In what way are regional temperatures of the Eemian and Holocene periods governed by

changes in atmospheric circulation patterns?

1.2 Methods and design

1.2.1 Atmospheric modelling of the LGM time slice

In order to follow the proposed approach of a consistency-test for marine and terrestrial data in terms

of atmospheric modelling, a general circulation model is necessary. The investigation of the vertical
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structure of the atmosphere under the boundary conditions of the LGM needs a sufficient vertical

resolution. For the series of numerical experiments, the ECHAM atmospheric GCM [Roeckner et al.,

1992] is applied using an intermediate horizontal resolution (T42, corresponding with a 128×64

longitude-latitude grid) with 19 vertical layers. The model uses the primitive equations and includes

calculation of radiation and a hydrological cycle with transport of water vapour and cloud water. The

insolation at the outer boundary of the atmosphere is prescribed to the respective seasonal cycle of the

LGM, which is relatively similar to the present insolation (Figure 1.8c). The calculation of radiation

transport through the atmosphere occurs with respect to the glacial level of atmospheric greenhouse

gases. The equivalent concentration of carbon dioxide, including the effect of other greenhouse gases

like methane, used for the glacial experiments is 200 ppm. Motivated by the differing reconstructions

of tropical glacial SST [Mix et al., 2001], a series of model simulations are conducted by applying

different SST boundary conditions, as discussed by Lohmann and Lorenz [2000].

1.2.2 Acceleration techniques for transient simulations

For modelling the Eemian and Holocene periods, the following model requirements are essential in

order to elucidate the questions stated above. The model has to be able to

• resolve teleconnection patterns and their underlying processes,

• generate SST by incorporating atmosphere-ocean feedback mechanisms,

• simulate long-term palaeoclimate trends including the seasonal cycle,

• include multi-millennial scale impact of orbitally driven insolation changes.

The first two requirements together can only be solved by means of utilising a coupled general

circulation model for atmosphere and ocean. An attempt to use a modern coupled AOGCM for a

transient simulation of a palaeoclimatic time period is hampered by the limited computer resources to

run such a model. An atmospheric model with a time step in the range of minutes is too expensive in

computational terms to extend the length of a model run to the range of several thousand simulation

years (Figure 1.9a). A substantial reduction in computing time is required when simulating long-term

palaeoclimatic changes.

In order to reduce the excessive computing time required for running a synchronously coupled

model, the method of periodically-synchronous coupling, first suggested by Gates [Schlesinger,

1979], can be applied to a coupled AOGCM [e. g., Voss et al., 1998]. In this method, short peri-

ods of synchronous coupling alternate with long ocean-only periods, where the atmospheric model is

switched off. During the latter periods, the ocean is forced by the surface boundary conditions gen-

erated during previous synchronously coupled periods (Figure 1.9b). Due to the much longer time

step of the ocean model, the computing time is significantly reduced. The method is predominantly

applicable to simulate an equilibrium response of the atmosphere-ocean system within reasonable

computing time, forced by constant palaeoclimate boundary conditions. A short discussion of this

method can be found in Appendix A.

Another possible technique to reduce the computing time of an AOGCM is to accelerate the

timescale of a slowly evolving boundary condition, such as the orbital forcing. As long as the

timescales of the boundary conditions are clearly distinct by at least one order of magnitude from
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(a) Synchronous coupling scheme
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(c) Accelerated boundary conditions
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Figure 1.9: Different methods for palaeoclimate simulations utilising coupled AOGCMs: the synchronous

coupling (a) is limited by the extensive computational costs due to the timestep in the range of minutes of

the atmospheric GCM. The periodically-synchronous coupling technique (b) saves computing time by running

the ocean model without the atmospheric GCM for long periods, where the ocean model is driven by surface

boundary conditions generated during previous synchronously coupled periods. The externally prescribed

forcing, e. g. orbitally-driven insolation, continental ice caps, etc., may be accelerated by a factor N a (c) if the

simulated system is considered to be in permanent equilibrium with the slowly evolving forcing. An appropriate

time unit that is suitable to be accelerated has to be chosen. For example, this time unit may be one year

(accelerated to 10 or 100 years) for the orbital parameters and 10 years (accelerated to 100 or 1,000 years)

for the continental ice distribution, respectively.

the timescales of the simulated climate components, the climate system can be regarded as being in

“quasi-equilibrium” with the external forcing. Thus, the climate components with their inherent feed-

backs can be analysed on all timescales shorter than that of the external forcing (Figure 1.9c). The

timescales of the astronomical or “Milankovitch type” forcing are separated from the much shorter

timescales of the atmosphere, including the mixed layer of the ocean, by several orders of magni-

tude. This motivated the idea of accelerating the astronomical forcing, which renders possible multi-

millennial integrations with a fully coupled AOGCM and relatively low computational costs. This
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method can be used to investigate long-term effects of the atmosphere-sea ice-ocean system induced

by the astronomical forcing. The method has been applied to the coupled AOGCM, called ECHO-G,

developed in Hamburg [Legutke and Voss, 1999]. The application of the acceleration technique in this

model enabled transient ensemble integrations of the Holocene and the Eemian periods [Lorenz and

Lohmann, 2004] that are subject to Chapters 3, 4, and 5.

The atmospheric part of this model is ECHAM4, whose prognostic variables are calculated in

the spectral domain using a medium resolution (T30), corresponding to a longitude-latitude grid of

approximately 3.8◦×3.8◦ with 19 levels in the vertical [Roeckner et al., 1996]. The time step of

the atmospheric model is 30 minutes. The ECHAM4 model is coupled to the HOPE ocean general

circulation model [Wolff et al., 1997], which includes a dynamic-thermodynamic sea ice model with

snow cover. Its horizontal grid has a resolution of approximately 2.8◦×2.8◦ (0.5◦ resolution in the

tropics, 20 vertical levels) and the model has a time step of two hours. The model utilises annual

mean flux corrections for heat and freshwater. These fluxes are constant in time and have no sources

or sinks of energy or mass.

1.2.3 Alkenone-derived SST

The alkenone method has been established in the late 1980s. It is based on the observation that certain

microalgae (e. g. marine coccolithophorids) have the capability to synthesise long-chain unsaturated

ketones (alkenones). The extent of unsaturation of the built-in alkenones depends on temperature

of the surrounding ocean water in the photic zone (mainly the upper tenth of meters of the mixed

layer) during growth of the shells. The relative abundances of methyl alkenones containing two to

four double bounds are measured by gas chromatography, often coupled to high resolution mass spec-

trometry [Rosell-Melé et al., 1995], and used to define slightly varying alkenone unsaturation indices

(UK
37 [Brassell et al., 1986] and the simplified index without taking into account the tetra-unsaturated

alkenone, UK′
37 [Prahl and Wakeham, 1987]). The method consists in converting these indices into

annual mean SST [Brassell et al., 1986; Prahl et al., 1988] by applying calibration curves. These

are derived from modern empirical relationships between the unsaturation indices and temperature,

stemming either from core top calibration or from laboratory culture calibration [Rosell-Meĺe et al.,

1995; Müller et al., 1998; Rosell-Melé et al., 2001]. An updated calibration curve is depicted in Fig-

ure 1.10, where analysis of the core tops of deep sea cores distributed over all three ocean basins are

employed. The best correlations were obtained using annual mean temperatures from 0 to 10 m water

depth. The global error in alkenone-derived temperature from core-top calibration is ±1.5◦C [Müller

et al., 1998].

1.2.4 Seasonally-resolving corals

Massive annually-banded corals growing in tropical and subtropical oceans provide a palaeoclimatic

archive with a seasonal resolution. Modern reef-building corals live in the upper levels (about 40 to

50 m) of the warm oceans with mean temperatures around 24◦C and a minimum not falling below

18◦C [Felis and Pätzold, 2003]. These corals are able to document past variations in water tempera-

ture and ocean circulation. Recent coral-based research mainly in the tropics provided for important
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Figure 1.10: Calibration curve for the alkenone unsaturation index (U K′
37) derived from analyses of the tops

of globally distributed deep sea cores using various microalgae species [Müller et al., 1998]. The obtained

global core-top calibration (regression curve: UK′
37 = 0.033 SST + 0.044, r2 = 0.958, SST is taken from present

climatology [Levitus and Boyer, 1994]) is almost identical to that of Prahl and Wakeham [1987], derived from

E. huxleyi. The slightly different calibration curves for the three ocean basins are marked.

implications on past variability of the ENSO phenomenon and decadal tropical climate variability

[e. g., Cole et al., 2000; Rimbu et al., 2003]. Furthermore, coral records going back several centuries

from rare subtropical key locations (Bermuda, northern Red Sea) have been investigated. Palaeocli-

matic records from these coral sites were shown to reflect the oceanic (Bermuda) and atmospheric

(northern Red Sea) signature of the NAO variability pattern [Felis et al., 2000; Rimbu et al., 2001]. A

principal period of 5.7 years has been analysed in the Red Sea coral, typical for atmospheric forcing

by large-scale, primarily Northern Hemisphere Pacific- and Atlantic-based climatic modes [Felis and

Pätzold, 2003].

Modern corals do not grow older than 100 to 350 years, which limits their direct usage for palaeo-

climete research. However, the finding of well-preserved fossil corals can provide limited time win-

dow records of climate variability comparable in resolution and quality to those derived from mod-

ern corals. In Chapter 5, temperature records with bimonthly resolution derived from two fossil

corals from the late Holocene and the Eemian interglacial are investigated. Upper ocean temperatures

were derived from isotopic δ18O and Sr/Ca ratios in time windows of 98 and 44 years length for

the Holocene and last interglacial coral, respectively [Felis et al., 2004]. The records are related to

large-scale atmospheric variability patterns (AO/NAO) analysed from results of the coupled AOGCM

forced by the (accelerated) orbital insolation signal.
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1.3 Publications

1.3.1 Previous and related work

This thesis is partly based on previous work, where the approach to perform a synthesis in modelling

results and geological data has been initialised. The hydrological cycle and the atmospheric trans-

port of water vapour of different climates during the last glacial cycle were examined in Lohmann

and Lorenz [2000]. This work was based on time slice experiments with the ECHAM model for

the climates of the LGM, the climate optimum (6 kyr BP), and the onset of glaciation (115 kyr BP),

described in [Lorenz et al., 1996]. These experiments were conducted following the guidelines of

the international “Paleoclimate Modeling Intercomparison Project” (PMIP) [Joussaume and Taylor,

2000], where the boundary conditions for the LGM and the climate optimum were defined. A part of

these simulations were subject to analyses described in Chapter 2. In Lohmann and Lorenz [2000],

the idea of cooler tropical SST during LGM is discussed and validated through an enhanced com-

parison of simulated climate parameters with related proxy data; e. g. simulated net precipitation

is cross-validated with reconstructed distributions of plant available moisture collected by Farrera

et al. [1999], and lake level changes as obtained from the Global Lake Status Database [Kohfeld and

Harrison, 2000]. In addition, Lorenz et al. [2004] (in german language) compare the changes of the

simulated hydrological cycle of the LGM climate with the ones of a scenario simulation of the climate

of the next 100 years under the forcing of increased greenhouse gas concentrations.

The particular role of deep root vegetation, has been studied with a series of ECHAM simulations of

the LGM and the present climate [Kleidon and Lorenz, 2001]. In the simulation of the LGM including

the effect of water storage of deep root vegetation an enhanced altitudinal shift of vegetation zones

was found. In contrast to other model studies [e. g., Crowley and Baum, 1997], Amazonian rainforest

sustained in the LGM simulations due to the availability of moisture from the rainy season to dry

periods. Additionally, in a vegetation feedback study, the carbon budget of the glacial terrestrial

biosphere has been investigated [François et al., 1999] using results from the ECHAM simulations of

the LGM climate.

The question whether a temperature increase in the tropics could initiate the transition from a glacial

into an interglacial climate is often discussed [e. g., Cane, 1998]. In the LGM experiments with the

ECHAM model, surface air temperature over the Laurentide ice sheet is diagnosed to be more than

6 K warmer when tropical SSTs are increased by 3 K. This evidence is discussed by Rodgers et al.

[2003] in comparison with proxy data indicating a leading role of the tropical warming for initialising

a deglaciation [Lea et al., 2000] (see Figure 1.1d). It is explained by extratropical changes in lapse

rate and atmospheric moisture, but with only minor circulation change. However, an ice sheet model

driven by atmospheric boundary conditions from the ECHAM and two other atmospheric models did

not confirm the initiation of ice sheet decay by induced tropical warming [Rodgers et al., 2004].

Another study where changing boundary conditions in an AGCM were related to proxy data, was

concerned with rapid ice accumulation in Greenland during the last glacial period [Kiefer et al.,

2002]. This study was motivated by evidence of North Pacific warm spells in a northwest Pacific

deep sea core [Kiefer et al., 2001] concomitantly with rapid Dansgaard-Oeschger transitions between

cold stadials and warmer interstadials as recorded in Greenland as well as in Antarctic ice cores
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during the last glacial [Dansgaard et al., 1993; Grootes et al., 1993; Blunier and Brook, 2001]. A

replenishment of the Greenland ice after severe iceberg outbreaks as recorded in debris-layers is

difficult to establish from North Atlantic sources due to cold glacial SST in the vicinity of Greenland.

It is suggested that increased ice accumulation may be supplied by moisture sources from the North

Pacific. Inducing a warming of 3.5 K to the glacial SST in the Pacific between 49◦ and 57◦N increased

the net precipitation (ice accumulation water equivalent) by 40 % in East Greenland [Kiefer et al.,

2002].

Recently, teleconnection patterns on centennial to millennial timescales have been analysed in

alkenone-derived SST data from the Holocene [Rimbu et al., 2003]. Further studies investigated in-

ternal processes that are potentially responsible for detected patterns between the North Atlantic and

the North Pacific [Kim et al., 2004] as well as between the North Atlantic and tropical oceans [Rimbu

et al., 2004]. This work was based on a statistical analysis of the internal variability derived from

the control run of a coupled AOGCM. Moreover, the European winter cooling during the Holocene,

as simulated by the transient experiments with this AOGCM [Schneider et al., 2004; Lorenz et al.,

2006], is compared and deduced to be in line with a recent regional model study analyzing the oceanic

circulation pattern in the Nordic Seas [Lohmann et al., 2005]. In Groll et al. [2005], the relationship

between regional temperatures and the large-scale circulation, based on quasi-equilibrium time slice

simulations of the Eemian and the pre-industrial climate, is discussed. In a recent further analysis

of the transient ensemble simulations of the period from the Eemian interglacial to the onset of the

last glaciation, Lohmann and Lorenz [2006] found a correlation of tropical Pacific convection and the

extratropical AO/NAO circulation pattern that is possibly controlled by the orbitally driven insolation

signal during this climate transition.

1.3.2 Contents of the thesis

In the following chapters the questions that are introduced and formulated in Section 1.1 are addressed

by manuscripts that are mostly published in peer-reviewed journals (Chapters 3, 4, and 5). Chapter 2

contains the revised version of a reviewed article that will be resubmitted in a similar version. A

synthesis of this thesis is given in Chapter 6. Furthermore, Appendix A includes the contribution of

the author to the cited booklet.

Chapter 2: Stephan J. Lorenz and Gerrit Lohmann. “On a critical reassessment of glacial snow lines

with tropical sea surface temperatures”, revised version, to be resubmitted to Geochemistry,

Geophysics, Geosystems.

Chapter 3: Stephan J. Lorenz and Gerrit Lohmann. “Acceleration technique for Milankovitch type

forcing in a coupled atmosphere-ocean circulation model: method and application for the

Holocene”, Climate Dynamics, 23 (7-8), 727-743, doi:10.1007/s00382-004-0469-y, 2004.

Chapter 4: Stephan J. Lorenz, Jung-Hyun Kim, Norel Rimbu, Ralph R. Schneider, and Ger-

rit Lohmann. “Orbitally-driven insolation forcing on Holocene climate trends: ev-

idence from alkenone data and climate modeling” Paleoceanography, 21, PA1002,

doi:10.1029/2005PA001152, 2006.
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rike Wyputta. “Reconstructing and Modelling the Last Glacial Maximum: Beyond CLIMAP”,

in “Use of Proxies in Paleoceanography: Examples from the South Atlantic”, edited by Günther

Fischer and Gerold Wefer, Springer-Verlag, Berlin, Heidelberg, 687-714, 1999.

1.4 References

Anderson, D. M., and R. S. Webb, Ice-age tropics revisited, Nature, 367, 23–24, 1994.

Bard, E., Comparison of alkenone estimates with other paleotemperature proxies, Geochemistry Geophysics

Geosystems, 2, doi:2000GC000,050, 2001.

Bard, E., F. Rostek, and C. Sonzogni, Interhemispheric synchrony of the last deglaciation inferred from

alkenone palaeothermometry, Nature, 385, 707–710, 1997.
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*François, L. M., Y. Goddéris, P. Warnant, G. Ramstein, N. de Noblet, and S. Lorenz, Carbon stocks and

isotopic budgets of the terrestrial biosphere at mid-Holocene and last glacial maximum times, Chemical

Geology, 159, 163–189, 1999.

Franzke, C., K. Fraedrich, and F. Lunkeit, Teleconnection and low-frequency variability in idealized experi-

ments with two storm tracks, Q. J. Roy. Meteor. Soc., 127, 1321–1340, 2001.

*Groll, N., M. Widmann, J. M. Jones, F. Kaspar, and S. J. Lorenz, Simulated differences in local to large-scale

slimate relationships between the Eemian (125 ky BP) and the pre-industrial period, Journal of Climate, 18,

4035–4048, 2005.

Grootes, P. M., M. Stuiver, J. W. C. White, S. J. Johnsen, and J. Jouzel, Comparison of oxygen isotope records

from the GISP2 and GRIP Greenland ice cores, Nature, 366, 552–554, 1993.

Guilderson, T. P., R. G. Fairbanks, and J. C. Rubenstone, Tropical temperature variations since 20,000 years

ago: modulating interhemispheric climate change, Science, 263, 663–665, 1994.

Hays, J. D., J. Imbrie, and N. J. Shackleton, Variations in the Earth’s orbit: pacemaker of the ice ages, Science,

194, 1121–1132, 1976.

Herterich, K., Modellierung eiszeitlicher Klimaschwankungen, Habilitationsschrift, Universität Hamburg,

Fachbereich Geowissenschaften, Hamburg, Germany, 1990.

*Herterich, K., S. Determann, B. Grieger, I. Hansen, P. Helbig, S. Lorenz, A. Manschke, M. Matthies, A. Paul,

R. Schlotte, and U. Wyputta, Reconstructing and modelling the last glacial maximum: Beyond CLIMAP, in

Use of Proxies in Paleoceanography: Examples from the South Atlantic, edited by G. Fischer and G. Wefer,

pp. 687–714, Springer-Verlag, Berlin, Heidelberg, 1999.

Imbrie, J., J. D. Hays, D. G. Martinson, A. McIntyre, A. C. Mix, J. J. Morley, N. G. Pisias, W. L. Prell,

and N. J. Shackleton, The orbital theory of Pleistocene climate: Support from a revised chronology of the
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Chapter 2

On a critical reassessment of glacial

snowlines and tropical sea surface

temperatures

Abstract.

Reconstructions of tropical snowlines during the last glacial maximum 21,000 years ago

are incompatible with the sea surface temperature (SST) reconstructions of the Climate:

Long-Range Investigation, Mapping, and Prediction (CLIMAP) project, when assuming

present day atmospheric environmental lapse rates. Different reconstructions of the last

glacial maximum and an interglacial climate are applied to an atmospheric general cir-

culation model. The recent reconstructions of glacial Atlantic SST within the Glacial

Atlantic Ocean Mapping Project (GLAMAP) as well as a cooling of tropical SSTs by

3 Kelvin relative to the ones suggested by CLIMAP are applied. The simulated glacial

climate and the result of a vegetation model are compared with pollen based temperature

proxy data. The experiments reveal that the moderate tropical cooling of SSTs relative

to CLIMAP is consistent with much lower temperatures than today in the tropical moun-

tains and reduced occurrence of tropical trees. The depression of tropical snowlines can

be attributed to less moisture content affecting an increased lapse rate in the free atmo-

sphere, and reduced surface temperature near tropical glaciers due to a longer duration of

snow cover. Our model result provides a consistent view of the last glacial maximum cli-

mate with much lower temperatures than today in the tropical mountains in concordance

with a moderate decrease of tropical SSTs.

2.1 Introduction

The global reconstruction of sea surface temperatures (SST) of the last glacial maximum (LGM)

by the Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) project in the late

Stephan Lorenz und Gerrit Lohmann, revised version, submitted to Geochemistry, Geophysics, Geosystems.
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seventies [CLIMAP Project Members, 1976, 1981] has initiated an enduring dispute on its consis-

tency with reconstructions of terrestrial tropical climate [Webster and Streten, 1978; Rind and Peteet,

1985; Betts and Ridgway, 1992; Broccoli and Marciniak, 1996; Lee and Slowey, 1999; Hostetler and

Clark, 2000; Crowley, 2000a; Mix et al., 2001; Greene et al., 2002]. The CLIMAP-reconstruction

of the tropical marine climate was based on transfer functions to connect assemblages of planktic

foraminifera with near surface water temperature. Results show only moderate temperature decrease

of SST in the tropical oceans. In the equatorial tropics (10◦N to 10◦S) SST was about 1–2 K lower

than today, 1.4 K in the annual mean. In the subtropical gyres, especially in the Pacific Ocean, there

are wide areas where surface waters were reconstructed to be even 1–3 K warmer during the LGM

relative to the present day SST [CLIMAP Project Members, 1981; Lohmann and Lorenz, 2000].

A number of climate reconstructions are in conflict with these CLIMAP findings. From marine

as well as from terrestrial sites colder glacial tropics have been detected [see Anderson and Webb,

1994; Crowley, 2000a]: analyses of noble gases from groundwater in tropical lowlands from Brasil

and Florida [Stute et al., 1995] as well as from Oman [Weyhenmeyer et al., 2000] result in near

surface temperature changes which are in agreement with those from isotopic measurements from

tropical mountain glaciers [Thompson et al., 1995]. More evidence exists from the analysis of oxygen

isotopes and of strontium to calcium ratios in Caribbean corals [Guilderson et al., 1994]. These three

parameters indicate surface temperatures 4–6 K colder compared to today. This is about 2–4 K colder

than the drop of SSTs suggested by CLIMAP. Newly calculated transfer functions for interpretation

of assemblages of planctic foraminifera also suggest temperatures remarkably lower than CLIMAP

in some tropical areas [Lee and Slowey, 1999; Mix et al., 1999; Mix et al., 2001]. Furthermore,

SST-reconstructions from alkenones result in 3–4 K tropical temperature difference between LGM

and today [Bard et al., 1997; Rühlemann et al., 1999]. This latter value is in between the reduction

due to CLIMAP and the three former reconstructions of temperature change. In summary, different

proxy methods (alkenones, magnesium and strontium to calcium ratios, oxygen isotopes, transfer

functions) reveal discrepancies of some Kelvin in LGM temperature reconstructions [Bard, 2001;

Mix et al., 2001].

Recently, a new collection of glacial SST in the Atlantic Ocean has recently been completed by

the Glacial Atlantic Ocean Mapping Project (GLAMAP-2000, GLAMAP in the following) [Mix,

2003; Sarnthein et al., 2003; Paul and Schäfer-Neth, 2003]. This project has used 275 sediment

cores between the North Pole and 60◦S with carefully defined chronostratigraphies and has employed

improved transfer-function techniques to reconstruct SSTs and sea ice boundaries for the LGM from

census counts of microfossils, including radiolarians and diatoms [Sarnthein et al., 2003; Niebler

et al., 2003]. While the GLAMAP SST patterns differ significantly in crucial regions of the Atlantic

Ocean from the ones reconstructed by CLIMAP Project Members [1981], up to now there exist no

such collections for the Indian and Pacific Oceans.

The height of the snowline of tropical mountain glaciers during LGM is another important indica-

tion for paleoclimate temperature changes. The snowline is the lowest elevation of perennial snow

on a glacier and is equivalent with the minimal snow cover at the end of the ablation season [Porter,

2001]. The height above sea level of the equilibrium-line (the “equilibrium-line altitude”, ELA) of a

glacier where the glacier mass balance equals zero divides the accumulation from the ablation zone.
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The snowline of a glacier is often used as a synonym for the ELA. On a large scale average, both

lines are very similar in height. On temperate and tropical glaciers they are in close vicinity with the

zero-degree (0◦C) isoline.

The ELA can be deduced from reconstructed extent and height of paleoclimatic moraines. Such

moraines are built by deposit of detritus during periods of waxing glaciers and left over after their

retreat. The reconstructed size of a tropical glacier during LGM can be translated into a glacial ELA

using various methods. The “toe to head altitude ratio” (THAR) method assumes a constant ratio

of ∼ 0.35± 0.15 for the the lowest and highest altitude of tropical glacier dimensions in the Central

Andes [Klein et al., 1999]. The “accumulation-area ratio” (AAR) method is based on a constant

ratio of the accumulation area of such glaciers (∼ 0.67± 0.15), which determines the altitude of the

snowline in a given topography [Klein et al., 1999; Porter, 2001].

Variations of the ELA of mountain glaciers have been interpreted in terms of their mean response

to climatic fluctuations on time scales of 103 to 104 years, where glacier dynamics are not considered.

Fluctuations in the height of the snowlines are controlled by various climate-related parameters, such

as temperature, precipitation, radiation balance, wind speed, and humidity [Seltzer, 1994]. In most

paleoclimate studies using snowline reconstructions, a change in ELA is translated into a temperature

variation by assuming a constant vertical temperature gradient, the environmental lapse rate, typical

for the large scale climate of the respective region. This approach does not consider the effect of

changes in accumulation, radiation balance, and latent heat transfer on ELA.

Today, the snowline is at a height of more than 4.5 km in most of the tropical mountains [Porter,

2001]. During the last decades much research has been undertaken to reconstruct and precisely date

the extent of tropical mountain glaciers and their ELA during glacial times [e. g. Webster and Streten,

1978; Porter, 1979; Crowley and North, 1990; Seltzer, 1994; Mark et al., 2002]. Based on a review of

the evidence from 12 tropical sites in Africa, America, and Pacific islands, Porter [2001] concluded

that glacial snowlines were 800 to 1000 m lower than today (see also table 3 of Greene et al. [2002]).

Taking into account the glacial change in sea level of 120 m [Fairbanks, 1989; Rohling et al., 1998],

the 900±135 m change in ELA translates into a 780 m drop of the 0◦C isoline. Using an appropriate

constant environmental lapse rate, this corresponds to a ∼5–7 K mean annual temperature drop, which

may at least provide a first-order approximation of regional and global tropical temperature reduction

at the LGM [Seltzer, 2001]. This temperature drop is based on tropical lapse rates, which lie between

the dry (10 K/km) and the moist (5 K/km) adiabatic lapse rate. In the tropics, lapse rates are more

closely linked towards the moist adiabat [Broecker, 1997], which transforms a snowline depression

of 1 km into a temperature reduction of some 6 K. Therefore an inconsistency of at least 4 K exists

between tropical temperature reconstruction by CLIMAP at the surface (1 K colder than today) and

the 5–7 K cooling during LGM at the height of the tropical snowline.

In this study, simulations with an atmospheric GCM for glacial conditions are analyzed. As lower

boundary condition for the atmospheric GCM, three different glacial distributions of SST and sea

ice are used: first, the older one by CLIMAP, second, the updated GLAMAP reconstruction for the

Atlantic (and CLIMAP for the Indo-Pacific basins), and third the CLIMAP SST with an inserted

tropical cooling of three Kelvin. Furthermore, the vegetation cover is evaluated to derive the fraction

of tropical trees under the different glacial conditions. The models and their boundary conditions
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are introduced in the next section. In section 3, the climatology of the GCM is shown, and we

discuss distributions of tropical lapse rates as well as changes in tropical trees according to the various

scenarios of tropical glacial ocean temperatures. With this study, we give evidence for increased

tropical lapse rates during LGM, affected by moderately colder tropical SST than CLIMAP, which

are discussed in section 4. Finally, conclusions are given in the last section.

2.2 Methodology

2.2.1 The GLAMAP Atlantic Ocean SST reconstruction

For the utilization of such sparsely and irregularly distributed core sampling data as validation and

forcing data for various circulation models, an interpolation onto a regular longitude-latitude grid

is necessary. The GLAMAP data set, consisting of proxy-derived SST data at various core sites,

was gridded onto a regular 1◦×1◦ grid using an objective mapping method [Schäfer-Neth and Paul,

2003]. The resulting gridded GLAMAP SST data set [Paul and Schäfer-Neth, 2003], suitable for

validation as well as forcing of oceanic and atmospheric circulation models, has been provided as

surface boundary condition for one of the simulations of this study.

Two regions of special emphasis arose from currently ongoing debates: the tropics and the north-

ern North Atlantic. For example, in the Equatorial Current, especially along the eastern boundary

upwelling system off Namibia, colder temperatures than CLIMAP (4–6 K colder than today) were

reconstructed within GLAMAP using a recent transfer-function approach [Mix et al., 1999]. More-

over, seasonally ice-free conditions in the northern North Atlantic during the LGM were proposed

[Weinelt et al., 1996; Sarnthein et al., 2003b].

2.2.2 The atmospheric ciculation model ECHAM

For our numerical experiments, we apply the ECHAM3 atmospheric GCM [Roeckner et al., 1992]

in T42 horizontal resolution with 19 vertical layers. The model uses the primitive equations and

includes calculation of radiation and a hydrological cycle with transport of water vapor and cloud

water. The calculation of radiation occurs with respect to the glacial level of atmospheric greenhouse

gases. In the model, this is represented by prescribing an equivalent portion of atmospheric carbon

dioxide (CO2). The equivalent greenhouse gas concentration includes the effects of other gases, such

as methane and nitrous oxygene.

2.2.3 Glacial boundary conditions

For paleoclimate experiments, the model was adjusted to reflect changes in orbital parameters

[Berger, 1978; Lorenz et al., 1996]. For glacial conditions (experiment LGM.O), we provide SST

and sea ice distribution (Figure 2.1) collected by CLIMAP Project Members [1981]. Furthermore, the

lowering of the sea level by 120 m [Fairbanks, 1989; Rohling et al., 1998] as well as the distribu-

tion of glacial ice sheets [Peltier, 1994] and changed continental distribution are taken into account.
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Figure 2.1: Boundary conditions

(annual mean) for (a) the con-

trol experiment (CTR.O) and the

three LGM simulations, using dif-

ferent reconstructions of glacial

SST and sea ice: (b) CLIMAP

(exp. LGM.O), (c) GLAMAP in the

Atlantic and CLIMAP elsewhere

(exp. LGM.G, see continuation

of this figure on next page), and

(d) CLIMAP with applied cool-

ing of 3 K between 30◦N and

30◦S (exp. LGM.N). The figure dis-

plays SST for the control experi-

ment, anomalies from the control

for the glacial experiments, sea

ice cover (grey), land ice cover

(green) and surface topography

(isolines at 0.5, 1, 2, 3, and 4 km).

SST and continents are shown in

the horizontal resolution of the

ECHAM (T42).

(a)

(b)

The equivalent concentration of carbon dioxide, including the effect of other greenhouse gases like

methane, used for the glacial experiments is 200 ppm.

A second glacial experiment was performed with the ECHAM model (experiment LGM.N) to test

the influence of colder tropical ocean temperatures on climate [Lohmann and Lorenz, 2000]. In this

experiment the tropical SST, as reconstructed by CLIMAP, is reduced by 3 K between 30◦ northern

and southern latitude. A linear transition zone between 30◦ and 36◦ latitude is defined: one grid row

with 2 K and one grid row with 1 K temperature reduction is used on the Northern and Southern

Hemisphere, respectively. Additionally, all positive SST anomalies during glacial time are removed.

A new glacial experiment (LGM.G) is forced by the recently completed collection of glacial SST

in the Atlantic Ocean (GLAMAP-2000) [Sarnthein et al., 2003; Schäfer-Neth and Paul, 2003]. Due

to the lack of similar new collections of SST for the Indian and Pacific Oceans, a combination of

glacial SST is used for the GLAMAP experiment (LGM.G): the GLAMAP reconstruction is taken for

the whole Atlantic Ocean down to 60◦S, and that of CLIMAP for the rest of the global ocean surface

(including the Mediterranean Sea). All other glacial boundary conditions for experiments LGM.N and

LGM.G are the same as for LGM.O.
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Figure 2.1 (continued)

(c)

(d)

The glacial experiments are compared to the control run (experiment CTR.O). This experiment

used as lower boundary condition the distribution of SST and sea ice according to the AMIP project

[Gates, 1992] Figure 2.1. In order to test the effect of reduced SST on modeled tropical lapse rates

under interglacial conditions, a model simulation analogous to experiment LGM.N has been conducted

(experiment CTR.N) using modern, interglacial SST. The SST data set according to AMIP has been

reduced by 3 K in the same tropical latitude band and with the same transition zone as in experiment

LGM.N. The boundary conditions for the control experiment as well as for the three glacial experiments

are displayed in Figure 2.1.

All experiments utilizing the ECHAM3 atmospheric GCM have been integrated for 15 years in

order to evaluate the climate state as the response of the model to the prescribed boundary conditions.

For the analysis of these climates the first 5 years are regarded as the spin-up time of the model to

adjust to the different boundary conditions. The last 10 years of each experiment are then disposed to

evaluate the mean climatology of the respective simulation.

2.2.4 The global vegetation model

The Lund-Potsdam-Jena dynamic global vegetation model (LPJ) [Sitch et al., 2003] combines

process-based descriptions of terrestrial ecosystem structure (vegetation composition, biomass and

height) and function (energy absorption, carbon cycling). Vegetation composition is described by
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nine different plant functional types (PFT), which are distinguished according to their physiological,

morphological (tree, grass) and phenological (deciduous, evergreen) attributes.

The model is run on a grid-cell basis with specified atmospheric CO2–concentration and soil tex-

ture. Monthly fields of temperature, precipitation and radiation are taken from the output of the

atmospheric GCM, the ECHAM3. Each grid-cell is divided into fractions covered by PFTs and bare

ground. Both the presence and the covered fraction of PFTs within a grid-cell (T42) depend on their

specific environmental limits and on resource competition among the PFTs.

The vegetation dynamics is calculated under four different climatic conditions for present (CTR.O)

and glacial (LGM.O, LGM.N, and LGM.G) climates, respectively. The vegetation model is run for 3000

years of integration into equilibrium, using 15 years of monthly data from the ECHAM model repeat-

edly as input for the LPJ model. The last 10 years of each simulation have been used for the analysis

of the equilibrium vegetation cover.

2.3 Results

2.3.1 Climatology of the LGM experiments

Near surface air temperature: In Figure 2.2 the global distribution of near surface temperature

for the three LGM experiments are shown. Forced by CLIMAP SST anomalies (experiment LGM.O,

Figure 2.1), moderate cooling takes place over the tropical latitude band, with stronger cooling located

in northern and eastern Africa and eastern Asia. In contrast, large areas of higher temperature than

today are evident in the subtropical Pacific and the western Indian Ocean, with continental warm

peaks at the Amazonian mouth and northern Australia.

For the GLAMAP experiment (LGM.G), the patterns of surface temperature anomaly from control

are very similar to those of experiment LGM.O over most parts of the globe. In contrast, the air

temperature over the eastern equatorial Atlantic Ocean is lowered by 4–6 K in experiment LGM.G

compared to the control experiment CTR.O and thus agrees more with experiment LGM.N than LGM.O.

Here, the GLAMAP reconstruction of glacial SST takes effect on the simulated climate. Interestingly,

the region with warm air over the Amazonian rain forest in experiment LGM.O is further increased up

to 4 K warmer temperature than today in LGM.G.

The response patterns of temperature difference between the experiments LGM.N and CTR.O are

very much like those of LGM.O minus CTR.O, except for the temperature drop of 3 K throughout the

tropics (between 30◦N and 30◦S), impressed by the forcing. In the regions with warmer air than today

in experiment LGM.O a marginal temperature decrease surrounded by regions with stronger cooling

can be identified in experiment LGM.N (Figure 2.2). In this LGM simulation, no regions with glacial

warming remain.

Precipitation: The changes in the climatological precipitation of the experiments are displayed in

Figure 2.3. Vigorous changes in the global distribution of precipitation occur for the last glacial cli-

mate and are evident in the difference between the experiments LGM.O and CTR.O (upper panel of

Figure 2.3). The strongest increase of precipitation takes place over the regions with glacial SST be-

ing warmer than today, like the western Indian and large parts of the subtropical Pacific Ocean. Due
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(K)

LGM.O–CTR.O

LGM.G–CTR.O

LGM.N–CTR.O

Figure 2.2: Annual mean near surface temperature anomaly form the control experiment CTR.O (K) of three

different LGM simulations as labelled in the upper left corner of each panel.

to a strongly increased meridional temperature gradient in the subtropical Pacific, where higher SST

is delimited poleward by much colder waters than today, severely changed precipitation patterns are

evident. Over land, precipitation is generally reduced, moderately over the African and more vigor-

ously over the Amazonian rainforests. Strong drying is found especially in southern and southeastern

Asian summer monsoon regions.

The differences between the three LGM simulations are much less intense than between each of

these experiments and the control run. Note, that in contrast to the upper panel, the other two panels

in Figure 2.3 show anomalies of two experiments LGM.G and LGM.N with respect to experiment LGM.O

(see the labels in the upper left of each panel).

Substantial changes in the experiment forced by the GLAMAP SST (LGM.G) relative to the

CLIMAP experiment (LGM.O) take place in the Equatorial Atlantic and in the surrounding parts of

Africa and South America. The precipitation in the Amazonian rainforest is further reduced. The

experiment LGM.N exhibits very similar precipitation patterns (but with opposite sign) with respect

to experiment LGM.O as does experiment LGM.O with respect to experiment CTR.O. Since the tropical
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(mm/day)

LGM.O–CTR.O

LGM.G–LGM.O

LGM.N–LGM.O

Figure 2.3: Annual mean precipitation anomalies (mm/day) of three different LGM simulations. Note the

different subtractor in the upper (experiment CTR.O), and the middle and lower (experiment LGM.O) panel,

respectively.

SST in LGM.N is reduced by 3 K, the meridional temperature gradient in the subtropical Pacific is also

reduced. As a consequence, the differences LGM.N minus CTR.O are less extense than are those of

LGM.O minus CTR.O.

Sea level pressure: The differences in sea level pressure between the glacial experiment LGM.O and

the control experiment CTR.O (upper panel of Figure 2.4) indicate an enhancement of the subtropical

northern and southern highs in the Atlantic but a weakening of the subtropical highs in the Pacific

Ocean. Furthermore, over the southern part of the Eurasian continent the prevalent low pressure sys-

tem is partly filled during glacial times. For the GLAMAP experiment LGM.G, the sea level pressure

over the low latitude Atlantic Ocean is generally increased in comparison with experiment LGM.O

(middle panel of Figure 2.4). The experiment LGM.N with colder tropical SST again opposes the

changes between experiments LGM.O and CTR.O: reduced pressure in the Pacific in LGM.O is partly

canceled in LGM.N, enhanced pressure in the North Atlantic in LGM.O is partly countervailed in LGM.N

(lower panel of Figure 2.4).
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(hPa)

LGM.O–CTR.O

LGM.G–LGM.O

LGM.N–LGM.O

Figure 2.4: Annual mean anomalies in sea level pressure (hPa) of three different LGM simulations. Note

the different subtractor in the upper (experiment CTR.O), and the middle and lower (experiment LGM.O) panel,

respectively. The difference in the global average of the mean sea level pressure (1011.2 hPa in the experiment

CTR.O and 1023.4 hPa in LGM.O as well as in LGM.G and LGM.N) has been subtracted in the upper panel.

This difference is caused by the displacement of air by the huge Northern Hemisphere ice caps during the last

glacial.

2.3.2 Temperature of the coldest month

For a validation of model results a comparison with terrestrial temperature proxy data is appropriate,

since the ocean surface temperature is prescribed. In order to extract a comparable measure, we

calculate the mean temperature of the coldest month (MTCO). The incidence of certain plants is

more often connected to the minimum than to the annual mean temperature [Farrera et al., 1999].

Therefore, MTCO can be linked to pollen data for which the data base is relatively large. Figure 2.5

shows MTCO for the glacial experiments LGM.O, LGM.G, and LGM.N, respectively.

In tropical and subtropical America and in western Africa, the LGM.N climate yields a better con-

cordance with paleodata than the experiment LGM.O (Figure 2.5). In the western Pacific region, where
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LGM.O

LGM.G

LGM.N

Figure 2.5: Near surface air temperature anomalies (K) of the coldest month for the glacial experiments

LGM.O, LGM.G, and LGM.N with reference to the control run CTR.O. The rectangles indicate reconstructions of

glacial temperature decrease of MTCO (colour with respect to temperature drop, leading minus sign omitted),

compiled by Farrera et al. [1999], cf. Table 2.1.

the glacial cooling is significantly smaller than in the western Atlantic, the simulated cooling in LGM.N

matches better with the Farrera et al. [1999] data than the warming in LGM.O. However, in southern

Africa, in New Guinea, and some islands in the central Pacific Ocean the simulated glacial tempera-

ture drop in experiment LGM.N seems to be overestimated when compared with proxy data [Farrera

et al., 1999]. Similar results are listed in Table 2.1.

2.3.3 Vegetation

In order to test the sensitivity of the tropical vegetation cover with respect to the different climate

conditions, the LPJ dynamical vegetation model is forced with the glacial and present climate con-

ditions, as calculated by the atmospheric model ECHAM. The LPJ model calculates, beside other
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Table 2.1: Reconstructed and simulated air temperature anomalies (LGM minus present climate). Data: mean

surface air temperature anomalies of the coldest month, compiled by Farrera et al. [1999]. Locations up to

1500 m above sea level are included only. Air temperatures are reduced to sea level. Some areas consist of

several sites located in the same region. Simulated temperatures are not reduced, but the mean topographic

height concerning to the model’s resolution is near sea level. Model output are area averages of grid points

over land.

location sites lat. lon. data LGM.N LGM.0 LGM.G

America

Florida/USA 3 29◦N 83◦W –12.0 –6.5 –4.5 –4.5

Panama 1 9◦N 80◦W –7.0 –5.5 –2.5 –2.0

Ecuador 2 2◦N 78◦W –7.5 –5.5 –2.0 –2.0

Rio Negro 2 0◦N 66◦W –4.0 –4.5 –1.0 –1.5

Africa

Ghana 1 7◦N 1◦W –4.0 –6.5 –2.5 –2.0

South Africa 2 26◦S 26◦E –5.0 –7.5 –3.5 –3.0

Madagascar 1 19◦S 47◦E –4.0 –6.5 –3.0 –3.5

Pacific

China 3 22◦N 112◦E –10.0 –6.5 –1.0 0.0

Java 4 7◦S 107◦E –2.5 –3.5 –0.5 0.0

Sulawesi 1 2◦S 121◦E –3.0 –3.5 0.0 0.0

results, the fraction of the PFT with respect to the varying climate of the ECHAM experiments The

analysis of the tropical trees shows that the fractional coverage is very different among the three LGM

experiments (Figure 2.6). The control climate shows large areas of tropical evergreen and raingreen

trees (Figure 2.6a). During glacial times, the fractional coverage is substantially reduced over central

Africa and large parts of South America (Figure 2.6b-d), where temperate trees are expanding. The

simulation using the coldest and dryest reconstruction (LGM.N) depicts only small areas of trop-

ical trees over the African and South American continents (Figure 2.6c), where tropical rainforest

is able to survive. The model simulations based on the CLIMAP (Figure 2.6b) and the GLAMAP

(Figure 2.6d) reconstructions show an intermediate coverage over these tropical areas.

2.3.4 Environmental lapse rates

In Figure 2.7 the lapse rates in the tropical region are shown for the control run and the three glacial

experiments. Lapse rates are calculated using the difference in the annual mean temperature of the

free atmosphere at 500 hPa and the surface air temperature, divided by the respective height of the

500 hPa level.

In the control climate (CTR.O, Figure 2.7a), the lapse rate is steepest over tropical and subtropical
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(a) CTR.O

(b) LGM.O

(c) LGM.G

(d) LGM.N

(%)

Figure 2.6: Fractional coverage (in %) of tropical trees for the experiments (a) CTR.O, (b) LGM.O, (c) LGM.G,

and (d) LGM.N.
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continents, where strong convection is driven by high surface temperature, leading to very cold tem-

perature in the midtroposphere up to the tropopause. Over the oceans, convection is lower and lapse

rates are reduced. The regions with lowest lapse rates mark notably the subtropical ocean areas off the

western coasts of the North- and South American, the African, and the Australian continents, where

upwelling is highest and SST is relatively cold.

For the glacial climate forced by CLIMAP SSTs (LGM.O, Figure 2.7b), the lapse rates are steeper

over the tropical continents, in particular where the glacial temperature is higher than today (Amazon,

Australia, cf. Figure 2.2). Also over the eastern Pacific, the western Indian and western Atlantic

Ocean, the lapse rate is stronger with a steepened gradient by 0.3 to 0.5 K km−1. Only in the river

Nile region, the vertical temperature gradient is slightly reduced.

For the glacial experiment forced by the GLAMAP SST (Figure 2.7c), we find steeper lapse rates

over the western tropical Atlantic and a strongly increased vertical temperature gradient over the

whole Amazonian rainforest. In contrast, in the eastern Atlantic off West Africa, the lapse rate over

the upwelling region is further reduced.

The coldest LGM experiment (LGM.O, Figure 2.7d) exhibits an overall increase in the strength of

the environmental lapse rate. The value of the gradient rises by 0.5 to 1.0 K km−1 with a maximum

over large parts of the western Pacific as well as over the Amazon mouth and New Guinea. Only very

limited areas over Africa and off China show a moderately flattaned lapse rate.

2.3.5 Temperature of the free atmosphere

Figure 2.8 shows the zonal mean temperature distributions for the glacial experiments. Apart from

the high latitudes, the simulated glacial temperature drop in the experiment LGM.O amounts to 1–2 K

in the lower and 3 K in the middle troposphere (500 hPa level, ca 5.8 km) compared to the control

experiment CTR.O (Figure 2.8a). In contrast, the experiment LGM.N exhibits a glacial cooling of 4–

6 K near the surface but 6–10 K in the tropical midtroposphere (Figure 2.8b). This implies that the

vertical temperature gradient (environmental lapse rate) has changed in experiment LGM.N. The lapse

rate steepened in the colder climate at low latitudes compared to the climate forced by the SST of

the CLIMAP reconstruction. The temperature difference between both glacial runs (Figure 2.8c)

indicates an enhanced cooling with height: the SST difference of 3 K at the surface level between the

glacial runs increases by 2 K to 5 K at the 500 hPa level. A similar pattern is obtained for the two

interglacial experiments CTR.N and CTR.O, where the anomaly increases from 3 K near the surface to

6 K in the midtroposphere (not shown).

The enhanced cooling of air temperature at higher elevation is due to the substantial water vapor

content of tropical warm air. In the tropics the relative humidity of air is considerably high in compar-

ison with extra-tropical climates. In the temperature range between 24◦C and 30◦C the water vapor

content lies near 80% of the saturation value [Broecker, 1997]. In the LGM.N experiment, the absolute

water vapor content in tropical warm water regions is reduced by more than 20% compared to the

experiment LGM.O (Figure 2.9). This is in line with a study of Seltzer [2001], who stated that the

water vapor content of the atmosphere is the ultimate control on temperature lapse rates.

Because less latent heat can be released by condensation in experiment LGM.N compared to LGM.O,

the vertical temperature gradient is enhanced: comparing different air parcels with similar relative
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(a) CTR.O

(b) LGM.O

(c) LGM.G

(d) LGM.N

(K km−1)

Figure 2.7: Environmental lapse rate (K km−1) in the free atmosphere between 500 hPa level and the surface

of the control experiment CTR.O and the glacial experiments LGM.O, LGM.G, and LGM.N. Blue colors indicate a

steeper lapse rate with colder temperatures in the midtroposphere.
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Figure 2.8: Zonal and annual mean vertical distribution of temperature differences (K) of the experiments (a)

LGM.O – CTR.O, (b) LGM.G – CTR.O, (c) LGM.N – CTR.O, and (d) LGM.N – LGM.O. The vertical bars indicate the

zonal mean model topography for the LGM experiments.
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humidity during an adiabatic ascent, the magnitude of the lapse rate in colder air is larger (steeper)

than in warmer air. This is due to the simple fact that warmer air can hold more water vapor, and

therefore more latent heat is released during the ascent, when condensation occurs. On average the

lapse rates of the free atmosphere in the tropics (30◦N to 30◦S, from the surface to 500 hPa) are –5.2,

–5.3, –5.4, and –5.7 K km−1 for the experiments CTR.O, LGM.O, LGM.G, and LGM.N, respectively. In

experiment LGM.N only, a substantially enhanced vertical temperature gradient is found.

2.3.6 Near surface temperature in tropical mountains

In order to understand the drop in glacial snowlines during the LGM, it is appropriate to examine the

modeled decrease of surface air temperature with height in tropical mountains. Since the ECHAM3

T42 model cannot resolve the tropical high altitude region, the Himalayan mountains and the Tibetan

highlands are taken as a surrogate for the calculation of tropical snowlines. Although the Himalaya

is located outside the tropics the climate is rather similar to that of tropical mountains like the Andes

or in central Africa, where the model topography does not exceed a height of 3 km. Only in Tibet a

height of more than 4 km is reached (Figure 2.1).

A meridional section at 90◦E includes the Tibetan plateau (Figure 2.10). The figure indicates a

stronger temperature drop during glacial times at these mountains than elsewhere in the lower lati-

tudes. At the 500 hPa level at 30◦N, the glacial temperature is decreased by 9 K relative to the control

climate, whereas at 30◦S, where no mountains exist, the glacial drop amounts to 7 K only.

We analyze vertical temperature profiles in the free atmosphere along a zonal profile at 32◦N from

Figure 2.9: Relative change (colour) of specific humidity of experiment LGM.N (q n) relative to LGM.O (qo) in

percent: (qn − qo) · q−1
o · 100. Areas where qo < 3 kg m−2 are not coloured. The labelled isolines show the

absolute values of vertically integrated specific humidity (kg m−2) of experiment LGM.O. Values refer to water

vapor, since the amount of cloud water is about two orders of magnitude smaller than that of water vapor and

is neglected here.
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the western Pacific Ocean to the plateau of Tibet (Figure 2.11). The annual mean surface air tempera-

ture decreases along this profile with raising height above sea level (Figure 2.11a and c). Furthermore,

in Figure 2.11b and c, the temperature difference from an idealized moist adiabatic lapse rate is plotted

against surface pressure. The moist adiabatic lapse rate with saturated water vapor content (Pseudoa-

diabat) that is taken as reference has a potential temperature of 45◦C at the pressure level of 1000 hPa

and is marked in Figure 2.11a with a dashed line.

An enhanced vertical gradient is found in the surface air temperature of all experiments relative to

the free atmosphere (Figure 2.11b). The resulting temperature difference between the glacial climate

with reduced tropical SST and the control run (LGM.N minus CTR.O) is much larger in Tibet (13 K,

Figure 2.11a) than in the free atmosphere (5 K, see arrows in Figure 2.11b), when comparing similar

height levels (∼ 570 hPa ∼ 5 km, Figure 2.11b). This is due to the snow-albedo feedback: the colder

temperature of the glacial climate causes a longer duration of snow cover providing for a higher

annual mean albedo, which in turn pronounces a further drop of the surface temperature.

2.4 Discussion

Analyzes of vertical temperature distribution in five climate simulations with the ECHAM model

forced by glacial and present SST reveal two main results: First, a moderate cooling of tropical SST

in both present and glacial climates induces a stronger vertical temperature gradient in the atmosphere.

The midtroposphere is more vigorously cooled than the lower troposphere. Second, the near surface

temperature at subtropical high elevation areas in the model is lower than in the free atmosphere.

Both results contribute to a consistent view of the glacial climate, reconciling tropical glacial air

temperature at peak elevation, reconstructed by snowlines, with those at sea level.

2.4.1 CLIMAP and glacial snowlines

Disagreement in reconstructions of glacial temperatures at sea level and at tropical mountains

has been discussed extensively [Webster and Streten, 1978; Rind and Peteet, 1985; Broccoli and

Figure 2.10: Distribution of annual temperature anomaly of experiment LGM.N minus CTR.O along a merid-

ional section at 90◦E. The dark shaded bars indicate the local topography of the model.

42



2.4. DISCUSSION

◦C◦C

Figure 2.11: Temperature profiles from the Pacific Ocean to Tibetan plateau: Profiles are plotted as dif-

ferences from the saturated adiabat with the potential temperature of 45 ◦C (at a pressure level of 1000 hPa,

pseudoadiabat). (a) Near surface air temperature at a region of 2×7 grid points (ca. 6×20 ◦latitude/longitude

extension in the ECHAM3 T42 model) rising in zonal direction along 32 ◦N from sea level at the western Pacific

Ocean to the Tibetan plateau up to a height of more than 5 km. (b) Vertical profile of the free atmosphere taken

from the same latitude over the western Pacific Ocean. In (b) and (d) profiles are plotted as differences from

the saturated adiabat with the potential temperature of 45◦C (at a pressure level of 1000 hPa), marked in (a)

and (c). The blue arrows indicate the largest cooling between experiment LGM.N and the control run (CTR.O)

at the snowline level. Due to the identical SST used as boundary conditions in the Pacific, results of experiment

LGM.G are very similar to experiment LGM.O, compare Figure 2.2.

Marciniak, 1996; Farrera et al., 1999; Crowley, 2000a]. Initially, it has been argued that a remark-

able increase of glacial lapse rates, necessary to reconcile CLIMAP SST with the extent of tropical

glaciers, was unlikely to take place [Webster and Streten, 1978; Rind and Peteet, 1985]. Webster and

Streten [1978] argued that either the temperature of the tropical oceans of the western Pacific were

overestimated by CLIMAP or that cold air incursions from higher latitudes were frequent enough to

allow snowlines to be 1000 to 1500 m lower than at present for the glacial period. This could match

a 6 to 8 K fall of temperature in highland New Guinea.

In a comparison of a simulated LGM climate using an early version of the atmospheric GCM

coupled to a mixed layer ocean model of Manabe and Broccoli [1985] with terrestrial paleodata,

Broccoli and Marciniak [1996] did not found any evidence in the simulation for changes in the lapse

43



CHAPTER 2. REASSESSMENT OF GLACIAL SNOWLINES AND TROPICAL SST

rate, which are able to reconcile the apparent disagreement in tropical temperature reconstructions.

These authors stated that the correspondence between simulated and CLIMAP zonal mean anomalies

is “excellent in the Atlantic, mediocre in the Indian, and poor in the Pacific” [Broccoli and Marciniak,

1996].

This result is in line with the conclusions of a multiproxy paleoclimate synthesis study of Farrera

et al. [1999]. These authors discuss regionally varying glacial lapse rates in the tropics. Despite

considerable regional variability they state generally steeper lapse rates in the glacial climate than

present, consistent with our model results. Based on land surface reconstructions, Farrera et al.

[1999] report about substantial cooling at tropical land sites with high elevation. They argue that

surface temperature at tropical peaks lies generally close to that of the overlying air level. In contrast,

ground temperature at low elevation is often a few degrees higher than that of surrounding air. These

findings are in agreement with the simulated drop of surface air temperature over Tibet in experiment

LGM.N.

2.4.2 Atmospheric model simulations and snowline depression

The modeling of the climate of the LGM using atmospheric general circulation models (GCMs) has

a long tradition. The modeling study of Rind and Peteet [1985] was the first one which showed

that colder tropical SSTs are able to reduce the discrepancy between tropical surface and mountain-

ous paleotemperatures. They conducted a LGM experiment using an atmospheric GCM forced by

SSTs uniformly lowered by 2 K with respect to CLIMAP. The result of this simulation was in better

agreement with geological temperature reconstructions from tropical mountains than the result of the

simulation forced by SST reconstruction of CLIMAP. Nevertheless, they detected regional differences

in tropical lapse rates and a warm bias in the Pacific warm pool near Hawaii.

Webb et al. [1997] used an atmospheric GCM where they prescribed a poleward ocean heat trans-

port similar to the present one. They argued that the ocean heat transport implied by the CLIMAP

SST is unrealistically high in the Pacific and low in the Atlantic, leading to the controversially high

subtropical SSTs, and relatively low ones in the mid-latitude Atlantic. They found southward heat

transport in the South Atlantic, in contrast to the widely accepted reconstruction by Duplessy et al.

[1988] indicating reduced but northward transport throughout the whole Atlantic Ocean. In their

glacial model experiment, the tropical surface air temperature (between 16◦N and 16◦S) dropped by

5.7 K, compared to today. This result is in agreement with the coldest geological estimates of tropical

sea level temperatures only, like fossil groundwater estimates from tropical lowlands [Stute et al.,

1995; Weyhenmeyer et al., 2000], whereas most other estimates do not indicate such a strong tropical

cooling.

In contrast, Greene et al. [2002] concluded that it proves difficult to reconcile the coldest estimates

for tropical temperatures with the observed snowline depression. They used a single-cell tropical

climate model adjusted for the Pacific warm pool [Betts and Ridgway, 1992; Seager et al., 2000] and

asserted that a tropical SST reduction of ∼3 K is found to be consistent with the geological evidence

for glacial snowlines. Seager et al. [2000] used a modified version of this model and noted that

a drying of the lower midtroposphere, for instance through atmospheric circulation changes, could

induce the strong cooling necessary to cause the observed snowline depression.
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A thorough comparison of various atmospheric GCMs, simulating the LGM climate, as well as

LGM data-model comparisons have mainly been undertaken in the framework of the Paleoclimate

Modeling Intercomparison Project (PMIP, [Joussaume and Taylor, 2000]). The experiment LGM.O

was conducted confirming to the agreed boundary conditions within PMIP [Lorenz et al., 1996] and

the experiment results were part of the model synthesis study of Pinot et al. [1999]. This paper sum-

marized eight model experiments using prescribed CLIMAP boundary conditions and nine model

experiments, where SSTs are computed by a mixed layer ocean model with prescribed modern pole-

ward ocean heat transport, following Webb et al. [1997]. Pinot et al. [1999] confirmed the conclu-

sion of Rind and Peteet [1985] that SST reconstruction by CLIMAP and tropical terrestrial data are

contradictory and showed that this result is not model dependent. Furthermore, none of the PMIP

experiments with computed SST revealed any tropical ocean temperatures during the LGM as high

as CLIMAP. Seven of nine simulations resulted in lower glacial ocean temperatures, than today.

An experiment with an atmospheric model, forced by a temperature drop of 1 K relative to the

CLIMAP SST, exhibited a lowered snowline of 200 to 300 m only [Crowley, 2000a], indicating that

a 1 K cooling of CLIMAP SST is not sufficient to explain the 800 m lowering of tropical snowlines

during the LGM. The same physical phenomenon — surface temperatures affecting lapse rates — but

with opposite sign, holds for the warmer climate during the Holocene optimum 6,000 years ago: the

vertical temperature gradient was reconstructed to be by about one Kelvin per kilometer less (flatter)

than today [Cheddadi et al., 1997].

Apart from bottom temperature, the vegetation cover can have an additional effect on lapse rates

[Crowley and Baum, 1997; Crowley, 2000a]. Similar to the snow-albedo effect, unvegetated bare

highland with higher albedo can cool down and further enhance the local snowline depression. In an

ECHAM3 simulation of the LGM including the effect of water storage of deep root vegetation, an

enhanced altitudinal shift of vegetation zones was found [Kleidon and Lorenz, 2001]. For this simu-

lation a degree-day methodology described by Still et al. [1998] was implemented. Due to enlarged

soil moisture storage capacity, mainly in the tropics, these simulations reveal a downward vertical

vegetation shift exceeding 229 m relative to experiments without deep roots [Kleidon and Lorenz,

2001].

In a LGM simulation Hostetler and Mix [1999] forced an atmospheric GCM with an updated faunal

SST reconstruction [Mix et al., 1999], where the ocean temperature of the equatorial current system

in the eastern Pacific and tropical Atlantic oceans were reduced compared to CLIMAP. Due to the

temperature reduction by about 2–4 K, the SST patterns in these regions are similar to those of ex-

periment LGM.N. When atmospheric model results of Hostetler and Mix [1999] were used to force a

high-resolution glacier mass-balance model [Hostetler and Clark, 2000], the resulting snowline de-

pression for the highest peaks in tropical Africa and New Guinea were in reasonable agreement with

proxy data. In contrast, at Hawaii, where the underlying glacial SST of CLIMAP in the Pacific warm

pool was 1 K higher than today, huge discrepancies between SST and snowline depression remain.

Both studies suggest a reassessment of glacial SST estimates in the Pacific Ocean, and imply for a

minimum cooling of 3 K at least in the western Pacific warm pool [Hostetler and Clark, 2000].
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2.4.3 GLAMAP modeling

The interpolation of proxy-derived SST estimates at sampling sites distributed over the Atlantic Ocean

with varying area density was done with an inverse ocean model “SIMPLE” [Grieger and Niebler,

2003]. This model assimilates sparse data of past temperatures into a simple model of the upper ocean

in an pioneering effort [Mix, 2003]. It serves as a type of intelligent interpolation method, which takes

into account the wind driven surface ocean circulation. The main boundary condition to force this

model is provided by wind stress data, where the data set of experiment LGM.G was used for the case

of regridding the GLAMAP data. The limiting factor for this approach is the lack of simulation of

changes in the deep ocean circulation [Mix, 2003].

A modeling study of the glacial water masses of the Atlantic Ocean [Paul and Scḧafer-Neth, 2003]

conducted simulations with the three-dimensional high resolution modular ocean model (MOM2),

where the GLAMAP SST for the Atlantic as well as wind stress data of experiment LGM.G were

prescribed as boundary conditions. The result was a detailed and consistent picture of the Atlantic

Ocean circulation during the LGM, which is compatible with recent ocean proxy data: a relatively

strong thermohaline circulation in the Atlantic due to deep convection and overturning in ice-free

Nordic Seas, cooling of the Atlantic thermocline, and formation of very cold and salty bottom water

stemming from the Weddell Sea was found [Paul and Schäfer-Neth, 2003; Mix, 2003].

In this study, apart from local temperature anomaly forced by SST changes, no substantial devia-

tions in the simulated terrestrial climate could be detected when comparing the simulation forced by

the GLAMAP SST with that forced by CLIMAP. Since the Indo-Pacific basins cover the major part

of the world oceans, a change of the glacial Atlantic SST has only a minor effect on zonally averaged

lapse rates Figure 2.8.

2.4.4 Coupled model simulations

Recent simulations of the LGM climate with fully coupled atmosphere-ocean GCMs [Kitoh et al.,

2001; Hewitt et al., 2001; Shin et al., 2003] provide SSTs independent from climate reconstructions.

The resulting SSTs however, differ substantially between individual model simulations, even in the

sign of change compared to present climate [Mix, 2003]: the HADCM3 [Hewitt et al., 2001] and the

NCAR-CCSM [Shin et al., 2003] models calculated tropical SST patterns similar to our prescribed

SST of experiment LGM.N, yielding relatively cold tropical surface water masses. In contrast, the SST

of the MRI model [Kitoh and Murakami, 2002] bears resemblance with the CLIMAP reconstruction

including water temperatures higher than today in the subtropical Pacific Ocean. Furthermore, Kitoh

and Murakami [2002] found a steeper glacial lapse rate locally over anomalously warm surface waters

near Hawaii. This is in contrast to our finding that the lapse rate steepens when the surface water is

vigorously cooled.

The zonal mean temperature profile of the NCAR-CCSM [Shin et al., 2003] model exhibits a glacial

temperature drop of 5 K in the tropical upper troposphere (250 hPa level) compared to less than 2 K at

the surface. Although this implies a slightly steeper lapse rate, the higher level cooling is considerably

smaller than in our LGM.N experiment, where a 10 K temperature drop occurs at the same height

(Figure 2.10). Shin et al. [2003] report a global steepening of the lapse rate of the free atmosphere
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by 0.2 K km−1 in their LGM experiment, only. They state that this amount is only 25% of the glacial

change relative to the present climate estimated by Farrera et al. [1999]. In our experiment LGM.N,

the glacial lapse rate steepens by 0.5 K km−1 compared to the present day experiment, which fits

reasonably with the estimates of Farrera et al. [1999]. Pinot et al. [1999] found regionally strongly

varying lapse rates in different models, where most of the changes average out globally as well as

in the mean over several models. Due to the ensemble model simulations, these authors confirm the

conclusion of Rind and Peteet [1985] that tropical SST is overestimated by CLIMAP, especially in

the Pacific warm pool.

2.4.5 The role of precipitation

An important factor determining large scale changes of the altitude of the equilibrium line is precipita-

tion [Seltzer, 2001]. However, Seltzer [2001] also stated that relatively large changes in precipitation

are needed during the LGM to affect ELA significantly. Seltzer [1994] estimated that a huge net

increase in annual accumulation of 1000 kg/m2 accounts for only about 300 m of ELA depression.

This implies that a relatively strong increase in precipitation is needed during the LGM to depress

snowlines significantly, as was recorded in tropical mountains. Similarly, a multiple regression anal-

ysis at tropical sites (from 30◦N to 30◦S) yielded a narrow relationship between precipitation and

snowline [Greene et al., 2002]. They used a single-cell tropical climate model [Betts and Ridgway,

1992; Seager et al., 2000] and found that a 200 mm reduction in precipitation over tropical highlands

would raise snowlines by not more than 100 m and that an increase in precipitation would have an

effect of similar magnitude but of opposite sign.

In all three LGM simulations of this study the change in annual mean precipitation over land in

tropical latitudes is generally small (less than 1 mm per day), except for equatorial eastern Africa

and Asia (Java and Borneo), where an increase of 1–2 mm/day occurs (Figure 2.3). A precipitation

anomaly of this magnitude can be translated into a net accumulation increase of 350 to 700 mm, as

long as it falls as snow and is not compensated by increased melting. This relatively large amount

can explain only a part of the reconstructed change in ELA. We believe that on a continental scale

temperature change is the dominant quantity affecting ELA in tropical mountains.

A precipitation analysis of our experiments reveals a drastic increase of precipitation by more

than 100 % during LGM near Hawaii, where no grid point with land characteristics exists in the

ECHAM3 model. The annual mean precipitation in the region around Hawaii (165–155◦W; 18–

23◦N) amounts to 2.9 mm/day for experiment CTR.O, whereas the glacial experiments exhibit 7.1,

7.8, and 5.8 mm/day for LGM.O, LGM.G, and LGM.N, respectively. This precipiation increase amounts

to a maximum potential water accumulation of 1.5–2 m/y. This amount could be further increased

by convective air ascent, due to the slope of the peaks on Hawaii. The simulated glacial precipitation

increase supports a remarkable snowline depression in the vicinity of relatively high surface temper-

atures in the central North Pacific during LGM. This is valid as long as the heigth of the mountains

exceed the zero degree isoline during LGM.

In contrast to evidence for severe decrease of ELA in Papua New Guinea, precipitation is reduced

by 20% in the western and up to 70% in the eastern part of the island in all three LGM simulations
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(slightly less in LGM.N). North of the equator, precipitation increases by 20% over Borneo and to more

than 70% south of the Philippines in the LGM simulations.

The glacial simulations exhibit reduced precipitation in northern Africa, the Indian subcontinent

and over eastern China. Furthermore, experiment LGM.O reveals a dipole structure in precipitation

over tropical Africa with reduction in the west and increase in the east. These model results are in

agreement with the PMIP model comparison study [Pinot et al., 1999], where most of the models

using prescribed CLIMAP boundary conditions exhibited similar results. This is related to a reason-

able decrease in the strength of the Africa-Asian summer monsoon, which brings less summer rainfall

over the Indian subcontinent, and less winter rainfall to tropical eastern Africa.

2.4.6 Limitations

This study is an attempt to assess large scale glacial changes of the vertical structure of the atmo-

sphere, using simulations with a coarse-resolution (∼ 250 km) circulation model. Due to the spectral

formulation of the model equations, pattern changes on clusters of grid points (14 grid points, Fig-

ure 2.11) can be interpreted much better in terms of regional or large scale climate change, than

differences at single grid points. In the model domain, tropical mountains cannot be resolved by the

model grid, where the topographic height of a single grid point has to be the mean of the whole grid

cell, for example averaging the heigth of the Andes with part of the Amazonian rain forest. Due to

the lack of tropical mountains in the model, the vertical surface temperature profile of the subtropical

Tibetan plateau was utilized as a surrogate for the influence of boundary layer processes at the height

of the freezing level.

A large number of small scale processes — for example local wind direction, precipitation, ex-

position to the sun, dust loads and cloud cover — determines the local snowline. This can result

in a varying lapse rate and temperature distribution during the LGM in different tropical mountains

[Porter, 2001; Mark et al., 2002; Owen et al., 2002]. For the extent of low-latitude glaciers, the most

important controls are accumulation-season precipitation and ablation-season temperature [Porter,

2001]. Therefore, it is argued that a unique value of past precipitation or temperature cannot be

derived from the ΔELA alone.

More potential sources of error for estimating LGM snowlines lie in the uncertain dating of local

moraines (e. g. relative age criteria based on the pattern of moraine sequences) as well as on devi-

ations in ELA due to debris-covered glaciers, orographic details of small tropical mountain glaciers,

and local wind changes. Since such processes go far beyond the scope of the model, this study is

limited to first order changes of the glacial vertical temperature distribution. Due to the continental

scale of the problem concerned with global average change in ELA during LGM, the major influence

of temperature on ELA is evident. Other more local effects rather go beyond the scope of this paper

where we focus on LGM temperature change in an atmospheric model, which results are interpreted

on a global scale.
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2.5 Concluding remarks

In this study, three different distributions of SST and sea ice were provided as an important glacial

boundary condition in order to analyse differences in the glacial atmospheric circulation on differ-

ent height levels. The simulation of the glacial climate driven by cooling of tropical SST relative

to the CLIMAP reconstruction results in tropical land temperatures that are more consistent with

reconstructed minimum temperatures by pollen assemblages (MTCO) [Farrera et al., 1999], than

the simulation based on the CLIMAP SST. The 3 K tropical cooling provides a consistent picture

of the LGM climate, concerning the hydrological cycle and annual mean continental temperatures

[Lohmann and Lorenz, 2000; Kohfeld and Harrison, 2000] as well as MTCO and tropical snowlines.

Furthermore, when using results of the LGM.N experiment as boundary condition for an ocean model,

Prange et al. [2002] found a consistent picture of the glacial circulation in the Atlantic Ocean with

marine proxy data [Sarnthein et al., 1994].

The free atmosphere in the experiment LGM.N with lower tropical SST exhibits a stronger lapse rate

due to decreased water vapor content. In the tropical mountains a longer duration of snow cover raises

the annual mean albedo, which induces a further reduction of surface temperature. Thus, the mag-

nitude of the vertical temperature gradient along the continent from sea level to the midtropospheric

level is increased in our experiment. The stronger lapse rate in near surface air temperature supports

the coexistence of enhanced glacial cooling of tropical SST with reconstructed snowline reductions

in tropical mountains of more than 800 m.
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Chapter 3

Acceleration technique for Milankovitch

type forcing in a coupled

atmosphere-ocean circulation model:

method and application for the Holocene

Abstract.

A method is introduced which allows the calculation of long-term climate trends within

the framework of a coupled atmosphere-ocean circulation model. The change in the sea-

sonal cycle of incident solar radiation induced by varying orbital parameters has been ac-

celerated by factors of 10 and 100 in order to allow transient simulations over the period

from the mid-Holocene until today, covering the last 7,000 years. In contrast to conven-

tional time-slice experiments, this approach is not restricted to equilibrium simulations

and is capable to utilise all available data for validation. We find that opposing Holocene

climate trends in tropics and extra-tropics are a robust feature in our experiments. Results

from the transient simulations of the mid-Holocene climate at 6,000 years before present

show considerable differences to atmosphere-alone model simulations, in particular at

high latitudes, attributed to atmosphere-ocean-sea ice effects. The simulations were ex-

tended for the time period 1800 to 2000 AD, where, in contrast to the Holocene climate,

increased concentrations of greenhouse gases in the atmosphere provide for the strongest

driving mechanism. The experiments reveal that a Northern Hemisphere cooling trend

over the Holocene is completely cancelled by the warming trend during the last century,

which brings the recent global warming into a long-term context.

Stephan J. Lorenz and Gerrit Lohmann (2004), Climate Dynamics 23(7-8), 727-743, doi:10.1007/s00382-004-0469-y,

c©2004 Springer-Verlag.



CHAPTER 3. ACCELERATION TECHNIQUE FOR MILANKOVITCH TYPE FORCING

3.1 Introduction

Palaeoclimatic modelling studies, aiming at reconstruction of past climate states, are usually per-

formed either on the basis of time slices or time dependent (transient) simulations. Restricted by

computer resources, atmospheric and oceanic general circulation models (AOGCMs) have at first

been used to simulate Palaeoclimate time slices allowing for acceptable amounts of computing time

[Gates, 1976; Manabe and Broccoli, 1985; Fichefet et al., 1994]. In these types of experiments with

component models, boundary conditions have to be prescribed, especially at the surface boundary be-

tween atmosphere and ocean (e. g. sea surface temperatures of the last glacial maximum by CLIMAP

Project Members [1976]). More recent work is based on coupled models of different complexity,

predicting physical quantities such as sea surface temperatures (SSTs) internally [e. g. Ganopolski

et al., 1998b; Weaver et al., 1998; Hewitt et al., 2001; Shin et al., 2003]. These studies show that the

additional feedbacks included are essential for a sound comparison and hence also interpretation of

reconstructed data.

However, modelling of time slices cannot provide insights into the temporal evolution of the climate

system. The time slices approach implies that the climate is in equilibrium and it cannot shed light

on the transient behavior of the climate system. Furthermore, it refers to only a small fraction of the

available data. When stepping forward to transient simulations, models of intermediate complexity

have been used [e. g., Stocker et al., 1992; Ganopolski and Rahmstorf , 2001; Bertrand et al., 2002b;

Crucifix et al., 2002; Prange et al., 2003, for a review: Claussen et al. 2002], where the complexity

of sub-models is reduced. For example, a statistical and parameterised prescription instead of explic-

itly resolved internal atmospheric variability is used, which enables longer simulation times and the

analyses of feedback processes by switching on and off the effect of different climatic components.

Recent studies [Keigwin and Pickart, 1999; Rimbu et al., 2003] indicated that reconstructed

Holocene climate in the North Atlantic realm reflects circulation changes. In order to investigate

the dynamic evolution of the atmosphere-ocean system, transient modelling of the Holocene climate

with AOGCMs becomes essential for the interpretation of long-term climate change and variability.

Motivated by the finding that the atmospheric dynamics [Rimbu et al., 2003] as well as the feedback

processes at the atmosphere-ocean interface may play an active part for climate trends, we use a

comprehensive coupled circulation model to simulate long-term temperature trends.

Complementary to previous studies dealing with the climate evolution linked to solar irradiance

and volcano forcing [Shindell et al., 1999; Crowley, 2000b; Shindell et al., 2003], we concentrate on

Holocene climate trends induced by the long-term astronomical forcing associated with the varying

parameters of the Earth’s orbital parameters [Berger, 1978]. On multi-millennial time scales, the

astronomical forcing provides for large imbalances in the seasonal distribution of sun light. Variations

of the orbital parameters with higher frequencies are at least two orders of magnitude smaller [cf.

Bertrand et al., 2002], which we do not take into account in this study.

The time scales of the astronomical or “Milankovitch type” forcing are separated from the much

shorter time scales of the atmosphere, including the mixed layer of the ocean, by several orders of

magnitude. This motivated our idea to accelerate the astronomical forcing, which enables multi-

millennial integrations with a fully coupled AOGCM and relatively low computational costs. This

method is used to investigate long-term effects of the atmosphere-sea ice-ocean system induced by
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the astronomical forcing. Excluded are only those processes that vary on time scales longer than the

actual length of the model experiments (decades to centennials). Long-term variations of the ocean

circulation on millennial time scales, changes in the land ice distribution, as well as long-term sea

level variations are not considered in our simulations. Our survey is concerned with the middle to late

Holocene, which can be considered as a relatively stable period, wherein rapid climate events were

absent [Grootes et al., 1993; Clark et al., 2002].

The temperature evolution of the Holocene is also important in light of recent climate change. The

new third assessment report of the Intergovernmental Panel on Climate Change [2001] (IPCC) stated

a global surface air temperature increase during the past century by 0.6±0.2 Kelvin (K). On the longer

perspective, the 20th century warming is likely to be the largest during any century over the past 1,000

years for the Northern Hemisphere, with the 1990s being the warmest decade and 1998 the warmest

year of the millennium [Mann et al., 1998, 1999]. With our modelling study, we aim to relate the

Holocene temperature trends prior to the industrialisation period to the more recent temperature trend

over the last century.

Our approach is aimed to simulate the response of the coupled system of atmosphere, ocean and sea

ice to astronomical forcing, which sheds light into the transient behavior of the Holocene dynamics.

With the continuation of our Holocene experiments into the industrial era, by simulating the recent

climate change with increasing greenhouse gas concentration, starting from the background Holocene

climate, we want to bring the 20th century warming trend into the context of the temperature trend

over the last 7,000 years. This allows a comparison of astronomically and greenhouse gas induced

temperature trends within one AOGCM integration.

The paper is organised as follows: the simulation methods are described in section 3.2. Here, the

coupled model is introduced, and we elucidate our acceleration technique for the Milankovitch type

forcing. Furthermore, we explain the model setup used for the ensemble experiments and describe the

main forcing by the orbital parameters. In section 3.3, we present the model results for the Holocene

climate trends with different acceleration factors and show the northern high latitude climate in our

transient simulations. Additionally, we evaluate and compare the Holocene and recent global warming

trends in our simulations. Finally, discussion (section 3.4) and conclusions (section 3.5) of our main

results are given.

3.2 Methodology

3.2.1 The Atmosphere-ocean circulation model

For the simulation of the Holocene climate, we use the coupled atmosphere-ocean general circulation

model ECHO–G [Legutke and Voss, 1999]. The atmospheric part of this model is the 4th generation

of the European Centre atmospheric model of Hamburg [ECHAM4, Roeckner et al., 1996]. The

prognostic variables are calculated in the spectral domain with a triangular truncation at wave number

30 (T30), which corresponds to a Gaussian longitude-latitude grid of approximately 3.8◦× 3.8◦. The

vertical domain is represented by 19 hybrid sigma-pressure (terrain following) levels with the highest

level at 10 hPa. The time step of the atmospheric model is depending on the resolution. Its value is
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30 minutes when using T30 resolution. The ECHAM model has been modified with respect to the

standard version in order to account for sub-grid scale partial ice cover [Gr̈otzner et al., 1996] that is

also considered in the ocean model.

The ECHAM4 model is coupled through the OASIS program [Ocean Atmosphere Sea Ice Soil,

Terray et al., 1998] to the HOPE ocean circulation model [Hamburg Ocean Primitive Equation model,

Wolff et al., 1997]. The ocean model includes a dynamic-thermodynamic sea-ice model with snow

cover. It is discretised on an Arakawa-E grid with a resolution of approximately 2.8◦× 2.8◦. In the

tropics, its meridional resolution is increased to 0.5◦. The model consists of 20 irregularly spaced

vertical levels with 10 levels covering the upper 300 m. The time step of the ocean model amounts to

two hours.

The model uses annual mean flux corrections for heat and freshwater, applied to the ocean model

component. These fluxes are diagnosed from sea surface temperature and salinity restoring terms in a

coupled spin-up integration for the current climate [Legutke and Voss, 1999], using present boundary

conditions (e. g., 353 ppm CO2 concentration in the atmosphere) and climatologies. The fluxes are

constant in time and their global integral over the ocean has no sources or sinks of energy and mass.

Although the use of flux corrections is not ideal for climate simulations strongly deviating from

the present climate, they are utilised even in model simulations of a glacial climate [e. g. Kitoh and

Murakami, 2002; Kim et al., 2002]. Due to the similiarity of the Holocene and present climate, the

use of flux corrections in our simulations is less problematic. The coupled model has been used in a

number of climate variability studies on various time scales [e. g., Raible et al., 2001; Zorita et al.,

2003; Rodgers et al., 2004].

3.2.2 Orbital forcing

The ECHO-G model has been adapted to account for the influence of variations in the annual distri-

bution of solar radiation due to the slowly varying orbital parameters: the eccentricity of the Earth’s

orbit, the angle between the vernal equinox and the perihelion on the orbit, as well as the obliquity,

i. e. the angle of the Earth’s rotation axis with the normal on the orbit. These parameters cause the

astronomical or Milankovitch-forcing [Milankovǐc, 1941; Imbrie et al., 1992] of the climate system.

Here, it should be noted that the seasonal distribution of insolation at the outer boundary of the atmo-

sphere is independent from the variability of the solar constant, which is linked to the Sun’s output of

radiation [e. g. Hoyt and Schatten, 1993; Lean and Rind, 1998]. Such variations in the solar output as

well as shortened insolation due to volcanic eruptions are not taken into account, since no continuous

data apart from the last millennium [Crowley, 2000b] exist. The calculation of the orbital parame-

ters follows Berger [1978]. They are used in the ECHAM model to evaluate the seasonal cycle of

incoming solar radiation.

Figure 3.1 shows the changing solar irradiance due to the slowly evolving orbital parameters dur-

ing the last 15,000 years at the (boreal) summer solstice (Figure 3.1a) and the winter solstice (Fig-

ure 3.1b), respectively. While the insolation is very similar to today during the last glacial maximum

at 21,000 years before present (abbreviated as kyr BP in the following), it achieves its maximum de-

viation from today between 13 and 9 kyr BP at Northern Hemisphere summer solstice. This is due

to both, a larger tilt of the Earth’s rotation axis and the precession cycle, moving the passage of the
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Figure 3.1: Evolution of the latitudinal

distribution of solar radiation for the last

15 kyr, following [Berger, 1978]. Shown is

the zonal average of insolation at the time

of (a) the boreal summer solstice and (b)

the boreal winter solstice in Wm−2. Note

the different range of latitudes: regions

poleward of 20◦ of the respective hemi-

sphere with polar night are omitted, where

the radiation keeps less than 200 Wm−2

and no significant change occurs.

Earth through its perihelion from boreal summer in early Holocene to begin of January today. At the

winter solstice (Figure 3.1b), a lack of insolation during early to mid-Holocene compared to today is

centred around the equator. This is mainly affected by the precession cycle, since the distance to the

sun was at maximum in boreal winter at middle Holocene. At 3 kyr BP, the insolation reaches nearly

the present energy level.

3.2.3 Acceleration technique

Computer resources to run a complex model like the ECHO-G over the time period of the Holocene

are very demanding: For example, the ECHO-G model consumes around 3 CPU-hours computing

time for one simulation year on the present NEC SX-6 machine using a single CPU at the German

Climate Computing Centre (DKRZ), where the calculations have been conducted. In order to save

computational costs, the time scale of the astronomical forcing has been shortened in different exper-

iments. For the simulation of the Holocene climate we perform two sets of experiments, where we

use two different acceleration factors of 10 and 100 for the orbital forcing: For each simulated year

we calculate stepwise the respective orbital parameters, which are the basis for the calculation of the
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Table 3.1: Names and characteristics of simulations with the ECHO-G model:

Experiment- PRE– HOL– HOL– GHG–

name CTR INS100 INS10 INS1

acceleration factor 1 100 10 1

number of exp. 1 6 2 2

integration length 3000 90 700 200

insolation (kyr BP) 0 9–0 7–0 0.2–0

greenh. gases (AD) 1800 1800 1800 1800–2000

CO2 (ppm) 280 280 280 280– 370

CH4 (ppb) 700 700 700 700–1715

N2O (ppb) 265 265 265 265– 315

seasonal cycle of insolation. The subsequently simulated year is then forced by orbital parameters

calculated from the next decade (century) of the Holocene, when utilising a factor of 10 (100) for

the accelerated Milankovitch forcing. The stepwise change in seasonal insolation is small (less than

1 Wm−2 at maximum equatorwards of 65 degrees with the acceleration factor 100) compared to the

seasonal cycle.

The underlying assumptions of our procedure are twofold: (1) the astronomical Milankovitch type

forcing operates on much longer time scales (millennia) than those inherent in the atmosphere includ-

ing the mixed layer of the ocean (months to a few years), and (2) climatic changes related to long-term

variability of the thermohaline circulation during the considered time period are small in comparison

with surface temperature trends. With this method the simulations with the fully coupled AOGCM

capture feedbacks and variabilities of the atmosphere-ocean system with time scales up to decades or

centennials, depending on the actual length of the model experiment. The insolation trends of the last

7,000 years are represented in 70 and 700 simulation years, respectively.

3.2.4 Model experiments

a) Pre-industrial control experiment

We perform an experiment for pre-industrial climate conditions that serves as a basic state for our

Holocene and greenhouse gas scenario experiments. Control experiments usually prescribe values

of atmospheric greenhouse gases valid for the last decade, including a CO2 concentration between

350 and 370 ppm [e. g. Boville and Gent, 1998; Hewitt et al., 2001]. Here, we utilise concentrations

of the main three greenhouse gases (carbon dioxide, methane, and nitrous oxide) typical for the pre-

industrial era of the latest Holocene (end of 18th century): 280 ppm CO2, 700 ppb CH4, and 265 ppb

N2O. Other boundary conditions are the vegetation ratio, surface background albedo, and the distri-

bution of continents and oceans. These quantities are derived from modern worldwide measurements

and kept constant throughout the simulation [Roeckner et al., 1996]. Modern solar radiation has been

prescribed for the control experiment, abbreviated as PRE-CTR (Table 3.1).
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This control experiment has been integrated over 3,000 years of model simulation into a climate

state that is regarded as the quasi-equilibrium response of the model to pre-industrial boundary con-

ditions prior to the perturbation by the anthropogenic emissions of greenhouse gases. The transient

simulations of the Holocene climate use the quasi-equilibrium state after 1250 simulation years of this

experiment for their initial conditions. In the subsequent 600 years, the control integration exhibits

a global surface temperature reduction of 0.018 K per century, which is mainly due to an artificial

increase of the Southern Hemisphere sea ice (see section 3.3.1). North of 40◦S, the cooling trend is

less than 0.008 K per century.

b) Transient Holocene experiments

In order to isolate the Milankovitch-effect on the Holocene climate we neglect small changes in green-

house gases in our Holocene experiments and prescribe constantly the same pre-industrial concentra-

tions as for the control experiment PRE-CTR. The variability of the three gases during the Holocene

is relatively small compared to that of the last ice age or compared to the increase during the 20th

century. For example, the fluctuation of CO2 during the last 7,000 years has a maximal range between

265 and 285 ppm [Indermühle et al., 1999]. All other boundary conditions (vegetation, distribution

of land and oceans, etc.) remain unchanged compared to the control experiment (PRE-CTR) and for

the Holocene experiments.

We perform two sets of transient experiments to simulate the Holocene climate evolution. The first

set of ensemble experiments consists of six model runs over 90 simulation years, representing the

last 9,000 years, using an acceleration factor of 100 (experiments HOL-INS100). In this ensemble,

all experiments are set up with different initial conditions in the atmosphere-ocean system, given by

subsequent years of the control integration (PRE-CTR), the end of the years 1249 to 1254, respectively.

The experiments start after 1250 simulation years of the control experiment, when the coupled system

including the deep ocean is regarded to be in a quasi-equilibrium with the pre-industrial boundary

conditions and modern insolation. The experiments HOL-INS100 are then instantaneously forced

with the varying insolation beginning with 9 kyr BP. The first 20 years of the simulations are taken

as spin-up time for the atmospheric model coupled with the mixed layer of the ocean model but

excluding the deep ocean to adapt to the changed insolation distribution. The following 70 years

of model integration are analysed, reflecting the time evolution of the mid-to-late Holocene, the last

7,000 years.

In order to test the effect of the acceleration technique we perform a second set of simulations

of the Holocene. It consists of two experiments using the acceleration factor of 10, instead of 100

(experiments HOL-INS10). These two model simulations are associated to 700 model years which

simulate the orbitally forced climate change during the last 7,000 years. The experiments start after

the 20 year spin-up time of the first set of Holocene experiments (HOL-INS100, Table 3.1). In the

initial year after this spin-up time, orbitally defined at 7 kyr BP, the new experiments HOL-INS10 are

forced with an annual cycle of insolation identical to that of experiments HOL-INS100.
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c) Greenhouse gas experiments

For a comparison of the orbital forced temperature with the effect by the anthropogenically in-

duced increase of greenhouse gases we perform another set of experiments. The two experiments

HOL-INS10 are continued to simulate the period from the year 1800 to 2000 AD, without using the

acceleration technique (factor 1, GHG-INS1). They initialise at 0.2 kyr BP of experiments HOL-INS10

and are forced with both, transient orbital forcing and the historical records of greenhouse gases for

the last two centuries. The concentration of the three main greenhouse gases (CO2, CH4 and N2O;

the most prominent CFCs and their increase are taken into account) during the last two centuries

have been compiled [a compendium: Boden et al., 1994] from ice core and instrumental records [e. g.

Etheridge et al., 1996, 1998; Sowers et al., 2003]. Direct and indirect aerosol effects are not included

in the depicted experiments with the ECHO-G model.

3.3 Results

For our analysis of the experiments HOL-INS100 we use the ensemble mean of the six experiments in

order to evaluate the trend and the standard deviation over the last 70 simulation years after the spin-

up time. Due to the inherent noise of the system, all experiments exhibit independent realisations

of the orbitally forced Holocene climate evolution. The ensemble mean for this period is damped

by averaging over the six experiments. For the experiments HOL-INS10 we used the complete 700

simulation years long period of the two experiments to evaluate the Holocene climate trend. Since

the average of the simulated climate evolution consists of two realisations only, the mean variability

of this time series is higher than the ensemble mean of HOL-INS100.

3.3.1 Surface temperature trends

In Figure 3.2, we present the evolution of regional surface temperature indices for the two sets of

experiments HOL-INS100 (Figure 3.2a, d) and HOL-INS10 (Figure 3.2b, e), respectively. The ex-

periments represent the time span from the mid-Holocene to the pre-industrial climate (lower axis

labelling) with their integration time of 90 and 700 model years, respectively (upper axis labelling).

Shown are regional averages over surface temperatures, where SST over ice free water is taken. Else-

where, ground, ice and snow temperatures are considered.

The ensemble simulations performed with the ECHO-G model exhibit significant surface tempera-

ture trends during the middle to late Holocene. The orbital induced signal of decreased boreal summer

insolation in northern mid and high latitudes (Figure 3.1a) is represented by a surface temperature

drop of 1.4 K between 30◦N and 50◦N during the last 7,000 years (Figure 3.2a–c). In the tropics,

a rise in simulated surface temperature of 0.4 K is found in boreal winter season (Figure 3.2d–f) in

accordance with the observed increasing tropical solar radiation during the Holocene (Figure 3.1b).

The shape of the temperature trends is similar in the two different sets of experiments (Fig-

ure 3.2c, f): there is a strong decrease in northern mid-latitudes (Figure 3.2c) and an increase in

low latitudes (Figure 3.2d) between 7 and 4 kyr BP. After 4 kyr BP, the trends are weaker due to

relatively small variations in solar radiation relative to the mid-Holocene period (Figure 3.1). Within
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Figure 3.2: Holocene surface temperature at (a–c) northern mid-latitudes during boreal summer season,

and (d–f) in the tropics during boreal winter, simulated with the ECHO-G model. The red lines display the

ensemble mean of the six individual experiments (HOL-INS100, thin blue lines) using an acceleration factor

of 100 for the orbital forcing: 70 years of model integration (from modelled year 20 to 90, upper axis labels)

comprise the time span of the last 7,000 years (lower axis labels). The blue and green line in (b) and (e) are

two realisations of Holocene experiments using an acceleration factor of 10 (HOL-INS10), i. e. 700 simulation

years. For comparison the ensemble means of both sets of experiments are shown together (red: HOL-INS100,

purple: HOL-INS10) in (c) and (f). A 5-year running mean is used as a low-pass filter for all experiments,

except for the purple line in (c) and (f) where a 50-year filter is used. The error bars indicate 2σ standard

deviations of the control experiment PRE-CTR (years 1000-1500), calculated using a 5-year running mean. The

real time axes on all panels utilise the same scaling for one kyr.
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Figure 3.3: Summer surface temperature (in ◦C) of northern mid-latitudes (cf. Figure 3.2a) of two experiments

of HOL-INS100 and the continuation of these experiments with HOL-INS10 at 7 kyr BP where the acceleration

factor for the orbital forcing changes from 100 to 10. Shown are 3-monthly means of single model years, no

running mean filter is applied. Note the change in the scaling of the real time axis belonging to the change in

the acceleration factor.

the last 1,000 to 2,000 years, the trends indicate a moderate cooling in the tropics or nearly van-

ish at mid-latitudes. These characteristics are analogue in the ensemble mean curves of experiments

HOL-INS100 (red line in Figure 3.2c, f), and in experiments HOL-INS10 (purple line in Figure 3.2c, f).

We examine the transition at 7 kyr BP between our different experiments when changing the ac-

celeration factor from 100 to 10 (Figure 3.3). Apart from the inter-annual variability, there is no

remarkable change in the temperature evolution. A comparison with Figure 3.2a-c indicates that the

temperature trend, induced by the insolation change due to the orbital forcing, remains unchanged.

For our two sets of Holocene simulations, we evaluate the spatial distribution of the annual mean

temperature trend (Figure 3.4). A general agreement in the spatial distribution of the surface tem-

perature trends is detected between HOL-INS100 and HOL-INS10 (the spatial correlation coefficient

amounts to 0.64, cf. Figure 3.4). The SST in the tropical region shows an increase from the middle to

the late Holocene.

The most pronounced temperature trends occur over the continents. The smaller heat capacity

compared to the ocean induces an amplification of the temperature trends. Enhanced warming during

the Holocene occurs in the arid subtropical continents from northern Africa via western Asia to the

Indian subcontinent. The most distinct cooling takes place over continental and sea ice covered

northern high latitudes, exceeding 2 K temperature drop in both sets of experiments. We find that the

trend is robust against the choice of ensemble members, showing that the difference in the inter-annual

variability of both sets of experiments has no significant effect on the amplitude and distribution of

the regional trends.

The temperature trends in the North Atlantic realm indicate both positive and negative values: a

continuous cooling in the northeastern Atlantic is accompanied by a continuous warming in large
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(a)

(b)

K/7ka

Figure 3.4: Mean surface temperature trend from the mid-Holocene into the pre-industrial era (from 7 kyr BP

to 0 kyr BP) of (a) HOL-INS100 (70 simulation years) and (b) HOL-INS10 (700 simulation years). Values depict

the trend over the whole period (Kelvin per 7 kyr) statistically evaluated from the averaged set of experiments.

Regions where the trend does not exceed one standard deviation are grey shaded in (a). Due to two realisations

only, shading is omitted in (b). The pattern correlation coefficient between both data sets, calculated on grid

points where the trend exceeds one standard deviation in (a), amounts to 0.64.
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Figure 3.5: Measure of the meridional overturning circulation in the Atlantic Ocean during the Holocene

from one of the experiments (a) HOL-INS100 with 70 years integration time, and (b) one of HOL-INS10 with 700

years integration time, respectively. Note the different scaling in the integration time axis (upper axis) in (a)

and (b). Maximum production rate of North Atlantic deep water (NADW) and its export rate into the Southern

Ocean. Also shown is the inflow (positive) of Antarctic bottom water (AABW) into the North Atlantic Ocean.

Values are in Sverdrup (1 Sv = 1 ·106 m3 s−1).

areas of the subtropical Atlantic Ocean, as well as in the northwestern Atlantic off Newfoundland

(Figure 3.4a), the Labrador Sea and south of Greenland (Figure 3.4b). Moreover, the Labrador realm

shows a strong positive trend (Figure 3.4b), but is also a region of high variability, due to varying

convection sites on multi-decadal time scales (note the shading in Figure 3.4a, indicating a high

noise level in HOL-INS100). These stochastic convective events are the main reason for differences

between the two 700 simulation years long realisations of the Holocene climate in the Labrador Sea

(not shown).

The largest mismatches between experiments HOL-INS100 and HOL-INS10 are located near the sea

ice margins north of the Antarctic and in small regions in the northern North Atlantic. There are

matching and mismatching dipole structures in the Antarctic Circumpolar Current. Here, the model

results are less reliable than on the Northern Hemisphere: the sea ice thickness is much smaller than

observed, which is a prevalent drawback in coupled climate models [Marsland et al., 2003, Legutke,

pers. comm.]. We note that this model deficiency is also responsible for the spurious trend south of

40◦S in the control experiment.

In order to estimate the orbital irradiation effect on the thermohaline circulation, the meridional

mass transport in the Atlantic Ocean is evaluated for the two sets of experiments. For this purpose,

we show indices of the meridional stream function (Figure 3.5): the maximal overturning in the
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North Atlantic Ocean (between 30◦N and 60◦N, below 1,000 m depth), the export of deep water into

the Southern Ocean at 30◦S, and the import of Antarctic Bottom Water into the Atlantic Ocean at

the same latitude. From Figure 3.5, it can be deduced that the meridional overturning circulation is

nearly unchanged throughout the Holocene experiments. This is, a posteriori, an indication for the

valid assumption of a relatively stable thermohaline circulation during the middle to late Holocene.

The evolution of the zonal mean surface temperature in the boreal winter season during the

Holocene is displayed in Figure 3.6, where the deviation of each of the two sets of Holocene ex-

periments from its respective zonal average of the entire time series are taken. Except for the region

south of 40◦S, the similarities between the two sets are evident: a moderate warming in low latitudes

(cf. Figure 3.2f) and the strongest cooling of more than 1.5 K in the Arctic. Between 4 kyr BP and

2 kyr BP we find a warm phase widespread into the northern mid to high latitudes, which is especially

located over the North American and Eurasian continents [Lohmann et al., 2004]. Interestingly, in

experiments HOL-INS100 as well as in HOL-INS10, the tropical warming is compensated by the cool-

ing signal coming from the high latitudes during the last two millennia. This feature is evident in

both sets of simulations indicating that it is not linked to internal multi-decadal variability of the

atmosphere-ocean-sea ice system.

3.3.2 Mid-Holocene climate

Motivated by the Palaeoclimate Modeling Intercomparison Project [PMIP, Joussaume and Taylor,

2000], we evaluate the climate of the time slice at the mid-Holocene optimum (6 kyr BP) in compar-

ison to the pre-industrial climate. The PMIP project has fostered a systematic evaluation of climate

models, besides others, under conditions during the mid-Holocene. This time slice was chosen to test

the near-equilibrium response of climate models to orbital forcing at the so-called Holocene Climate

Optimum with CO2 concentration and ice sheets at pre-industrial conditions. The dating of this time

slice was selected to 6 kyr BP because at this time no remaining melting ice caps were present, which

may have survived the deglaciation phase at the early Holocene period.

We analyse averages of 60 simulation years out of 700 years of experiments HOL-INS10, centred

at 6 kyr BP and 0 kyr BP, respectively. The latter time slice in our transient simulation characterises

the pre-industrial climate. We find that the largest Northern Hemisphere temperature difference be-

tween the two time slices occurs in October (not shown). For October, we display the simulated

surface temperature of the mid-Holocene climate and its deviation from the pre-industrial climate

(Figure 3.7a, b), as well as sea ice thickness and its anomaly (Figure 3.7c, d). Note that in this sec-

tion we present differences of the mid-Holocene climate from the latest Holocene and that a positve

anomaly in Figure 3.7b indicates warmer temperatures at 6 kyr BP, which is concordant with a cooling

trend during the last 6,000 years (Figure 3.4).

A region of warmer temperature during the mid-Holocene compared to the latest Holocene (3 to

6 K) is located over the entire Arctic Ocean (Figure 3.7b), accompanied by a decrease of the Arctic

sea ice thickness of 40 to 80 cm (Figure 3.7d). The maximum anomalies are located in the Laptev

Sea, in the Labrador Sea and near Svalbard. In these regions the temperature anomaly exceeds 6 K

and the sea ice reduction amounts to more than 80 cm in the same areas. Note also a reduction in sea

ice extent in the mid-Holocene simulation in Hudson Bay, Greenland Sea, Barents and Bering Sea,
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(a)

(b)

Figure 3.6: Temporal evolution of zonal mean surface temperature anomaly (in K) during boreal winter

from the mid-Holocene into the pre-industrial era of experiments HOL-INS100 (a) and HOL-INS10 (b). The

respective long-term zonal mean is subtracted and a running mean filter of 4 years (a) and 50 years (b) is

applied, respectively. For the axes scaling cf. Figure 3.2 and Figure 3.5.
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Figure 3.7: Near surface air temperature (a), sea ice thickness and compactness (c) in October for the

mid-Holocene climate at 6 kyr BP; surface air temperature (b) and sea ice thickness (d) difference between

the mid-Holocene and the pre-industrial climate. Areas where sea ice compactness exceeds 20 % are darkly

shaded for 6 kyr BP in (c) and for 0 kyr BP in (d) (no difference). Additionally, the 5 cm contour line for snow

depth is indicated with a thick grey line for 6 kyr BP in (c) and 0 kyr BP in (d) (no difference). Light shading

indicates continents in the T30 resolution of the atmospheric sub-model ECHAM. Displayed is experiment

HOL-INS10 for October, where 6 kyr BP is a mean of 60 years between 5.7 and 6.3 kyr BP, and 0 kyr BP is

a similar average around the pre-industrial climate (1800 AD). The contour intervals for temperature (sea ice

thickness) are 2.5 K (0.25 m) and 0.5 K (0.1 m) for anomalies, respectively.
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Figure 3.8: Latitudinal distribution of so-

lar radiation during the mid-Holocene (6

kyr BP, solid line) compared to the present

radiation (dashed line) in July and October

[Berger, 1978].

compared to 0 kyr BP (dark shaded area with sea ice compactness of more than 20 % for 6 kyr BP

in Figure 3.7c, and for 0 kyr BP in Figure 3.7d). Similarly, a reduction in the snow covered area in

central Siberia, eastern Siberia, and Alaska can be detected from the 5 cm snow depth contour line in

Figure 3.7c and Figure 3.7d.

The temperature change indicates a strong nonlinear signal in the model response to the radiative

forcing: the solar radiation at 6 kyr BP during October, when the most intense warming takes place,

has an energy deficit of 15 Wm−2 at 60◦N compared to today (Figure 3.8). The heat capacity of the

upper ocean stores the warming of the boreal summer insolation, i. e. 30 Wm−2 more energy input

than today in the Arctic from mid of June to end of July (Figure 3.8). The warmer SST during the

summer season with high level energy input lengthens the ice free season, reduces average sea ice

thickness as well as snow depth in the neighbouring northern continents in October. This occurs

despite the fact that the seasonal radiation anomaly has already turned its sign. Therefore, the sea ice

and snow cover indicate a delayed response of the climate to the Milankovitch forcing.

The model simulates also modified surface winds during mid-Holocene boreal winter in the Arctic

region (Figure 3.9). We find enhanced southward winds in the western part of the Greenland Sea and

the region south of Greenland and Iceland. Furthermore, there is intensified cyclonic circulation in the

Norwegian Sea. This is consistent with an increased eastward wind pattern during 6 kyr BP relative

to the pre-industrial climate. The wind affects the sea ice dynamics in these regions and, in particular,

enhance southward sea ice transport along the eastern coast of Greenland. This causes increased sea

ice concentration and a temperature drop southeast of Greenland.

We acknowledge the critical use of a modern calender in our mid-Holocene comparison, instead

of a calendar of angular months, defined by 12 times 30◦ sectors on the Earth’s orbit [Joussaume

and Braconnot, 1997]. This is in particular crucial when comparing results for October, because the

calendar is fixed at the vernal equinox and due to Kepler’s laws, the length of the season varies with

the precession cycle. Nonetheless, Joussaume and Braconnot [1997] stated that a relevant part of their

1-2 K difference of September air temperature difference caused by the different calendar methods is

connected with the prescribed modern cycle of SST. Since our AOGCM calculates the seasonal cycle

of SST dependent of the changing insolation signal, we do not expect significant inconsistency of our

results due to the use of a modern calendar. Moreover, since the begin of the astronomically defined

Öctoberı̈s shifted by 4 days into September [Joussaume and Braconnot, 1997, their Table A1], the
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temperature difference in Figure 3.7b is even larger, when underlying the astronomical calendar.

3.3.3 Holocene and 20th century global warming trends

In order to relate the Holocene climate evolution to the temperature trends of the last century we per-

formed integrations with historical evolution of greenhouse gases for the period year 1800 until 2000

AD. These simulations are continued from the two realisations of Holocene experiments HOL-INS10

without acceleration, since the greenhouse gas forcing provides a strong forcing on the time scale

of the atmosphere-ocean-sea ice system. Figure 3.10 shows a smooth transition between the surface

temperature of the HOL-INS10 and GHG-INS1 experiments, when changing the acceleration factor for

the orbital forcing from 10 to no acceleration.

Figure 3.11 displays the temperature evolution of the Northern Hemisphere from 7 kyr BP until

today. For the boreal summer, a long-term cooling trend during the Holocene until the begin of the

anthropogenic area is detected. This cooling trend is of the same order of magnitude as the warming

from the period 1800 to approximately 1950 AD in the model. We note, however, that the recent

warming trend is overestimated in the experiment, which is probably linked to the missing cooling

effect of aerosols in the utilised version of the ECHAM4 model. For boreal winter, Figure 3.11b

indicates a small Northern Hemisphere cooling trend after 3 kyr BP, linked to the forcing by the

precessional cycle in tropical latitudes (cf. Figure 3.2d–f). Due to the spatial heterogeneity in the

annual mean surface temperature trends, as seen in Figure 3.4, the Northern Hemisphere surface

Figure 3.9: Surface wind (a) during boreal winter season (January to March) for the mid-Holocene climate at

6 kyr BP and wind anomaly (b) of the mid-Holocene from the pre-industrial climate (for details see Figure 3.7).

The arrows below indicate the strength of the respective wind speed (in m/s). Vectors with a magnitude less

than 1 m/s and 0.2 m/s are omitted in (a) and (b), respectively.
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Figure 3.10: Summer surface temperature (in ◦C) of northern mid-latitudes (cf. Figure 3.2a) of two experi-

ments of HOL-INS10 and the continuation of these experiments with GHG-INS1 at the year 1800 AD where the

acceleration factor for the orbital forcing varies from 10 to 1 (no acceleration). See text and Figure 3.3 for

details.

temperature cooling trend during the Holocene is small when comparing it with the recent global

warming trend (Figure 3.11c).

When passing over to spatial signatures at northern high latitudes for October, differences between

the climates at 6 kyr BP and present day (1950-1999 AD, including the anthropogenic warming)

are displayed in Figure 3.12. The deviation of the mid-Holocene temperature from the present day

climate (Figure 3.12a) shows warming over the Arctic Ocean but little change or weak cooling over

the high latitude continents. The warmer temperature over the Arctic Ocean at 6 kyr BP corresponds

with thinner sea ice, in comparison with both the pre-industrial climate (0 kyr BP, Figure 3.7c, d) as

well as with present day climate (Figure 3.12b). Over the northern continents, the warming induced

by the anthropogenic increase of greenhouse gases exceeds the orbitally forced cooling during the last

6,000 years until 1800 AD, which can be detected from a positive anomaly in Figure 3.7b (6 kyr BP

minus 0 kyr BP). This results in lower temperatures at 6 kyr BP than today in Figure 3.12a.

3.3.4 Comparison with PMIP results

In order to understand the physical mechanisms related to the precessional and obliquity cycles during

the Holocene, we compare our transient mid-Holocene experiments with previous PMIP studies. At

6 kyr BP the precessional forcing was nearly in an opposite phase (the passage through the perihelion

occurred in September compared to January today) of the 21,000 year period, which is the dominant

period for tropical insolation changes. Within PMIP, simulations of the present day and the 6 kyr BP

climate were done with the former ECHAM3 atmospheric general circulation model [Roeckner et al.,

1992]. We show results of this model Figure 3.13, applying fixed vegetation distribution [Lorenz

et al., 1996], and including an interactive vegetation model [Claussen, 1997; Claussen and Gayler,

1997]. Claussen and Gayler [1997] coupled asynchronously a vegetation model with the ECHAM3
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Figure 3.11: Temporal evolution of surface temperature (in ◦C) of the Northern Hemisphere in (a) summer, (b)

winter, and the (c) annual mean. The left part indicates two experiments (acceleration factor 10, HOL-INS10)

from 7 kyr BP to the latest Holocene (1800 AD), the right part displays the continuation of these experiments

into the anthropogenic era until today (2000 AD), without using the acceleration technique for the Milankovitch

forcing (experiment GHG-INS1, note the simulation time on the upper axis). The gap in the data is due to the

application of a centred running mean filter of 21 simulation years that suppresses the appearance of the first

10 years of the experiments. A range of 2 K is used for all three ordinates.
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model. The model generates a climate in equilibrium with potential vegetation distribution and the

boundary conditions for the middle Holocene. Prescribed sea surface temperature, orography, ice

sheet distribution, insolation, and CO2 concentration were employed identically for both sets of sim-

ulations. The precessional forcing caused intensified precipitation and a shift of vegetation mostly in

the southwestern part of the Sahara in this simulation. At high latitudes, the taiga extended northward

at the expense of tundra during the mid-Holocen, when using the ECHAM3 including the vegetation

model [Claussen and Gayler, 1997; Claussen, 1997].

The distribution of temperature difference for October, simulated with fixed SST (Figure 3.13a),

displays strong regional discrepancy with our study (Figure 3.12a) using a coupled AOGCM. We

note that the atmospheric temperature change induced by interactive vegetation (Figure 3.13b) is

in the same order of magnitude as the effect of the coupling to the ocean-sea ice system (compare

Figs. 3.12a and 3.13a).

3.4 Discussion

Using our acceleration technique, we evaluated the temperature evolution of the Holocene and the

last 200 years, a period of strong anthropogenic impact. The acceleration technique, the temperature

trends, and the simulated mid-Holocene climate is discussed in the following.

Figure 3.12: Difference of October near surface air temperature (a) and sea ice thickness (b) between the

mid-Holocene climate at 6 kyr BP and the present day climate. Analogue to Figure 3.7b, d, areas where sea ice

compactness in the present day climate exceeds 20 % are darkly shaded, and the 5 cm contour line for snow

depth in the present day climate is indicated with a thick grey line (no difference, cf. Figure 3.7). Displayed is

the average of 1950-1999 AD (50 years) of experiments GHG-INS1 for October.
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3.4.1 Acceleration technique

The similarity in the results of the two sets of experiments when changing the acceleration factor

places emphasis on the validity of the method. Therefore, our method of accelerating the orbital

forcing in a complex AOGCM turns out to be a valuable tool to perform transient simulations of the

Holocene climate.

The method is similar to distorted physics approach that is commonly applied for computer time

reduction in ocean circulation models [Bryan, 1984]. In these ocean models the asynchrony lies

in the separation of distinct ocean waves, which act on time scales of different orders of magni-

tude [Pacanowski et al., 1993]. Another technique was introduced by Voss et al. [1998], using the

ECHAM3 model coupled to the coarse resolution ocean circulation model LSG [Maier-Reimer et al.,

1993]. They based their asynchronous coupling on separated time scales of the atmosphere-oceanic

mixed layer and the deep ocean circulation. In their periodically-synchronous coupling technique the

synchronously coupled model is integrated subsequently for 15 months, followed by an asynchronous

phase of four years length, where the oceanic sub-model is calculated without the atmospheric sub-

model [Voss and Sausen, 1996; Voss et al., 1998].

We find no significant changes in the thermohaline circulation in our multi-decadal as well as in

our centennial simulations (Figure 3.5), which is consistent with the relatively stable climate during

the middle to late Holocene period. For example, melting inland ice caps caused meltwater pulses

including sea level rise. This may have provoked severe shifts of the thermohaline circulation dur-

ing the early Holocene (e. g. during the Younger Dryas event). Although the astronomical forcing

might be vigorous enough to effect changes in the location and strength of convection sites, there is

no evidence in the marine geological record that the thermohaline circulation was subject to abrupt

changes during the last 7,000 years [Grootes et al., 1993; Clark et al., 2002]. Smaller rearrangements

in the deep ocean circulation can modify regional trend patterns in particular near the Antarctic sea

ice border and around Greenland (Figure 3.4b).

3.4.2 Temperature trends

The subtropical warming trend from the middle to late Holocene is also consistent with SST recon-

structions based on the alkenone method [Emeis et al., 2000; Marchal et al., 2002; Rohling et al.,

2002]. The spatial heterogeneity of the temperature trend in the North Atlantic realm (Figure 3.4)

is furthermore consistent with the SST signature of the Arctic Oscillation/North Atlantic Oscillation

(AO/NAO) [Thompson and Wallace, 1998; Hurrell, 1995], indicating a trend from a positive phase

of the AO/NAO to a negative one during the Holocene. The AO/NAO phenomenon is the dominant

mode of North Atlantic SST variability on inter-annual to decadal time scales. This surface tempera-

ture signature is consistent with proxy data [Rimbu et al., 2003]. Along with the positive phase of the

NAO, a temperature rise in Europe in the 6 kyr BP climate are seen in the model results (Figure 3.4b).

The trend in the AO/NAO from a more positive to a more negative phase, is possibly triggered by

the boreal winter insolation. Since the precessional forcing is dominant in the tropics (Figure 3.1), we

speculate that the tropical Pacific provides for a rectification effect to the varying seasonal distribution

of the solar radiation. The rectification is associated with an asymmetric response of the climate
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Figure 3.13: Near surface temperature of the simulation of the Holocene climate at 6 kyr BP with the ECHAM3

atmosphere model, participating in PMIP. Shown is the mean temperature difference for October from simula-

tions of the mid-Holocene climate applying fixed present day vegetation distribution [Lorenz et al., 1996], with

respect to the present day climate (a), and the difference temperature calculating interactively the equilibrium

potential vegetation distribution [Claussen and Gayler, 1997], with respect to fixed vegetation (b) SST and sea

ice distribution are fixed in these simulations (cf. Figure 3.7).

system to external forcing, such as e. g. the faster retreat than buildup of ice caps in the case of

glacial-interglacial cycles [Imbrie et al., 1993], and a nonlinear response of a circulation model for

the tropical Pacific Ocean to insolation forcing [Clement et al., 1999]. In our case, the asymmetry

is via the modes of atmospheric circulation: the insolation during the boreal winter season affects

the atmospheric circulation on the Northern Hemisphere, thereby imprinting the typical AO/NAO

temperature pattern [Thompson and Wallace, 1998; Hurrell, 1995; Rimbu et al., 2003].

In our experiments we find a continuous cooling trend during the last two millenia in the boreal

winter season, which is less obvious in the annual mean (0.4 K in the last 2,000 years mainly in

the Northern Hemisphere). This cooling trend may also attribute to a millennial cooling trend as

detected in Northern Hemisphere temperature reconstructions based on high resolution proxy data

[Mann et al., 1999; Mann and Jones, 2003]. We note, however, that multi-decadal to millennial

climate variability could be strongly effected by other forcing mechanisms like solar radiation changes

linked to sunspot variability and volcano activity affecting the atmospheric circulation [e. g. Crowley,

2000b; Shindell et al., 1999, 2001].

We extended our Holocene climate simulations into the period 1800-2000 AD, by including the

forcing by the observed increase of atmospheric greenhouse gases. With this forcing we are able to

relate the effect of the astronomical forcing to the temperature change influenced by anthropogenic

emissions of greenhouse gases. We recognise the annual mean temperature trend during the last 200

years to be much larger than the trends induced by the Milankovitch forcing during the middle to

latest Holocene.
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3.4.3 Mid-Holocene climate

To avoid the use of prescribed SST, coupled atmosphere-ocean simulations of the mid-Holocene

climate [Hewitt and Mitchell, 1998; Voss and Mikolajewicz, 2001; Kitoh and Murakami, 2002] have

recently been performed. These experiments simulate near-equilibrium states of the mid-Holocene

climate (6 kyr BP), or perform a series of time slices stepping through the Holocene [Liu et al., 2003].

Liu et al. [2003] using the time slice concept find also a cooling at low latitudes and a warming at

higher latitudes during the Holocene and attribute this to direct radiation changes. Our method has

been used to obtain the evolution of the Holocene climate related to modes of variability.

The pronounced warming in the Arctic Ocean at the mid-Holocene climate optimum, which is

evident in our experiments, is supported by pollen and macrofossil proxy data [Texier et al., 1997]

as well as by a northward shift of the Arctic tree-line [Tarasov et al., 1998]. In the annual mean,

we find a 1–2 K warming of the mid-Holocene temperature relative to today, which is smaller than

for the June to October season (not shown). The annual mean high-latitude warming is a prominent

feature in modelling experiments [Voss and Mikolajewicz, 2001; Crucifix et al., 2002; Liu et al., 2003;

Claussen et al., 1999, Kubatzki, pers. comm.]. It can be attributed to the asymmetric response to the

seasonal cycle of insolation forcing.

3.5 Concluding remarks

We investigate the impact of the slowly evolving change in the Earth’s boundary condition dur-

ing the Holocene, the annual distribution of incident solar radiation, on the climate of the coupled

atmosphere-ocean-sea ice system. Justified by the much longer time scale of this astronomical forc-

ing than that of the dynamical feedback processes in the atmosphere-ocean system we accelerate the

time scale of the orbitally varying solar radiation [Berger, 1978] by a factor of up to 100. This enables

the simulation of the middle to late Holocene period with a complex AOGCM. Furthermore, our ap-

proach allows for ensemble simulations of the Holocene climate in order to obtain the deterministic

climate model response to external forcing. The advantage of our technique is that we included the

feedbacks inherent in the AOGCM without changing the model code and the control climate.

The transient simulation of the Holocene climate renders a possibility to validate complex climate

models with palaeoclimate proxy data, and furthermore, to separate between different forcing factors

affecting Holocene climate trends. In a companion paper [Rimbu et al., 2004], we use our technique

to compare the results with a new global set of collected marine proxy temperature data, based on

the alkenone method. We obtain a coherent picture of neo-glaciation since 7 kyr BP in the model

and proxy data. We find opposite trends of warming and cooling occurring in the tropics and mid-

latitudes. Performing new model experiments including other forcing mechanisms, model compo-

nents, and feedbacks, such as the climate feedback induced by vegetation changes [e. g., Ganopolski

et al., 1998] could significantly extend our findings of a dominant orbital mechanism for Holocene

surface temperature variations. Our acceleration technique has already been applied to the climate

of the last interglacial (Eem, at 130–120 kyr BP) showing that the changes in the circulation and

seasonal cycle are in accordance with high resolution proxy data [Felis et al., 2004].
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In order to properly address the question, how increasing human population and industrialisation

will induce a significant climate change, requires intimate knowledge on amplitude and rapidness

in the natural variations of temperature or other temperature-related environmental properties. Un-

fortunately, historical records of direct temperature measurements that would allow consideration of

changing climate on a global scale are too short and fall already within the period of strong human

impact on natural conditions. The time period of the Holocene, which is prior to strong human impact,

could be used as a basis for assessment of natural climate variability.

The models used in the IPCC process are clearly unrivaled in their ability to simulate a broad suite

of variables across the entire world [Intergovernmental Panel on Climate Change, 2001], but their re-

liability on longer time scales requires additional evaluation. We argue that the paleoclimate record of

the Holocene provides an excellent test of these models on a quantitative basis. As a logical next step,

we propose to continue simulations, which are validated with proxy data for the Holocene period,

into the recent period of anthropogenic greenhouse warming with subsequent scenario integrations to

simulate future climate change. This can enhance confidence into numerical projections of future cli-

mate change, and provide a better comparison of climate variability under natural and anthropogenic

forcing.
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Grötzner, A., R. Sausen, and M. Claussen, The impact of sub-grid scale sea-ice inhomogeneities on the perfor-

mance of the atmospheric general circulation model ECHAM3, Climate Dynamics, 12, 477–496, 1996.

Hewitt, C. D., and J. F. B. Mitchell, A fully coupled GCM simulation of the climate of the mid-Holocene,

Geophysical Research Letters, 25, 361–364, 1998.

Hewitt, C. D., A. J. Broccoli, J. F. B. Mitchell, and R. J. Stouffer, A coupled model study of the last glacial

77



CHAPTER 3. ACCELERATION TECHNIQUE FOR MILANKOVITCH TYPE FORCING

maximum: Was part of the North Atlantic relatively warm?, Geophysical Research Letters, 28, 1571–1574,

2001.

Hoyt, D. V., and K. H. Schatten, A discussion of plausible solar irradiance variations, Journal of Geophysical

Research, 98, 18,895–18,906, 1993.

Hurrell, J. W., Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation, Sci-

ence, 269, 676–679, 1995.

Imbrie, J., E. A. Boyle, S. C. Clemens, A. Duffy, and W. R. Howard et al., On the structure and origin of major

glaciation cycles: 1. linear responses to Milankovitch forcing, Paleoceanography, 7, 701–738, 1992.

Imbrie, J., et al., On the structure and origin of major glaciation cycles: 2. the 100,000-year cycle, Paleoceanog-

raphy, 8, 699–735, 1993.

Indermühle, A., et al., Holocene carbon-cycle dynamics based on CO 2 trapped in ice at Taylor Dome, Antarc-

tica, Nature, 398, 121–126, 1999.

IPCC, Climate Change 2001: The scientific basis. Contribution of the Working Group I to the Third Assess-

ment Report of the Intergovernmental Panel on Climate Change, Houghton, J. T. et al. (Eds.), Cambridge

University Press, Cambridge, United Kingdom, 2001.

Joussaume, S., and P. Braconnot, Sensitivity of paleoclimate simulation results to season definitions, Journal

of Geophysical Research, 102, 1943–1956, 1997.

Joussaume, S., and K. E. Taylor, The Paleoclimate Modeling Intercomparison Project, in Paleoclimate Model-

ing Intercomparison Project (PMIP): proceedings of the third PMIP workshop, Canada, 4-8 October 1999,

edited by P. Braconnot, WCRP-111, WMO/TD-1007, pp. 9–24, World Meteorological Organization, 2000.

Keigwin, L. D., and R. S. Pickart, Slope water current over the Laurentian Fan on interannual to millennial

time scales, Science, 286, 520–523, 1999.

Kim, S.-J., G. M. Flato, G. J. Boer, and N. McFarlane, A coupled climate model simulation of the Last Glacial

Maximum, Part 1: transient multi-decadal response, Climate Dynamics, 19, 515–537, 2002.

Kitoh, A., and S. Murakami, Tropical Pacific climate at the mid-Holocene and the Last Glacial Max-

imum simulated by a coupled atmosphere-ocean general circulation model, Paleoceanography, 17,

doi:10.1029/2001PA000,724, 2002.

Lean, J., and D. Rind, Climate forcing by changing solar radiation, Journal of Climate, 11, 3069–3094, 1998.

Legutke, S., and R. Voss, The Hamburg atmosphere-ocean coupled circulation model ECHO-G, Technical

Report 18, Deutsches Klimarechenzentrum, Hamburg, Germany, 1999.

Liu, Z., E. Brady, and J. Lynch-Stieglitz, Global ocean response to orbital forcing in the Holocene, Paleo-

ceanography, 18, doi:10.1029/2002PA000,819, 2003.

Lohmann, G., S. J. Lorenz, and M. Prange, Northern high-latitude climate changes during the Holocene as

simulated by circulation models, Agu monograph series, accepted, American Geophysical Union, 2004.

Lorenz, S., B. Grieger, P. Helbig, and K. Herterich, Investigating the sensitivity of the atmospheric general

circulation model ECHAM 3 to paleoclimatic boundary conditions, International Journal of Earth Sciences,

85, 513–524, 1996.

Maier-Reimer, E., U. Mikolajewicz, and K. Hasselmann, Mean circulation of the Hamburg LSG OGCM and

its sensitivity to the thermohaline surface forcing, Journal of Physical Oceanography, 23, 731–757, 1993.

Manabe, S., and A. J. Broccoli, A comparison of climate model sensitivity with data from the last glacial

maximum, Journal of the Atmospheric Sciences, 42, 2643–2651, 1985.

Mann, M. E., and P. D. Jones, Global surface temperatures over the past two millennia, Geophysical Research

Letters, 30, doi:10.1029/2003GL017,814, 2003.

Mann, M. E., R. S. Bradley, and M. K. Hughes, Global-scale temperature patterns and climate forcing over the

78



3.6. REFERENCES

past six centuries, Nature, 392, 779–787, 1998.

Mann, M. E., R. S. Bradley, and M. K. Hughes, Northern Hemisphere temperature during the past millennium:

inferences, uncertainties, and limitations, Geophysical Research Letters, 26, 759–762, 1999.

Marchal, O., et al., Apparent long-term cooling of the sea surface in the northeast Atlantic and Mediterranean

during the Holocene, Quaternary Science Reviews, 21, 455–483, 2002.

Marsland, S. J., M. Latif, and S. Legutke, Variability of the Antarctic circumpolar wave in a coupled ocean-

atmosphere model, Ocean Dynamics, 53, 323–331, 2003.

Milankovitch, M., Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem, 132, Royal

Serb. Acad. Spec. Publ., Belgrad, 1941.

Pacanowski, R. C., K. D. Dixon, and A. Rosati, The G.F.D.L. Modular Ocean Model users guide, GFDL Ocean

Group, Technical Report 2, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, 1993.

Prange, M., G. Lohmann, and A. Paul, Influence of vertical mixing on the thermohaline hysteresis: Analyses

of an OGCM, Journal of Physical Oceanography, 33, 1707–1721, 2003.

Raible, C., U. Luksch, K. Fraedrich, and R. Voss, North Atlantic decadal regimes in a coupled GCM simulation,

Climate Dynamics, 18, 321–330, 2001.

Rimbu, N., G. Lohmann, J.-H. Kim, H. W. Arz, and R. R. Schneider, Arctic/North Atlantic Oscillation signature

in Holocene sea surface temperature trends as obtained from alkenone data, Geophysical Research Letters,

30, 1280–1283, 2003.

Rimbu, N., G. Lohmann, S. Lorenz, J.-H. Kim, and R. R. Schneider, Holocene climate variability as derived

from alkenone sea surface temperature and coupled ocean-atmosphere model experiments, Climate Dynam-

ics, in press, 2004.

Rodgers, K., P. Friedrichs, and M. Latif, Decadal enso amplitude modulations and their effect on the mean

state, Journal of Climate, in press, 2004.

Roeckner, E., et al., Simulation of the present-day climate with the ECHAM model: Impact of model physics

and resolution, Report 93, Max-Planck-Institut für Meteorologie, 1992.

Roeckner, E., et al., The atmospheric general circulation model ECHAM-4: Model description and simulation

of the present-day climate, Report 218, Max-Planck-Institut für Meteorologie, 1996.

Rohling, E., P. Mayewski, R. Abu-Zied, J. Casford, and A. Hayes, Holocene atmosphere-ocean interactions:

records from Greenland and the Aegean Sea, Climate Dynamics, 18, 587–593, 2002.

Shin, S.-I., Z. Liu, B. Otto-Bliesner, E. C. Brady, J. E. Kutzbach, and S. P. Harrison, A simulation of the Last

Glacial Maximum climate using the NCAR-CCSM, Climate Dynamics, 20, 127–151, 2003.

Shindell, D., D. Rind, N. Balachandran, J. Lean, and P. Lonergan, Solar cycle variability, ozone, and climate,

Science, 284, 305–308, 1999.

Shindell, D. T., G. A. Schmidt, M. E. Mann, D. Rind, and A. Waple, Solar forcing of regional climate change

during the Maunder Minimum, Science, 294, 2149–2152, 2001.

Shindell, D. T., G. A. Schmidt, R. L. Miller, and M. E. Mann, Volcanic and solar forcing of climate change

during the preindustrial era, Journal of Climate, 16, 4094–4107, 2003.

Sowers, T., R. B. Alley, and J. Jubenville, Ice core records of atmospheric N 2O covering the last 106,000 years,

Science, 301, 945–948, 2003.

Stocker, T. F., D. Wright, and L. Mysak, A zonally averaged, coupled ocean-atmosphere model for paleoclimate

studies, Journal of Climate, 5, 773–797, 1992.

Tarasov, P., et al., Present-day and mid-holocene biomes reconstructed from pollen and plant macrofossil data

from the former soviet union and mongolia, Journal of Biogeography, 25, 1029–1053, 1998.

Terray, L., S. Valcke, and A. Piacentini, The OASIS coupler user guide, version 2.2, Technical Report

79



CHAPTER 3. ACCELERATION TECHNIQUE FOR MILANKOVITCH TYPE FORCING

TR/CMGC/98-05, CERFACS, 1998.

Texier, D., N. de Noblet, S. P. Harrison, A. Haxeltine, D. Jolly, S. Joussaume, F. Laarif, I. C. Prentice, and

P. Tarasov, Quantifying the role of biosphere-atmosphere feedbacks in climate change: coupled model simu-

lations for 6000 years BP and comparison with palaeodata for northern Eurasia and northern Africa, Climate

Dynamics, 13, 865–882, 1997.

Thompson, D. W. J., and J. M. Wallace, The Arctic oscillation signature in the wintertime geopotential height

and temperature fields, Geophysical Research Letters, 25, 1297–1300, 1998.

Voss, R., and U. Mikolajewicz, The climate of 6000 years BP in near-equilibrium simulations with a coupled

AOGCM, Geophysical Research Letters, 28, 2213–2216, 2001.

Voss, R., and R. Sausen, Techniques for asynchronous and periodically synchronous coupling of atmosphere

and ocean models. Part II: impact of variability, Climate Dynamics, 12, 605–614, 1996.

Voss, R., R. Sausen, and U. Cubasch, Periodically synchronously coupled integrations with the atmosphere-

ocean general circulation model ECHAM3/LSG, Climate Dynamics, 14, 249–266, 1998.

Weaver, A. L., M. Eby, A. F. Fanning, and E. C. Wiebe, Simulated influence of carbon dioxide, orbital forcing

and ice sheets on the climate of the Last Glacial Maximum, Nature, 394, 847–853, 1998.

Wolff, J.-O., E. Maier-Reimer, and S. Legutke, The Hamburg ocean primitive equation model HOPE, Technical

Report 13, Deutsches Klimarechenzentrum, Hamburg, Germany, 1997.
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Chapter 4

Orbitally driven insolation forcing on

Holocene climate trends: evidence from

alkenone data and climate modeling

Abstract.

A global spatial pattern of long-term sea-surface temperature (SST) trends over the last

7000 years is explored using a comparison of alkenone-derived SST records to transient

ensemble climate simulations with a coupled atmosphere-ocean circulation model under

orbitally driven insolation forcing. The spatial trend pattern both in paleo-SST data and

in model results shows pronounced global heterogeneity. Generally, the extra-tropics

cooled while the tropics experienced a warming during the middle to late Holocene.

We attribute these divergent Holocene climate trends to seasonally opposing insolation

changes. Furthermore, climate mode changes similar to the Arctic/North Atlantic Oscil-

lation are superimposed on the prevalent pattern. It is concluded that nonlinear changes in

the entire seasonal cycle of insolation played a dominant role for the temporal evolution

of Holocene surface temperatures. For understanding of marine proxy data, apart from

the dominance of summer insolation in high latitudes, a notable shift in the maximum

insolation of the year in low latitudes has to be taken into account, which may influence

timing of phytoplankton production and thus alters the seasonal origin of temperature

signals recorded in the proxies.

4.1 Introduction

The changes in the seasonal cycle of solar irradiance at the outer boundary of the atmosphere, caused

by the varying parameters of the Earth’s orbit around the Sun (astronomical forcing or orbitally

driven insolation forcing), is one of the most prominent forcing mechanisms for long-term climate

Stephan J. Lorenz, Jung-Hyun Kim, Norel Rimbu, Ralph R. Schneider, and Gerrit Lohmann, Paleoceanography, 21,

PA1002, doi:10.1029/2005PA001152, 2006, c©2006 American Geophysical Union

81



CHAPTER 4. ORBITAL FORCING ON HOLOCENE CLIMATE TRENDS

change. The insolation changes at northern high latitudes during boreal summer have been regarded

as the dominant external forcing for glacial-interglacial climate changes during the Quaternary (“Mi-

lankovitch forcing”) [Milankovǐc, 1941; Hays et al., 1976; Imbrie et al., 1992].

The relative role of the effect of orbital forcing on Holocene climate change is, however, not well

known. The climate of the last glacial, preceding the Holocene, was periodically punctuated by a

series of abrupt climate changes, known as Dansgaard-Oeschger events [Broecker, 1998; McManus

et al., 1999]. In contrast, the Holocene trends in sea level [Fairbanks, 1989] as well as in the oxygen

isotope composition of polar ice sheets [Grootes et al., 1993] imply that the Holocene climate was

relatively stable when compared to the last glacial. Broecker [1998] stated that neither the sea level

nor the Greenland ice δ18O record show a tendency toward the cooling expected in response to the

Holocene decrease in boreal summer insolation in high northern latitudes. To challenge this view,

we here show spatially varying patterns of long-term surface temperature trends for the Holocene.

We address the role of orbital forcing during the Holocene based on globally distributed alkenone-

derived sea-surface temperature (SST) records in comparison with transient climate simulations using

a coupled atmosphere-ocean general circulation model (AOGCM).

The majority of AOGCMs has been utilized to quantitatively evaluate the magnitude of future

climate change. Their results served as a scientific basis for the third assessment report of the In-

tergovernmental Panel on Climate Change [2001] (IPCC). Validation of these models by simulating

different climate states is essential for understanding the sensitivity of the climate system to both

natural and anthropogenic forcing.

Up to now, the validation of AOGCMs has primarily been based on the comparison of results re-

producing the instrumental climate record of the last 150 years. However, the instrumental period

coincides with that of strong anthropogenic impacts. Therefore it is necessary to test the results of

AOGCMs beyond this period (at least the Holocene) in order to identify coherent natural climate vari-

ations and their underlying mechanisms and hence to properly address the question of anthropogenic

influence on climate.

Recent modeling efforts to simulate Holocene climate changes using coupled AOGCMs [Hewitt

and Mitchell, 1998; Liu et al., 1999; Voss and Mikolajewicz, 2001; Kitoh and Murakami, 2002; Liu

et al., 2003] assume that the atmosphere-ocean system is in equilibrium with the external forcing.

Modeling studies based on simulations with a single model [Hewitt and Mitchell, 1998; Lohmann

and Lorenz, 2000], and model–model comparisons [Guiot et al., 1999; Braconnot et al., 2002], as

well as data–model syntheses [Kohfeld and Harrison, 2000; Texier et al., 2000] have mainly been un-

dertaken in the framework of the Paleoclimate Modeling Intercomparison Project (PMIP, [Joussaume

and Taylor, 2000]). Transient simulations of the Holocene without the assumption of an equilibrium

climate and including orbital forcing were predominantly performed utilizing models of intermediate

complexity [a summary: Claussen et al., 2002]. Some of the simulations with these models [Bertrand

et al., 2002; Weber et al., 2004; Renssen et al., 2005] confirmed the influence of insolation changes

as well as the importance of including ocean feedbacks.

In this study, the ensemble simulations were conducted with a state-of-the-art fully coupled

AOGCM, the ECHO-G [Legutke and Voss, 1999], where an acceleration technique for the orbital

forcing has been employed [Lorenz and Lohmann, 2004]. The ECHO-G model has participated in
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the “Coupled Model Intercomparison Project” (CMIP) and will participate with other AOGCMs in

the next set of IPCC experiments for the Fourth Assessment Report of the IPCC, planned for 2007.

Recently, based on the control run of the ECHO-G model in comparison with alkenone-derived

SST records, internal processes which underlay teleconnections between the North Atlantic and the

North Pacific [Kim et al., 2004] as well as between the North Atlantic and tropical oceans [Rimbu

et al., 2004] were investigated on centennial to millennial time scales. Here we focus on the effect of

the seasonal insolation changes on heterogeneous Holocene surface temperature trends as observed

in both globally distributed alkenone-derived SST records and transient ensemble simulations with

the ECHO-G model.

Conforming with the PMIP definition of the middle Holocene time slice, which was chosen to be

6000 years before present (kyr BP in the following), this data-model comparison study concentrates

on the middle to late Holocene. The last 7000 years can be regarded as relatively stable compared to

former eras, because these were probably excluded from severe shifts in the atmosphere-ocean system

[Grootes et al., 1993; McManus et al., 2004].

Since the development of the unsaturated alkenone index as a temperature proxy in the late 1980s,

the seasonal origin of alkenone-derived temperature signals in different latitudes has been ques-

tioned. In high latitudes, maximum phytoplankton coccolithophorid production is observed in sum-

mer [Baumann et al., 1997] suggesting that alkenone-derived SSTs should reflect summer tempera-

tures [Rosell-Melé et al., 1995; Sikes et al., 1997]. In contrast, seasonality in phytoplankton produc-

tion is generally less pronounced in tropical to subtropical regions [Jickells et al., 1996] and alkenone-

derived SSTs are more likely to show temperatures close to the annual mean values [M̈uller and Fis-

cher, 2001]. For comparison, our AOGCM results show Holocene climate changes in the seasonal

cycle of surface temperatures and can thus provide hints to the seasonal origin of alkenone-derived

SST in different latitudes.

The paper is organized as follows. In the next section we start with a discussion of the orbitally

driven changes in the seasonal cycle of insolation during the Holocene. Next (Section 4.3) an intro-

duction to the methods is given: the reconstruction of SST records from alkenones, and the AOGCM,

including its orbital forcing, the acceleration technique for this forcing, and the model experiments.

The long-term Holocene trends in surface temperature of reconstructed data and model results, in-

cluding analysis of seasonal trends, are then shown (Section 4.4). The dependence of these trends on

orbitally driven insolation change and its impact in relation to other forcing and feedback mechanisms

is discussed (Section 4.5). Finally, concluding remarks (Section 4.6) are given.

4.2 Orbitally driven insolation changes during the Holocene

Three main parameters of the Earth’s orbit around the Sun control the seasonal distribution of solar

radiation at the top of the atmosphere: the eccentricity of the orbit with the Sun in one of the two

foci, the time of the Earth’s passage through its perihelion, and the tilt of its rotation axis. Long-

term variation in these parameters cause the astronomical or “Milankovitch-forcing” of the climate

system [Milankovič, 1941; Imbrie et al., 1992]. The variation can easily be calculated with sufficient

accuracy using the algorithm of Berger [1978]. Newer calculations span much longer time scales,
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beyond millions of years [Laskar et al., 2004], or take into account short-term variability [Loutre

et al., 1992], which is far beyond the requirements of our model experiments.

The eccentricity (ε) has cycles with periods near 100,000 years and affects the annual mean top-of-

atmosphere insolation on the entire Earth by much less than 0.1% during the Holocene. The amplitude

of the precession parameter e, where e = ε sin(λ) with λ the longitude of the perihelion measured from

the vernal equinox (≈ 282◦ today, with perihelion at the beginning of January) is modulated by the

eccentricity and has cycles with periods near 20,000 years. It determines the time of the year when

the insolation of the whole Earth is at maximum. The third parameter, the Earth’s axis tilt (obliquity)

has a main long-term cycle with a period near 40,000 years and governs the amplitude of the seasonal

cycle of both hemispheres.

During the Holocene, the seasonal distribution of Earth’s top-of-atmosphere insolation varied con-

siderably due to precession and obliquity cycles. During the last 7000 years, these cycles caused

a shift of perihelion from September (λ = 164◦) to January (λ = 282◦) and a decrease in the tilt

of the Earth’s axis from 24.2◦ to 23.4◦. The resulting radiative changes over the last 7000 years

are displayed in Figure 4.1. It shows the latitudinal distribution through the year of the today mi-

nus 7 kyr BP difference in top-of-atmosphere insolation. The most pronounced radiative changes

were a decrease in the boreal summer insolation (June-July-August, JJA) of more than 30 Wm−2

in the northern middle to high latitudes accompanied by an increase in the boreal winter insolation

(December-January-February, DJF) of about 25 Wm−2 in the low latitudes (Figure 4.1).

Along with the seasonal changes, the dominant orbital parameter in the tropics — the precession

parameter — is able to cause a shift in the occurrence of the maximum insolation throughout the

Figure 4.1: Latitudinal distribution through the year, with respect to the Earth’s orbital longitude measured

from vernal equinox (marked as “true longitude” and “VE”), of the today minus 7 kyr BP difference in top-

of-atmosphere insolation (Wm−2), calculated after Berger [1978]. Note that, for comparison with SST trends,

this is equivalent to the linear trend in insolation over the last 7000 years.
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Figure 4.2: Changes in the sea-

sonal cycle of insolation (Wm−2)

in the tropics (0–10◦N) during the

Holocene (calculated after [Berger,

1978]): (a) seasonal cycle of in-

solation for five time slices in the

Holocene; and (b) evolution from

the early Holocene into the next

millenia of insolation for the tenth

day of selected months.

year. Equatorial insolation is generally highest during passage through the equinoxes, when the Sun

is at the zenith. Equatorward of the two tropics the Sun reaches the zenith two times a year resulting

in a characteristic semi-annual cycle of tropical insolation. The precession cycles can vigorously

modulate this seasonal cycle. For example, in the zonal band between 10◦N and the equator, insolation

at present has nearly equal maxima in March and September (Figure 4.2a). In contrast, during the

middle Holocene insolation was at its maximum in September, when the distance to the Sun was at

its minimum and insolation reached 30 Wm−2 more than during March (Figure 4.2a,b). Therefore,

comparing the seasonal cycle of present and middle Holocene insolation, the time when its maximum

is reached shifts from middle of March to the beginning of September (Figure 4.2a).
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4.3 Data and methods

4.3.1 Alkenone-derived SST data

For this study, a marine Holocene paleotemperature data set covering all major ocean basins [Kim

and Schneider, 2004] has been compiled. The data set has been derived from a temperature proxy

(alkenones) that is internationally calibrated and standardized among 24 laboratories worldwide

[Rosell-Melé et al., 2001]. We consider 46 SST records solely based on the alkenone method as paleo-

thermometry in order to avoid potential biases due to using different SST proxies. The paleotempera-

ture estimates are based on the abundance ratios of long-chain unsaturated alkenones with two to four

double bonds [Brassell et al., 1986; Prahl and Wakeham, 1987]. Alkenones are synthesized by the

class Prymnesiophyceae of which the coccolithophorids Emiliania huxleyi and Gephyrocapsa ocean-

ica are the two most common sources of alkenones in contemporary oceans and sediments [Volkman

et al., 1980; Conte et al., 1995].

Different alkenone unsaturation indices (UK
37 or UK′

37) and calibrations were applied for each

alkenone-derived SST record. The errors in alkenone-derived temperature reported for the culture cal-

ibration and for a global core-top calibration reach ±0.5◦C [Prahl and Wakeham, 1987] and ±1.5◦C

[Müller et al., 1998], respectively. Analytical accuracy for each record considered here, however, was

better than ±0.3◦C [see Kim and Schneider, 2004]. The age models of the alkenone-derived SST

time series were established mainly by accelerator mass spectrometry (AMS)14C determinations on

planktic foraminifera and by oxygen isotope chronologies. All SST records were from ocean margin

sites with sedimentation rates sufficiently high to provide SST records with at least one value per 1000

years. Detailed information on each SST record are given by Kim and Schneider [2004], including

the original data references. Figure 4.3 shows 20 examples of alkenone-derived SST records along

with their linear regressions and their locations in the map.

4.3.2 General circulation model and experimental setup

Coupled atmosphere-ocean general circulation model

The transient climate simulations were performed with the coupled general circulation model ECHO-

G [Legutke and Voss, 1999]. The atmospheric part of this model is ECHAM4 [Roeckner et al., 1996],

whose prognostic variables are calculated in the spectral domain using a medium resolution (T30),

corresponding to a longitude-latitude grid of approximately 3.8◦ × 3.8◦ with 19 levels in the vertical.

The time step of the atmospheric model is 30 minutes. The ECHAM4 model is coupled to the HOPE

ocean general circulation model [Wolff et al., 1997], which includes a dynamic-thermodynamic sea

ice model with snow cover. It is discretized with a horizontal resolution of approximately 2.8◦ × 2.8◦

(0.5◦ resolution in the tropics, 20 vertical levels) and has a time step of two hours. The model utilizes

annual mean flux corrections for heat and freshwater. These fluxes are constant in time and have no

sources or sinks of energy or mass.

In the ECHO-G model, the calculation of the orbital parameters follows Berger [1978]. The at-

mospheric part of the ECHO-G model, the ECHAM4, has been adapted to account for the different

insolation during paleoclimatic time slices [Lorenz et al., 1996]. Moreover, to evaluate the dynamical
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Figure 4.3: Examples of alkenone-derived SST records (circles) and their linear trends (solid lines) evaluated

from 20 cores, whose positions are shown on the map ([Kim and Schneider, 2004]; see also Table 1 in [Kim

et al., 2004]). The magnitude of SST change over the last 7000 years (calendar age) is indicated in the upper

right corner of each panel.
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variation of insolation during the Holocene, the calculation of the orbital parameters is done individ-

ually for each simulation year.

Acceleration technique

We use an acceleration technique implemented into the ECHO-G model to conduct transient simu-

lations over millennia [Lorenz and Lohmann, 2004]. To be able to simulate a period of 7000 years

with this model, the time scale of the orbital forcing is shortened by an acceleration factor of 100.

The underlying assumptions are that the orbital forcing operates on much longer time scales (millen-

nia) than those inherent in the atmosphere including the surface mixed layer of the ocean (months

to years), and that climatic changes related to long-term variability of the thermohaline circulation

during the time period considered are negligible in comparison with orbitally driven surface tem-

perature variation. With this method, climate trends and feedbacks of the last 7000 years, imposed

by the external orbitally driven insolation changes, are represented in the experiments with only 70

simulation years. The experiments with the coupled AOGCM capture the internal variability of the

atmosphere-ocean–sea ice system with time scales up to decades.

In line with Holocene reconstructions, additional experiments using an acceleration factor of 10

(700 simulation years) exhibit no change in the simulated meridional overturning circulation during

the last 7000 years. Moreover, these experiments demonstrate that the magnitude of orbitally-forced

Holocene trends is independent of the chosen factor [Lorenz and Lohmann, 2004].

Experimental setup

We performed one simulation of pre-industrial climate. Constant greenhouse gas concentrations typ-

ical for the pre-industrial era at the very end of the Holocene (ca. 1800 AD) were prescribed. These

have been compiled mainly from ice core records [Etheridge et al., 1996, 1998; Inderm̈uhle et al.,

1999; Sowers et al., 2003]: 280 ppm CO2, 700 ppb CH4, and 265 ppb N2O. Other boundary con-

ditions (surface background albedo, vegetation ratio, leaf area index, distribution of continents and

oceans) were kept constant at their present values throughout the simulation and modern insolation

was used. This control experiment was integrated over a total of 3000 model years The climate state,

which becomes relatively stable after 1250 model years [Lorenz and Lohmann, 2004], is regarded as

the quasi-equilibrium response of the model to pre-industrial boundary conditions.

The set of ensemble simulations of the Holocene comprises six model runs, each going through

the entire last 9000 years, using an acceleration factor of 100. In order to isolate the orbitally driven

insolation effect on the simulated Holocene climate evolution, small changes in greenhouse gases

during the Holocene [Indermühle et al., 1999] are ignored and the model is forced only with orbitally-

varying insolation. Similarly, variations in the Sun’s output of radiation (solar constant) as well as

reduced insolation due to atmospheric dust loads after volcanic eruptions are not taken into account,

since no continuous data apart from the last millennium exist [Crowley, 2000b].

The Holocene simulations start after year 1250 of the control experiment when the coupled system

including the deep ocean is regarded to be in a quasi-equilibrium with the pre-industrial boundary

conditions and modern insolation. The simulation of the early Holocene (9–7 kyr BP) at the beginning
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of the Holocene experiments is taken as spin-up time for the model to adapt to the non-modern

insolation distribution. The simulation of the subsequent period from the middle Holocene into the

pre-industrial era (7 kyr BP to 1800 AD) is used for the trend analysis.

4.4 Long-term surface temperature trends

In this section the temporal and spatial patterns of long-term surface temperature trends, evaluated

from alkenone-derived SST reconstructions and transient general circulation experiments, are com-

pared. We explore the Holocene trends of annual mean temperature, as well as seasonal trends eval-

uated from the ensemble of model experiments.

4.4.1 Annual mean trends

The alkenone-derived SST records show diverging linear trends over the last 7000 years (Figure 4.3,

Figure 4.4a). In general, the extra-tropics cooled while the tropics experienced a warming or no

substantial temperature changes from 7 kyr BP to the present. The magnitude varied between -0.62◦C

and -4.41◦C/7kyr for the cooling and between +0.19◦C and +1.47◦C/7kyr for the warming (Fig. 3).

However, the zonal distribution of SST trends is inhomogeneous, showing east-west variations for the

same latitudes and abrupt changes in trends across oceanic frontal systems, e. g., the Angola-Benguela

Front in the southeast Atlantic. The leading EOF of SST variability (not shown) describes 58% of

the field variance and indicates a spatial pattern similar to the pattern of linear temperature trend as

derived from alkenone-data for the last 7000 years (Figure 4.4a).

The described coupled AOGCM experiments reveal pronounced annual surface temperature trends

over the last 7000 years. The temperature trend pattern is evaluated from the uppermost surface

temperature in the model: SST over ice-free water, and ground- (bare or vegetated land), ice- (sea

ice or land ice), or snow-temperature (snow-covered areas) wherever appropriate (Figure 4.4b). A

continuous cooling in the northern middle to high latitudes and in the southern high latitudes was

accompanied by a warming in the tropics as well as in the southern midlatitudes. The simulated

cooling exceeds 2◦C in the Arctic and 1◦C over the Pacific and northern Europe. A transient warming

is most pronounced in the northern low latitudes, especially over the continents, where the low heat

capacity of soil compared to ocean amplifies the surface temperature trend. It exceeds 1◦C over North

Africa, the Arabian Peninsula and the Indian subcontinent. Off the continents, the warming reaches

0.5◦C over the eastern tropical Atlantic, the northern Indian Ocean, and the western tropical Pacific.

The surface temperature trends are not zonally homogeneous over a whole basin: for example, in

the northern midlatitudes, there is a warming in the western Atlantic and Pacific, while their eastern

counterparts experienced a cooling (Figure 4.4b).

The simulated surface temperature trends are similar to the linear trends in the alkenone-derived

SSTs in the northern extra-tropics as well as in the tropics. In general, the amplitudes of SST trends

from the simulations are smaller compared to those of alkenone-derived SSTs. A significant discrep-

ancy between alkenone-derived SST data and model results occurs off Chile and Namibia. Generally,

in the coastal regions around South America and southern Africa, reconstructed SST trends are neg-

ative whereas simulated trends are positive (South America) or uncertain in sign (southern Africa).
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[◦C/7kyr]

(a)

(b)

Figure 4.4: Holocene surface temperature trends derived from alkenone proxies and coupled AOGCM simu-

lations in ◦C/7kyr: (a) marine sediment core positions and corresponding magnitudes of alkenone-derived SST

change over the last 7000 years; and (b) spatial distribution of annual mean surface temperature trends from

six ensemble simulations, each covering the last 7000 years. Values are sea-surface temperature changes over

ice-free water and ground-, ice- or snow temperatures over continents and ice-covered oceans. Shaded areas

represent the regions where the trend does not exceed one standard deviation. The continents are shown in the

resolution of the atmospheric model.
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4.4.2 Seasonal trends

Since seasonality cannot be resolved by the alkenone method, we concentrate on the model results and

examine the trends over the last 7000 years for the boreal summer (JJA) and winter (DJF) seasons,

respectively (Figure 4.5). In the boreal summer (Figure 4.5a), there is a Holocene cooling mainly

over the continents of the Northern Hemisphere (1◦C–3◦C), which is in line with the reduction of

insolation by 15 to 30 Wm−2 north of 30◦N. The cooling is less pronounced in the North Atlantic and

the North Pacific and large parts of the Southern Hemisphere continents.

In the boreal winter (Figure 4.5b), the continents generally exhibit a pronounced warming of 1◦C–

2◦C. This signal is not only significant in the tropics, where it follows the increase in insolation

(Figure 4.1), but also in the midlatitudes. Over the oceans, the trend patterns are much less significant,

although they do show a warming over the central and northwest Pacific Oceans as well as off West

Africa. Over the North Atlantic a dipole structure is found with a warming in the eastern and a cooling

in the western part and over Europe. Over the whole ocean, cooling is located mainly in the Arctic,

the northeast Atlantic and Pacific, and parts of the Southern Oceans.

Furthermore, we look now at the trends of the simulated maximum and minimum monthly temper-

ature: from the ensemble mean of the six Holocene experiments we extract the coldest and warmest

months of each simulated year. Then the trend at each of the grid points is evaluated. Thus the tem-

perature trend from the warmest or coldest month in each year is computed locally, no matter which

month this is. With this method, the trends reflect the characteristic change of the local summer or

local winter at each grid point in Figures 4.6a and 4.6b, respectively. For example, in high latitudes,

Figure 4.6a shows the local summer of both hemispheres combined. In the tropics, with its semi-

annual cycle of insolation, the extremes of surface temperature trends also include the precession

effect of a Holocene shift in the seasonal cycle of insolation.

The most significant trends are found for local summer (Figure 4.6a). Both hemispheres show

opposite signals with a strong temperature decrease (1◦C–4◦C) in the Northern Hemisphere and an

increase in the Southern Hemisphere. This can be attributed to the precessional shift of perihelion

from September in the middle Holocene to January today: over the last 7000 years, the reduction in

insolation during the JJA season exceeded 20 Wm−2 in the Northern Hemisphere, while simultane-

ously almost the whole Earth experienced an insolation increase during the DJF season (Figure 4.1).

For this reason today the maximum daily mean insolation anywhere on Earth is at the South Pole

(560 Wm−2) at the winter solstice (austral summer), when the distance to the Sun is near its mini-

mum. In the Northern Hemisphere, the trend pattern of the local winter (Figure 4.6b) is very close to

the pattern of the DJF season (Figure 4.5b).

4.5 Discussion

4.5.1 Orbital forcing of surface temperature trends

The global spatial pattern of alkenone-derived and modeled SST trends during the last 7000 years

can be summarized by an overall decrease in the extra-tropics accompanied by a slight increase in the

tropics. The cooling trends observed in the northern middle to high latitudes concur with a previous
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Figure 4.5: Simulated seasonal mean surface temperature trends during the Holocene (in ◦C/7kyr): (a)

boreal summer, June-July-August (JJA), and (b) boreal winter, December-January-February (DJF). Shaded

areas represent the regions where the trend does not exceed one half standard deviation. See Figure 4.4 for

further details.

study [Marchal et al., 2002], which showed a long-term cooling in the northeastern Atlantic Ocean

and the western Mediterranean Sea during the Holocene. However, small-scale changes of sign in

alkenone-derived SST trends occur off the coasts of Caribbean South America, southwest Africa,

and Japan. These changes may be related to regional patterns across oceanic frontal systems. Such

relatively small-scale patterns are difficult to reproduce accurately using a medium-resolution global

climate model under generalized forcing.
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Figure 4.6: Simulated surface temperature trends (in ◦C/7kyr) of the (a) warmest (local summer) and (b)

coldest (local winter) month of the year, during the Holocene. See Figure 4.4 and text for further details.

The zonally-averaged model results suggest that the strongly decreasing boreal summer insolation

induced a progressive surface temperature cooling of 1.4◦C in the northern middle to high latitudes

(north of 30◦N; Figure 4.5a) [see Lorenz and Lohmann, 2004]. During boreal winter (DJF) in low

latitudes (30◦N to 30◦S), a rise in simulated surface temperature (Figure 4.5b) amounts to 0.4◦C in the

zonal mean (not shown) and is in concordance with the increasing tropical insolation in that season

(Figure 4.1).

The seasonally-averaged model results imply that the DJF warming slightly exceeded the JJA cool-

ing in the tropics, resulting in a moderate warming. This suggests that surface temperatures responded
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non-linearly to the seasonal signal of orbitally driven insolation over the last 7000 years. The main

result of colder tropics and warmer extra-tropics for the middle Holocene climate compared to the

present is in overall agreement with previous modeling studies based on the time slice approach [He-

witt and Mitchell, 1998; Voss and Mikolajewicz, 2001; Kitoh and Murakami, 2002; Liu et al., 2003].

However, besides the transient simulations performed here, we analyzed the temperature trends for

different seasons: the boreal summer and boreal winter as well as the warmest (local summer) and

coldest (local winter) months, respectively.

The larger amplitudes of the simulated trends during the boreal summer (Figure 4.5a), in particular

for the North Atlantic and Mediterranean, are in better agreement with the alkenone-derived SSTs

(Figure 4.4a) than the simulated relatively-weak annual mean trends (Figure 4.4b). Off the west coast

of the North Pacific, larger positive trends are found, whereas in the eastern part the mismatches

between data and model results remain for the boreal winter.

Analyzing the trends of the maximum and minimum monthly surface temperature, we note a strik-

ing agreement in sign and amplitude of the simulated trends of the local summer (Figure 4.6a) with

the alkenone-derived SST trends in the whole North Atlantic (around 1◦C cooling) and Mediter-

ranean (2◦C–3◦C cooling). This may be taken as evidence that alkenone-derived temperature signals

in the northern extra-tropics are more likely to stem from summer conditions, when the phytoplankton

blooming occurs, than to reflect annual mean temperature. It is likely that coccolithophorid bloom-

ing during the early to middle Holocene took place in late summer (September), when high latitude

insolation was at its maximum.

Interestingly, even in the tropics, there is a match of the alkenone-derived SST trend pattern with

that of local summer, with a decrease of 1◦C in the tropical Atlantic and an increase of around 0.5◦C–

1◦C in the northern Indian Ocean and the China Sea. For these regions, this pattern match is better

than with any other of the simulated seasonal and annual mean surface temperature trends.

Although the seasonal cycle of SST in the tropics is small, phytoplankton production is not constant

throughout the year. It is reasonable that a change of seasonal insolation on the order of 10% is

able to impact marine biological productivity. If the alkenone production is thought to be highest

during the month with the warmest water temperature in the mixed layer, then the resemblance of

reconstructed trends with the simulated trends of local summer can be taken as an indication that the

time of maximum production may have changed with the insolation signal.

4.5.2 The Arctic/North Atlantic Oscillation

The Holocene tropical warming and extra-tropical cooling observed in both the alkenone-derived SST

records and in the model results was accompanied by a weakening of the Atlantic midlatitude zonal

surface temperature contrast, mainly in boreal winter (Figure 4.5b): a cooling over the eastern North

Atlantic opposes a warming over the western North Atlantic and eastern part of North America.

Also in boreal winter in the North Atlantic, we find a notable Holocene decrease in sea level pres-

sure difference between the high latitude (Icelandic) low and the subtropical (Azores) high by more

than 3 hPa (Figure 4.7). We relate the decrease in east-west surface temperature difference in the

North Atlantic with a Holocene weakening of the midlatitude atmospheric circulation pattern that
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Figure 4.7: Simulated trend of boreal winter (DJF) sea level pressure from the six ensemble Holocene

(7 kyr BP to present) simulations. Shaded areas represent the regions where the trend does not exceed one

half standard deviation. The rectangles indicate two regions in the North Atlantic, between which the merid-

ional pressure difference for Figure 4.8 is calculated. Additionally, 10 m wind vectors of the 7000 years trend

are shown, but only where their magnitude exceeds 0.3 m/s.

resembles the modern Arctic/North Atlantic Oscillation (AO/NAO) [Hurrell, 1995; Thompson and

Wallace, 1998]. This pattern, also known as the northern annular mode, is the dominant winter circu-

lation mode in the extra-tropics of the Northern Hemisphere, in particular in the North Atlantic realm

[Thompson and Wallace, 2001]. The time series of the pressure difference (Figure 4.8) between the

two large-scale areas outlined in Figure 4.7 indicates a decrease of the Atlantic meridional pressure

gradient by 2 hPa over the last 7000 years. This led to considerable changes in surface winds, ex-

ceeding 1 m s−1 (see Holocene wind change vectors in Figure 4.7) and including reduced westerly

winds in the Atlantic at 45◦N (less advection of warm air into Europe), southerly wind components

in central Europe (advection of cold air), and northerly anomalous winds into Africa and the Red

Sea (advection of warm air). These changes are typical of a decrease in AO/NAO. The reduction

of this mode leads to a characteristic dipole structure, with cooling over Europe and warming in the

subtropics, mainly in the eastern Mediterranean Sea and the Red Sea [e. g., Felis et al., 2000]. A

Holocene temperature decrease over Europe in winter is contrary to enhanced insolation from the

orbital changes (Figure 4.1). The simulated European winter cooling is in line with a recent study

analyzing alkenone-derived Holocene SST records and instrumental data from the North Atlantic and

Mediterranean [Rimbu et al., 2003] as well as a study analyzing the circulation pattern in the Nordic

Seas [Lohmann et al., 2005].

The net annual mean cooling in the northern extra-tropics (Figure 4.4) is related to the strong SST

response to a decrease in JJA insolation, even while there was an increase in DJF insolation. It is likely

that rectification processes in the tropical Pacific lead to a more pronounced boreal winter signal than
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Figure 4.8: Meridional pressure gradient between the two regions shown in Figure 4.7. It is interpreted

as the evolution of the AO/NAO index over the last 7000 years: the difference in mean sea level pressure

during boreal winter (DJF) between a low latitude/high pressure box (longitude: 50 ◦W to 10◦E, latitude: 45◦N

to 65◦N) minus a high latitude/low pressure box (longitude: 70◦W to 10◦W, latitude: 20◦N to 40◦N) in the

North Atlantic. The thick line depicts the ensemble mean of the six Holocene experiments, which are shown

individually as thin dashed lines. A 21-year running mean is used as a low-pass filter for all experiments.

for boreal summer [Clement et al., 1999]. In a similar way, the annual mean Holocene cooling in

the eastern North Atlantic and Europe, contrary to the insolation signal, is related to a boreal winter

phenomenon, the AO/NAO circulation pattern. The Holocene weakening of the AO/NAO is possibly

driven by the tropical warming during the DJF season.

Our main findings disagree with the study of Liu et al. [2003], which suggested that the annual

mean SST changes during the early to middle Holocene were mainly caused by the annual mean

insolation changes. For example, in the Arctic, the greater tilt of the Earth’s axis at 7 kyr BP probably

contributed to higher temperatures there relative to the present (pre-industrial): poleward of 60◦N,

an increase of more than 2.5 Wm−2 in annual mean insolation occurs. In the tropics, the net annual

mean insolation decrease is less than 1 Wm−2, which is negligible compared to the seasonal change

of more than 20 Wm−2.

The boreal winter signal dominates the temperature response over the North Atlantic through at-

mospheric circulation changes. We associate the Holocene weakening of the AO/NAO pattern with

the tropical warming caused by the precession-related increasing boreal winter insolation. Indeed,

seasonally-resolved coral data from the Northern Red Sea and modeling experiments covering the

last interglacial and the Holocene suggest a strong modulation of the AO/NAO by orbitally driven in-

solation changes [Felis et al., 2004]. During the last interglacial-glacial transition (125 to 115 kyr BP),

when eccentricity was larger and precession had a more pronounced influence on the subtropics than

during the Holocene, the AO/NAO-like climate mode was dominant and its change occurred with

significantly-enhanced amplitude [Felis et al., 2004].
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4.5.3 Limitations

For simulation by various climate models, PMIP defined the Holocene Maximum time slice to be at

6 kyr BP. This is about a thousand years later than the northern high latitude summer insolation max-

imum. The reason for this definition was simply that the Laurentide and Fennoscandian continental

glaciers had disappeared by then. During the last deglaciation (after the late Pleniglacial until the

early Holocene, ≈15–7 kyr BP) the melting ice caps with their input of huge freshwater pulses into

the North Atlantic caused abrupt climate changes and severe shifts in the Atlantic ocean circulation

system, with global impact [Clark et al., 2002]. Examples are the end of the Younger Dryas cold

event at 11.5 kyr BP and the 8.2 kyr climate shift event [Grootes et al., 1993]. In order to exclude

these periods, we confined this study to the middle to late Holocene. The last 7000 years can be re-

garded as a relatively stable climate period compared to earlier eras and were probably free of abrupt

climate shifts and rearrangements in the atmosphere-ocean system [Fairbanks, 1989; Grootes et al.,

1993; Clark et al., 2002; McManus et al., 2004].

Accordingly, in the ensemble of Holocene simulations no noteworthy changes in the thermohaline

circulation were found [Lorenz and Lohmann, 2004]. This mitigates the limitation that the model

cannot adequately simulate fast climate transitions using the acceleration technique for the orbital

forcing. Moreover, we find no indication in modeled and reconstructed data that global scale circula-

tion changes are responsible for the observed surface temperature trends.

The mismatch between the alkenone-derived SST data and the model results around South America

(and partly southern Africa) can be taken as an indication that mechanisms other than the orbitally

driven insolation changes are primarily responsible for variations in Southern Hemisphere SST, in

contrast to the Northern Hemisphere. In the Southern Ocean, it is plausible that sea ice dynam-

ics and changes in the thermohaline circulation may have significant influence on large-scale SST

distribution possibly via the hemispheric seesaw effect [Crowley, 1992; Stocker, 1998; Knorr and

Lohmann, 2003]. Due to the acceleration technique used, these Holocene experiments could not

simulate millennial-scale climate variability seen in the alkenone-derived SST records [Rimbu et al.,

2004]. Hence, we speculate that deep ocean adjustments involving atmosphere and sea ice dynam-

ics played a more dominant role in the Southern Hemisphere than in the Northern Hemisphere for

Holocene surface temperature trends.

One important component that is lacking in the ECHO-G model is a module for adaptive vegetation,

since the terrestrial biosphere with its vegetation ratio, background albedo, leaf area index, etc. is

prescribed. The vegetation-climate feedback almost certainly has a significant impact on climate,

regionally exceeding that of the atmosphere-ocean interaction, for example, in the case of African

and Asian monsoon amplification [Texier et al., 2000; Braconnot et al., 2002]. Therefore, one of the

important steps to improve the model results is to consider vegetation-climate interaction in transient

climate change simulations with the ECHO-G.

A large number of paleoclimate simulations have been performed utilizing so-called “Earth system

models of intermediate complexity” (EMICs). For the sake of simulating feedbacks between as many

climate components as feasible, the number of processes and the detail of description in these models

are reduced [Claussen et al., 2002]. For example, the atmospheric circulation may be partly param-

eterized [Petoukhov et al., 2000; Weber et al., 2004; Renssen et al., 2005] or the oceanic component
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zonally-averaged [Petoukhov et al., 2000; Crucifix et al., 2002]. The advantage of these models is that

they include more of the components and their interactions that have a significant effect on long-term

natural climate change.

In the zonal mean, the magnitude of Holocene surface temperature changes of our model are in

general agreement with studies using EMICs [Crucifix et al., 2002; Weber et al., 2004]. Notably,

the experiments confirm much earlier findings [e. g., Berger et al., 1990] that a considerable fraction

of the climate variance is caused by orbitally driven insolation changes. However, coarse resolution

or simplifications, inherent in fast-running EMICs, can partly impede the simulation of important

interactions like the AO/NAO climate mode. The transient simulations provided by AOGCMs account

in more detail for the dynamics that are necessary to interpret the response of the climate system to the

orbital forcing during the Holocene. We find that the dominant signal of orbitally-induced temperature

change has more regional patterns superimposed on it. Beyond the global scale, the weakening of the

AO/NAO climate mode is the most important phenomenon affecting Holocene climate change.

4.6 Concluding remarks

The approach in this study was to compare a global Holocene proxy SST data set to results from

climate model simulations with respect to changes in seasonality and global distribution patterns.

We use a novel method for model acceleration regarding the orbitally driven insolation forcing in a

complex circulation model [Lorenz and Lohmann, 2004]. With this method, a coupled atmosphere-

ocean general circulation model, the ECHO-G model [Legutke and Voss, 1999], is able to simulate

orbitally driven long-term transient climate changes.

The main finding of this study is that changes in the seasonal insolation cycle during the last 7000

years of the Holocene, forced by variations in the Earth’s orbital parameters, are a significant cause

for the observed opposing trends of cooling and warming in the extra-tropics and the tropics, re-

spectively. The spatial and seasonal heterogeneity of the simulated climate is a detailed non-linear

response of the atmosphere-ocean system to the external forcing, the seasonal and latitudinal distri-

bution of insolation. Moreover, the similarities of the alkenone-derived and simulated SST trends

strongly suggest that Holocene SST changes in the extra-tropics and the tropics (mainly in the North-

ern Hemisphere) are controlled by nonlinear changes in the entire seasonal cycle of insolation. This

finding supplements the theory [Milankovǐc, 1941; Hays et al., 1976; Imbrie et al., 1992] that the

predominant pacemaker of long-term climate changes is primarily the orbitally driven boreal summer

insolation at high northern latitudes.

There has been an ongoing debate about the seasonal origin of the alkenone-derived SST signal in

tropical, subtropical and high latitude regions [Rosell-Meĺe et al., 1995; Baumann et al., 1997; Müller

and Fischer, 2001]. Our model simulations provide the possibility to compare surface temperature

trends of any season to alkenone-derived SST records. In the northern high latitudes, there is better

agreement of the alkenone-derived SST data with our model results during the JJA season. This

suggests that high latitude alkenone-derived SST records probably reflect boreal summer conditions

more than the annual mean signal. Note that the Holocene shift of the time of year of the maximum

tropical insolation may have influenced the timing of coccolithophorid production and thus the trend
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pattern in the alkenone-derived SST data.

The imprint of orbitally driven insolation forcing on Holocene surface temperature trends is dom-

inant on a global scale but regional trend patterns are superimposed on this. In the Northern Hemi-

sphere, changes in the AO/NAO pattern during the Holocene are detected in the simulated, as well

as alkenone-derived, surface temperature patterns. The prevalent mechanisms in the Southern Hemi-

sphere are less clear. Since long-term deep ocean adjustments could have greater influence here,

orbitally driven insolation signals may not be able to dominate regional scale changes in ocean sur-

face waters.

Our study provides a consistent interpretation of reconstructed and simulated temporal and spatial

patterns of surface temperature during the middle to late Holocene. We show that temporal and

spatial distribution patterns are important for the interpretation of proxy temperature trends. This

study could be advantageously extended by compiling a larger global alkenone-derived SST data set,

as well as adding a comprehensive compilation of other marine and land proxy data. Performing new

model experiments with atmosphere-ocean-vegetation feedbacks added in the model [Ganopolski

et al., 1998; Renssen et al., 2005] would also be an improvement.

We have extended the Holocene climate simulations into the last two centuries taking into account

the increase in greenhouse gases in the atmosphere [Lorenz and Lohmann, 2004]. The results indicate

that the Northern Hemisphere summer cooling during the Holocene is of the same order of magnitude

as the warming trend over the last 100 years. The extension of the model experiments into the coming

centuries, so that they span the Holocene and the era of anthropogenic greenhouse gas increases,

would enable the comparison of climate variability under natural and anthropogenic conditions and

the investigation of differences in their characteristic temporal and spatial patterns. Such an approach

could render a better assessment of future climate change.
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Chapter 5

Increased seasonality in Middle East

temperatures during the last interglacial

period

5.1 Introduction

The last interglacial period (about 125,000 years ago) is thought to have been at least as warm as the

present climate [Kukla et al., 2002]. Owing to changes in the Earth’s orbit around the Sun, it is thought

that insolation in the Northern Hemisphere varied more strongly than today on seasonal timescales

[Berger, 1978], which would have led to corresponding changes in the seasonal temperature cycle

[Montoya et al., 2000]. Here we present seasonally resolved proxy records using corals from the

northernmost Red Sea, which record climate during the last interglacial period, the late Holocene

epoch and the present. We find an increased seasonality in the temperature recorded in the last in-

terglacial coral. Today, climate in the northern Red Sea is sensitive to the North Atlantic Oscillation

[Felis et al., 2000; Rimbu et al., 2001], a climate oscillation that strongly influences winter temper-

atures and precipitation in the North Atlantic region. From our coral records and simulations with

a coupled atmosphere-ocean circulation model, we conclude that a tendency towards the high-index

state of the North Atlantic Oscillation during the last interglacial period, which is consistent with

European proxy records [Zagwijn, 1996; Aalbersberg and Litt, 1998; Klotz et al., 2003], contributed

to the larger amplitude of the seasonal cycle in the Middle East.

The Arctic Oscillation/North Atlantic Oscillation (AO/NAO), the Northern Hemisphere’s dominant

mode of atmospheric variability, exerts a strong influence on mid- and high-latitude continental cli-

mate by modulating the strength of the subpolar westerlies at interannual to interdecadal timescales

[Hurrell, 1995; Thompson and Wallace, 2001]. Previous work has shown that the northernmost Red

Sea represents a location to study past AO/NAO-related atmospheric variability over the Northern

Hemisphere, and that annually banded corals from this subtropical site provide proxy records of this

variability over the past centuries [Felis et al., 2000; Rimbu et al., 2001]. This narrow, desert-enclosed

Thomas Felis, Gerrit Lohmann, Henning Kuhnert, Stephan J. Lorenz, Dennis Scholz, Jürgen Pätzold, Saber A. Al-

Rousan, and Salim M. Al-Moghrabi, Nature, 429, S. 164-168, doi:10.1038/nature02546, c©2004 Nature Publishing Group
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(a) (b) (c)

Figure 5.1: Maps of the northernmost Red Sea, and X-radiographs of the two fossil Porites corals. (a)

The sites of coral collection in the northern Gulf of Aqaba. Coral AQB-10-B was collected at 34 ◦57.84′E,

29◦22.91′N; coral AQB-3-A was collected at 34◦58.28′E, 29◦27.12′N. MBL/UO, H. Steinitz Marine Biology

Laboratory/Underwater Observatory, Eilat; MSS, Marine Science Station, Aqaba; sea surface temperature

was measured at UO25. (b, c), X-radiograph positive prints of 5-mm-thick slabs sliced parallel to the growth

axis of coral AQB-10-B (b; 2.9 kyr) and coral AQB-3-A (c; 122 kyr). Alternating bands of high (dark colour)

and low skeletal density (light colour) are visible. One year is represented by a high-density/low-density band

pair. The sampling transect appears as a white line. The corals are about 60 cm high and 25-30 cm in diameter.

Scale bars, 10 cm.

ocean basin is influenced by mid-latitude continental climate [Rimbu et al., 2001, 2003] and is sensi-

tive to atmospheric processes owing to a weak water column stratification [Eshel et al., 2000].

5.2 Late Holocene and last interglacial corals

Two fossil coral colonies (Porites) were collected near Aqaba on the Jordanian coast of the Gulf of

Aqaba, the northeastern extension of the northernmost Red Sea (Figure 5.1a). Colony AQB-10-B

was recovered from a canal cut into the modern reef flat, whereas colony AQB-3-A was collected

from a complex of raised reef terraces. X-radiographs revealed annual density bands and were used

to identify areas within the colonies that appear to be unaffected by diagenetic alteration (Figure 5.1b,

c). X-ray diffraction analyses of these areas indicate an aragonite content of 98-99%, and petrographic
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thin sections show only traces of secondary aragonite. The bimonthly resolution time series of both

coral δ18O and δ13C (not shown) generated from these areas show clear annual cycles, suggesting that

the sampled sections were not subject to major diagenetic alterations with respect to stable isotopes

(see Methods and Supplementary Information).

Radiocarbon dating indicates that coral AQB-10-B grew 2.9 kyr ago during the late Holocene. The

age of coral AQB-3-A is 121.9 (+7.0/6.3) kyr, based on U-series dating including a correction for

open-system behaviour. Additional uncertainty due to model assumptions is reflected in the larger

age error compared to usual U-series dating of corals [Scholz et al., 2004] (see Methods). The latter

coral grew during the last interglacial period, which, in the Middle East, is documented between

124 and 119 kyr ago based on a U-series dated speleothem record of eastern Mediterranean climate

[Bar-Matthews et al., 2000], with the main peak at 122 kyr coinciding with the coral’s age.

The late Holocene and last interglacial corals provide bimonthly resolution δ18O time series for

time windows of 98 and 44 yr, respectively. Multitaper method spectral analysis reveals significant

variance at interannual periods of 5-6 yr in both records (Figure 5.2c, d), which can be interpreted

as an indication of AO/NAO-like atmospheric variability over the Northern Hemisphere at 2.9 and

122 kyr ago. Similar variability is evident in the time series of a modern coral from the northernmost

Red Sea (Figure 5.2a), where it is strongly linked with regional sea surface temperature (SST) and

the AO/NAO4. Cross-spectral analysis reveals that this interannual variability is highly coherent and

in phase with the AO index (Figure 5.2b), although a minor fraction is associated with weaker and

non-stationary tropical Pacific teleconnections modulated by higher-latitude atmospheric circulation

[Felis et al., 2000; Rimbu et al., 2003]. Although the AO/NAO is most pronounced during winter, it is

present throughout the year [Barnston and Livezey, 1987; Rogers and McHugh, 2002]. Consequently,

spectral analyses were performed with bimonthly resolution time series, reflecting variability through-

out the year. This procedure is supported by the finding that the physical mechanism that provides

a link between the AO/NAO and Middle East climate during winter [Rimbu et al., 2001] is similar

to that for interannual variability throughout the year (see Supplementary Fig. S1): a high-pressure

anomaly over the Mediterranean Sea associated with the AO/NAO favours an anticyclonic flow of sur-

face winds in the eastern Mediterranean, which results in advection of colder air from southeastern

Europe, controlling SST and coral δ18O variability in the northern Red Sea [Rimbu et al., 2003].

5.3 Methods

5.3.1 Microsampling, oxygen isotope and Sr/Ca analyses, age model

Microsampling, δ18O analyses, age model construction, and interpolation to a bimonthly resolution

were performed as recently described for a modern coral from the northernmost Red Sea4. The

microdrill bit diameter was adapted to a coral’s mean growth rate as estimated from X-radiographs

in order to obtain at least six samples per year on average by continuous spot-sampling. For Sr/Ca

analyses, inductively coupled plasma mass spectrometry was used (see Supplementary Information).
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5.3.2 Radiocarbon and U-series dating

An accelerator mass spectrometry (AMS) 14C date of 3,290±35 yr before present (BP) was deter-

mined on coral AQB-10-B (KIA13708) at the Leibniz-Labor for Radiometric Dating and Isotope

Research (Kiel, Germany). The 14C age was converted to calendar age using the CALIB 4.3 cal-

ibration program [Stuiver and Reimer, 1993], yielding an age of 2,910 calibrated yr BP (2σ range:

3,0022,807 cal. yr BP). A ΔR value of 154 yr was used to correct for regional differences in reser-

voir age, based on six AMS 14C dates determined on two modern coral cores with established age

models and data from the Marine Reservoir Correction Database (see Supplementary Table S1). Six

thermal ionization mass spectrometry (TIMS) U-series dates were determined on coral AQB-3-A

at the Forschungsstelle für Radiometrische Altersbestimmungen of the Heidelberger Akademie der

Wissenschaften (Heidelberg, Germany).

The U-series ages range from 137.3 to 126.4 kyr ago and the initial δ234U values are elevated,

ranging from 21.5% to 38.5% and suggesting open-system behaviour of U-series isotopes. In order to

solve this problem, a model approach was applied that yields an isochron age of 121.9 (+7.0/6.3) kyr

(2σ range) [Scholz et al., 2004]. The larger age error compared to usual U-series dating of corals

arises from additional uncertainty due to the model assumptions. The age is consistent with peak

sea-level conditions during the last interglacial, based on dated coral reef terraces from the Red Sea

[Walter et al., 2000] (136 to 118 kyr ago) and elsewhere [Stirling et al., 1998] (128 to 121 kyr ago),

as well as with the last interglacial period in the Middle East [Bar-Matthews et al., 2000] (124 to

119 kyr ago). Moreover, coral AQB-3-A was collected from a complex of raised reef terraces with

an elevation in the range of other last interglacial reef terraces along the Red Sea coast [Walter et al.,

2000].

5.3.3 Calibration of the proxies

The seasonal maxima and minima in the Sr/Ca record of a modern coral (EILAT-15B) were tied to

the corresponding extreme values in a monthly record of in situ SST [Genin et al., 1995]. A linear

least-squares regression was then carried out for bimonthly interpolated Sr/Ca and SST data (with

SST defined as the independent variable), giving a relationship of: Sr/Ca×103 = 10.781(±0.1181)−
0.0597(±0.00501)×SST (r2=0.78). The slope of this regression equation is similar to that of

calibrations at other locations [Marshall and McCulloch, 2002]. The same procedure was ap-

plied to the coral δ18O record of EILAT-15B, giving a relationship of: δ18O= 0.801(±0.2773) −
0.1514(±0.01176)×SST (r2=0.81). The slope is similar to that of a calibration from the region [Felis

et al., 2000].

Using these equations to convert coral Sr/Ca and δ18O to SST reveals large offsets in the coral-

based mean SST between coral EILAT-15B and two other modern corals (AQ2, EILAT-1) for both

proxies, most probably due to so-called vital effects. We therefore do not interpret coral Sr/Ca and

δ18O in terms of absolute SST, but quantitative estimates of the range of the seasonal SST cycle are

possible, as the slope of the proxy-SST calibrations remains unaffected. Modern coral δ18O data are

from Felis et al. [2003], age models were constructed according to Felis et al. [2000].
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Figure 5.2: Time series of coral δ18O based on modern, late Holocene, and last interglacial Porites colonies

from the northernmost Red Sea and their spectral properties. Bimonthly coral δ 18O time series (left panel)

and results of multitaper method spectral analysis with red noise null hypothesis [Ghil et al., 2002] (number

of tapers, 3; bandwidth parameter, 2; 99% significance level is indicated) (right panel) for (a), a modern coral

from Ras Umm Sidd [Felis et al., 2000] (RUS-95, AD 1750-1995), (c), a late Holocene coral (AQB-10-B,

2.9 kyr) and (d), a last interglacial coral (AQB-3-A, 122 kyr) from Aqaba. (b), Bimonthly time series of the

Arctic Oscillation (AO) index10 (left panel). Cross-spectral analysis between the time series of the modern

coral and the AO index (right panel). The 90% confidence level for coherency is indicated. Spectral analyses

were performed for bimonthly, detrended and normalized time series with the average seasonal cycle removed.
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5.3.4 Global circulation model and experimental set-up

The coupled atmosphere-ocean general circulation model ECHO-G is applied [Legutke and Voss,

1999]. The atmospheric part of ECHO-G is the general circulation model ECHAM4 with its T30

resolution, which corresponds to a gaussian longitude-latitude grid of approximately 3.8◦times3.8◦.

ECHAM4 is coupled to the HOPE ocean model including a dynamic-thermodynamic sea-ice model.

ECHO-G was adapted to account for the influence of variations in the annual distribution of solar ra-

diation resulting from the varying orbital parameters [Lorenz and Lohmann, 2004], which were calcu-

lated after Berger [1978]. The timescale of the astronomical forcing was shortened by an acceleration

factor of 100 to enable simulations of a >100 kyr period with ECHO-G [Lorenz and Lohmann, 2004].

The insolation trends of the last 140 kyr are represented in 1,400 simulation years. Three ensemble ex-

periments for the period 140 kyr ago to AD 1800 were performed with orbital forcing [Berger, 1978]

only. Throughout the experiments, the greenhouse gas concentrations were fixed (latest Holocene

values: 280 p.p.m. CO2, 700 p.p.b. CH4, 265 p.p.b. N2O) and modern values for vegetation, sea

level, and distribution of land, ocean and continental ice were used. The experiments were contin-

ued from AD 1800 onward with increasing greenhouse gas concentrations, reaching 370 p.p.m. CO2

in AD 2000. The temperature anomalies induced by anthropogenic greenhouse gases are shown in

Supplementary Fig. S10.

5.4 Results

The most striking feature of the coral δ18O time series is increased seasonality in the last interglacial

record compared to the modern and late Holocene records (Figure 5.2). Because coral δ18O is influ-

enced by both temperature and δ18O of sea water, we applied the coral Sr/Ca palaeothermometer to

the fossil corals and to three modern reference corals. Combined Sr/Ca and δ18O analyses on modern

corals show that both proxies satisfactorily document the seasonal SST cycle of 5.4◦C, indicating

a seasonal cycle between 4.5 and 5.6◦C (Figure 5.3a), in agreement with earlier findings that δ18O

seasonality in northern Red Sea corals is mainly controlled by temperature [Felis et al., 2000]. Both

Sr/Ca and δ18O of the late Holocene coral indicate a seasonal SST cycle of 5.2◦C at 2.9 kyr ago (Fig-

ure 5.3b), similar to today. In contrast, in the last interglacial coral both proxies indicate increased

SST seasonality of 8.4◦C at 122 kyr ago (Figure 5.3d) (see Methods and Supplementary Information).

In order to understand the physical mechanisms responsible for increased SST seasonality in the

northernmost Red Sea during the last interglacial, and seasonality similar to today at 2.9 kyr ago, we

performed coupled atmosphere-ocean general circulation model simulations (ECHO-G) for last inter-

glacial, late Holocene, pre-industrial, and modern conditions (see Methods). Consistent with coral-

based results, the corresponding modelled SST indicates increased seasonality during the last inter-

glacial, and seasonality similar to modern and pre-industrial conditions at 3 kyr ago (Figure 5.3c, e).

Consistent with model-based SST, the modelled Middle East surface air temperature (SAT) anomalies

indicate warmer summers and colder winters relative to modern conditions during the last interglacial

(Figure 5.4a, b). This increased seasonality would usually be explained by an amplified seasonal

insolation cycle at that time (Figure 1.8).
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Figure 5.3: Coral-based sea surface temperature (SST) anomalies for the northernmost Red Sea and ECHO-

G model-based SST and AO/NAO indices. Bimonthly Porites coral δ18O (red) and Sr/Ca (blue) time series

and coral-based SST anomalies (respective mean was subtracted). (a), Modern corals EILAT-15B (left), AQ2

(centre), EILAT-1 (right), in situ SST [Genin et al., 1995] (dotted line); (b), late Holocene (AQB-10-B; 2.9 kyr)

and (d), last interglacial coral (AQB-3-A; 122 kyr). (c), (e), Modelled monthly SST index of the coral region

for 3 kyr (c, red), 123 kyr (e, red), pre-industrial (around AD 1830; c, black) and modern conditions (around

AD 1980; e, black). f, Modelled AO/NAO index (December-February). Three greenhouse gas scenarios (black

lines) and the ensemble mean (red line) for the period AD 1800-2000 (centred 41-yr running means). Mean

standard deviations for 41 winters centred at 122 kyr, 3 kyr and the pre-industrial period (thick horizontal bar)

are shown on the right. See Figure 5.6 for index definitions and Figure 6.1 for a comparison of the index during

the Eemian period in chapter 6.
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Figure 5.4: Near-surface air temperature anomalies for the last interglacial and the late Holocene based

on the coupled atmosphere-ocean general circulation model ECHO-G. Difference between last interglacial

(124 kyr) and modern climate (AD 1975-85) for (a), winter (December, January, February; DJF) and (b),

summer (June, July, August; JJA). The corresponding anomalies from pre-industrial climate are shown in

Supplementary Fig. S8. Difference between late Holocene (3 kyr) and pre-industrial climate (AD 1820-50)

for (c), winter (DJF) and (d), summer (JJA). The corresponding anomalies from modern climate are shown

in Supplementary Fig. S9. Near surface wind anomaly is schematically represented as white arrows. An

average of 11 simulation years has been applied to the last interglacial and late Holocene climate centred at

the respective time period. The region of coral collection in the northernmost Red Sea is marked by a white

circle.

Indeed, our model suggests that warmer Middle East summers during the last interglacial result

from increased summer insolation, as they are part of a spatially homogenous warming pattern over

mid-latitude continental areas where insolation was enhanced (Figure 5.4b). However, the model

suggests that colder Middle East winters at that time did not solely result from reduced winter inso-

lation at these latitudes, but are associated with the AO/NAO. The modelled winter SAT difference

between last interglacial and modern climate reveals a warming and cooling pattern over the North

Atlantic and adjacent continental areas that cannot be explained by differences in direct insolation

forcing, but that resembles the spatial signature of the AO/NAO [Hurrell, 1995; Thompson and Wal-

lace, 2001]. This winter SAT anomaly indicates a tendency towards the AO/NAO high-index state

during the last interglacial, with warmer winters in central Europe owing to increased advection of
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Figure 5.5: Relationship between the

modelled SST index of the coral region and

the modelled sea level pressure (SLP) field

of the Northern Hemisphere, based on the

coupled atmosphere-ocean general circu-

lation model ECHO-G. Regression of the

modelled SST index covering the eastern

Mediterranean and the Red Sea (see Fig-

ure 5.6 for definition) against the modelled

Northern Hemisphere SLP field for the pe-

riod 1820-1920 A.D. (December, January,

February). Prior to the calculation the

trends have been eliminated.

warm oceanic air from the west, and colder winters in the Middle East owing to increased advection

of cold continental air from the north (Figure 5.4a). This implies that the AO/NAO contributed to

increased SST seasonality in the northernmost Red Sea during the last interglacial through winter

cooling. This is consistent with (1) coral-based results of AO/NAO-like interannual variability dur-

ing the last interglacial, (2) observations during recent decades where a shift towards the high-index

AO/NAO is accompanied by colder winters in the northernmost Red Sea leading to increased season-

ality, and (3) a strong relationship between interannual variability of modelled regional winter SST

and the AO/NAO (Figure 5.5, see Supplementary Figs S5, S6). Furthermore, a tendency towards the

high-index AO/NAO provides an explanation for warmer winters in central Europe during the last

interglacial, as indicated by terrestrial proxy climate records [Zagwijn, 1996; Aalbersberg and Litt,

1998; Klotz et al., 2003], a finding in conflict with an explanation via reduced winter insolation at

these latitudes.

Figure 5.6: Definition of modelled indices used in

this study. The SST index of the coral region (Fig-

ure 5.3c, e) has been obtained from the averaged mod-

elled SST over the eastern Mediterranean and the Red

Sea (green box). This index is used for the calculation

of the regression depicted in Figure 5.5. The modelled

AO/NAO index (Figure 5.3f and Figure 6.1) is calcu-

lated from the sea level pressure (SLP) difference be-

tween a southerly high pressure region (red box) and

a northerly low pressure region (blue box). The brown

rectangles mark the sea-landmask of the atmospheric

submodel ECHAM4 in its T30 resolution.
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5.5 Discussion and conclusions

Consistent with coral- and model-based SST, the modelled northernmost Red Sea SAT anomalies

indicate seasonality similar to modern and pre-industrial conditions at 3 kyr ago (Figure 5.4c, d). The

winter SAT anomaly indicates a tendency towards the high-index AO/NAO at 3 kyr ago relative to

pre-industrial conditions, which is less pronounced compared to the last interglacial. Compared to

the latter, the amplified seasonal insolation cycle at 3 kyr ago is also less pronounced (see Figure 1.8).

For the last interglacial, the winter SAT anomaly from pre-industrial climate indicates a more pro-

nounced tendency towards the high-index AO/NAO compared to that from modern conditions (see

Supplementary Fig. S8).

The modelled SAT anomalies, as well as the modelled AO/NAO indices, suggest a combined re-

sponse of the AO/NAO to seasonal insolation changes on orbital timescales and to atmospheric green-

house gases (Figure 5.3f). Consistent with other model-based studies [Fyfe et al., 1999; Shindell et al.,

1999], a greenhouse gas increase from pre-industrial to modern values results in a slight tendency to-

wards the high-index AO/NAO. The pronounced last interglacial high-index AO/NAO relative to 3 kyr

ago and pre-industrial climate, however, can only be explained by differences in insolation forcing,

as greenhouse gas concentrations were similar. Interestingly, the interannual AO/NAO variability is

nearly unaffected by the orbital forcing, consistent with coral-based results. The physical mechanism

linking orbital forcing and the last interglacial high-index AO/NAO most probably involves reduced

boreal winter insolation in the tropics (Figure 1.8). In the model, this leads to a reduced pole-to-

equator temperature gradient, and a subsequent weakening of the Hadley cell accompanied by plane-

tary wave activity, with increased Icelandic low and subtropical North Atlantic/eastern Mediterranean

highs. The anomalous circulation pattern represents a quasi-equilibrium response to thermal forcing

linked to land-sea temperature contrasts and orography [Held et al., 2002]. Furthermore, a northward

shift of the North American and Atlantic jet stream by downward propagating stratospheric anomalies

is consistent with the high-index AO/NAO10.

The AO/NAO, the dominant mode of Northern Hemisphere climate variability on interannual to

interdecadal timescales [Hurrell, 1995; Thompson and Wallace, 2001], has also been suggested to be

important on millennial timescales [Keigwin and Pickart, 1999; Noren et al., 2002]. In addition, our

approach (of combining seasonal resolution coral proxy records from a climatically sensitive, excep-

tionally northern, subtropical reef site with coupled atmosphere-ocean circulation model simulations)

suggests an important role of the AO/NAO in modulating regional Northern Hemisphere climate

patterns and seasonality on orbital timescales. The cross-validation of well-dated, high-resolution

palaeoclimatic records and state-of-the-art climate models provides a strong tool for evaluating the

sensitivity of different modes of climate variability to natural and anthropogenic forcing factors. This

provides a crucial step in understanding and predicting pronounced changes in past, present and future

climate.
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Chapter 6

Synthesis

6.1 Summary

The aim of the present study was to render an integrated approach through a combined model-data in-

vestigation. For the understanding of processes that have caused long-term natural climate variability

a concomitant analysis of general circulation model (GCM) results and recent geological palaeocli-

matic data have been performed, with a special focus on the Eemian (125 kyr ago), the last glacial

maximum (21 kyr ago, LGM), and the Holocene (here, the last 7 kyr) periods. Here, the questions

raised in the introduction (Chapter 1) are summarised together with the findings of this thesis.

The tropical climate of the LGM has been investigated with a series of atmospheric GCM simu-

lations using the ECHAM model. By varying the main lower boundary condition for ECHAM (sea

surface temperatures, SST), the vertical structure of the simulated atmosphere has been analysed in

detail to decide which simulation provides for the best match in terms of a consistent picture of the

LGM climate, and to explain the apparent mismatch between tropical SST and temperature at the

snowline level derived from tropical glacier moraines during the LGM.

(1) What is the most probable scenario for tropical air temperatures at sea level in coexistence

with those at the level of the tropical snowline? How can the inconsistency between tropical

SST and air temperature at the snowline be explained?

One of the ECHAM simulations of the LGM climate utilised as boundary condition the SST

reconstruction by CLIMAP (Climate: Long-Range Investigation, Mapping, and Prediction)

[CLIMAP Project Members, 1981] with an additional cooling of 3 K (Kelvin) in the tropical

oceans, corroborated by recent findings of colder tropical LGM temperatures (for a summary

see [Crowley, 2000a; Mix et al., 2001]). The simulation with imposed tropical cooling provides

for the most consistent picture of the LGM climate with respect to (1) reconstructed minimum

temperatures by pollen assemblages [Farrera et al., 1999], (2) hydrological cycle and annual

mean continental temperatures [Lohmann and Lorenz, 2000; Kohfeld and Harrison, 2000], and

tropical snowlines [Lorenz and Lohmann, 2006]. This experiment leads to the best match of

surface temperatures with the anticipated cooling of more than 6 K at the zero-degree level due

to the lowering of the snowline of about 900 m. Moreover, the simulated air temperature near
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the ground at the height of the tropical snowline (∼ 5,000 m) is particularly colder (12 K colder

than today, Figure 2.11b, p. 43) than for the experiment using the CLIMAP SST (4.5 K colder

than today).

This result can be explained by two characteristics detected from the model: (1) The free atmo-

sphere in the experiment with lower tropical SST exhibits a stronger lapse rate due to decreased

water vapour content; (2) in the tropical mountains, a longer duration of snow cover raises the

annual mean albedo, which induces a further reduction of surface temperature. The simula-

tions exhibit an image of the atmospheric circulation during LGM where a tropical snowline

lowering by 900 m [Porter, 2001] and isotopic measurements from tropical mountain glaciers

[Thompson et al., 1995] are in sound concordance with glacial SSTs that are comparable with

recent updates of the CLIMAP reconstruction [e. g., Lee and Slowey, 1999; Hostetler and Mix,

1999].

For an assessment of the impact of the Earth’s orbital parameters on the evolution of long-term cli-

mate trends in the late Quaternary, millennial-scale palaeoclimate simulations are necessary. A novel

method for accelerating the orbitally driven insolation forcing [Lorenz and Lohmann, 2004] has been

applied to an atmosphere-ocean GCM (AOGCM), the ECHAM4 atmospheric GCM coupled to the

global ocean model HOPE-G (ECHO-G) [Legutke and Voss, 1999]. Thus, surface ocean and air tem-

peratures can be simulated independently from proxy-derived SST. In an integrated approach, surface

temperature trends over the last 7 kyr have been evaluated on the one hand from ensemble transient

simulations (six members) using the ECHO-G model and on the other hand from alkenone-derived

SST estimates [Lorenz et al., 2006]. Furthermore, an ensemble integration with three members has

been conducted spanning the time period from 140 kyr to 110 kyr ago, including the Eemian inter-

glacial and the transition into the onset of the last glaciation (∼115 kyr).

(2) How does the orbitally driven insolation forcing affect the long-term climate trends from the

middle to the late Holocene? Are changes in the seasonal cycle of insolation reflected in

Holocene and Eemian proxy data?

The comparison of the Holocene simulation results with reconstructed SST trends, derived from

the alkenone-method, exhibits general concordance with a cooling of up to 3 K, predominantly

in northern high latitudes, and minor warming in low latitudes during the last 7 kyr. These

surface temperature trends are driven to a large extent by the astronomical insolation signal.

The northern high-latitude cooling trend is directly linked to the decreasing boreal summer

insolation, whereas the tropical warming is associated with the boreal winter warming during

the middle to late Holocene. On an annual mean basis, however, the magnitude of simulated

trends is generally smaller compared to that of alkenone-derived SSTs.

When analysing the simulated Holocene trends of the warmest month during the year (local

summer, Figure 4.6a, p. 93), there is a much better agreement in sign and amplitude with the

alkenone-derived SST trends in the North Atlantic and Mediterranean area (1–3 K cooling).

This can be taken as an important argument that alkenone-derived temperature signals in the

northern extra-tropics are more likely to stem from summer conditions than to reflect annual
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mean temperature. Furthermore, the Holocene shift of the maximum tropical insolation could

have influenced the timing of coccolithophorid production, and thus the trend pattern in the

alkenone-derived SST data.

Enhanced seasonality was recorded in the Red Sea coral stemming from the Eemian period and

is confirmed by the seasonal cycle of SST of the respective region, as simulated by the ECHO-

G model (Figure 5.3d, e, p. 111). In contrast, the late Holocene coral (2.9 kyr ago) revealed

a similar seasonality as was found in a modern coral from this area, which is in line with the

simulated temperature cycle by ECHO-G (Figure 5.3a-c) [Felis et al., 2004]. This result can

be directly linked to the enhanced seasonal cycle of insolation during the Eemian period, while

the insolation in the late Holocene is comparable to today (Figure 1.1.5).

(3) In what way are regional temperatures of the Eemian and Holocene periods governed by

changes in atmospheric circulation patterns?

During the middle to late Holocene, an orbitally driven decrease in the boreal winter sea level

pressure difference between the Icelandic low and the subtropical high by 2-3 hPa (Figure 4.8,

p. 96) is detected. This is attributed to a continuous weakening of the AO/NAO circulation

mode. The weakening of this mode is associated with reduced westerly winter winds over

Europe that are replaced by more southward cold winds from the Arctic and more northward

flowing warm air in the eastern Mediterranean region (Figure 4.7). This results in a charac-

teristic dipole temperature structure, with cooling over Europe and warming in the subtropics,

mainly in the eastern Mediterranean Sea and the Red Sea, that is reflected in the distribution of

alkenone-derived SST.

In turn, during the Eemian period, when eccentricity was high and the precessional cycle

caused reduced subtropical winter insolation, a prevalent circulation with a related high index

AO/NAO-like pattern is found: strong westerly winds advect marine air and lead to warm Eu-

ropean winters as recorded in proxy data [e. g., Aalbersberg and Litt, 1998; Klotz et al., 2003].

Furthermore, the simulated AO/NAO-index follows the precessional signal with the character-

istic ∼20 kyr period (Figure 6.1), a strong indication for the orbital influence on atmospheric

circulation in the coupled GCM.

In the southeast of Europe, enhanced winter cooling in the Eemian period as well as moderate

cooling in the middle Holocene, as detected in the simulations (Figure 5.4a, c), is validated by

the two fossil corals from the Northern Red Sea [Felis et al., 2004]. In the north of Europe,

reduced Arctic sea ice extent is evident during the high index phase of the AO/NAO circulation

mode, but less pronounced during the middle Holocene (6 kyr ago). This is corroborated by

results from a comparison study using a regional North Atlantic ocean model [Lohmann et al.,

2005].

6.2 Perspectives

When using an atmospheric GCM for simulating palaeoclimates, modellers have to rely on recon-

structed palaeoclimate distribution of SST as a lower boundary condition for these models, such as
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Figure 6.1: Evolution of the pressure index as a measure for the AO/NAO-like circulation pattern in the

ECHO-G model for the last interglacial period to the onset of the last glaciation (135 to 110 kyr BP) using

accelerated orbital parameters. The AO/NAO index is defined as the sea level pressure difference (December,

January, February; DJF) between a southerly high pressure region and a northerly low pressure region (see

Figure 5.6 for definition of index regions). A centred 41 year running mean for each of the three individual

ensemble members has been applied (thin lines). The thick red line displays the ensemble mean. The average

and mean standard deviation for 41 winters are marked by the horizontal and vertical bars (see Section 5.3).

the CLIMAP reconstruction. Modelling results can then be considered as a consistency test between

marine and terrestrial geological data, because the terrestrial climate is generated independently by

the model. In the case of simulating the LGM climate, atmospheric model results strongly depend

on the CLIMAP reconstruction, at least for the Pacific and Indian Oceans, since no updated data set

for these basins exist. The recently derived new collection of glacial SST by the Glacial Atlantic

Ocean Mapping Project (GLAMAP) [Mix, 2003; Sarnthein et al., 2003] is limited to the Atlantic

Ocean. Apart from polar latitudes where the sea ice margin is significantly altered, the differences

to CLIMAP are on average relatively small and affect more local gradients than basin-wide temper-

atures. In the tropical Atlantic between 30◦N and 30◦S, the LGM temperature difference to today

was –1.7 K according to CLIMAP and –2.2 K according to GLAMAP (see Figure 2.1), which is

only a minor cooling compared to the imposed cooling of 3 K that was used in the experiment LGM.N

(Chapter 2). Since the tropical Indo-Pacific basins cover more than two thirds of the world’s tropical

oceans, a moderate change of the Atlantic SST according to GLAMAP has only a minor effect on

zonally averaged tropical lapse rates (Figure 2.8).

A simulation using the GLAMAP SSTs for the Atlantic and the imposed 3 K cooling for the

Indo-Pacific basin is missing. This combination of modified reconstructions could be expected to

reveal a more suitable worldwide distribution of SST for the LGM in concordance with updated

tropical Pacific temperatures [Lee and Slowey, 1999; Hostetler and Mix, 1999] than the combined

GLAMAP/CLIMAP with the large areas of subtropical warming in the Pacific (see Figure 1.2). Nev-
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ertheless, the up-to-date GLAMAP reconstruction of SST and sea ice distribution in the whole At-

lantic Ocean is an important step in understanding the LGM climate in this area. Moreover, it is a new

basis for modelling the glacial climate in particular in the Atlantic-European sector using atmospheric

and oceanic GCMs.

When investigating the LGM climate (Chapter 2), no ocean model was involved and the ocean in-

fluence was mimicked by varying the lower boundary condition for the model, the SST. Other studies

have used the combined GLAMAP/CLIMAP SST reconstruction as well as wind stress and freshwa-

ter fields as boundary conditions for ocean models, calculated by the discussed experiments. Using

the large scale geostrophic (LSG) oceanic GCM, Romanova et al. [2004] as well as Butzin et al.

[2005] prescribed SST, wind stress and freshwater fields according to the different ECHAM simula-

tions that were subject to Chapter 2. These authors found reduced meridional overturning circulation

(MOC) in the Atlantic when using boundary conditions of experiment LGM.N (CLIMAP, imposed

tropical cooling) and enhanced MOC when using those of experiment LGM.G (GLAMAP/CLIMAP

SST distribution). A regional modelling study of the glacial water masses of the Atlantic Ocean using

the MOM2 ocean model [Paul and Schäfer-Neth, 2003], revealed a similar result in terms of enhanced

Atlantic MOC compared to the control experiment when using GLAMAP SST and wind forcing of

experiment LGM.G as boundary condition. Increased northward heat transport in the Atlantic is also

reported for these model studies forced by GLAMAP. This is consistent with the northward dis-

placement of the summer and winter North Atlantic sea ice margins in the GLAMAP reconstruction

compared to CLIMAP. Moreover, it was stated that ocean simulations are strongly dependent on other

relatively uncertain glacial boundary conditions for ocean models, in particular surface salinity and

wind stress [Winguth et al., 1999; Paul and Schäfer-Neth, 2003; Mix, 2003; Wunsch, 2003; Romanova

et al., 2004; Butzin et al., 2005]. In a study by Winguth et al. [1999], a series of sensitivity experi-

ments using the LSG model including an ocean carbon cycle model corroborated the strong sensitivity

of the MOC on wind and freshwater forcing. These authors concluded that the circulation strength

remains an open question, because palaeonutrient tracer distributions could be consistent with a much

stronger, as well as a near-shutdown of the Atlantic deep ocean circulation.

In order to overcome the strong dependency of atmospheric and oceanic GCMs on surface boundary

conditions at the atmosphere-ocean interface, coupled GCMs have been used for simulating glacial

climates [e. g., Weaver et al., 1998; Bush and Philander, 1998; Kim et al., 2002]. This renders possible

a comparison of independently modelled SST distributions with the recent reconstructions. However,

the modelling results for the LGM have been critically challenged due to contradictory temperature as

well as ocean circulation characteristics. The results show strongly differing SST in large parts of the

major ocean basins: For example, in the subtropical Pacific, warmer [Kitoh and Murakami, 2002],

moderately cooler [Bush and Philander, 1998; Hewitt et al., 2003; Shin et al., 2003], and much

colder [Kim et al., 2002, 2003] temperatures than today have been simulated. When summarising

results of the Paleoclimate Modeling Intercomparison Project (PMIP) [Joussaume and Taylor, 2000],

it was concluded that none of the AOGCM experiments with computed SST revealed tropical ocean

temperatures during the LGM as high as suggested by CLIMAP. Seven of nine simulations resulted

in lower glacial ocean temperatures than today [Pinot et al., 1999]. Distribution of glacial SST, in

particular in the subtropical Pacific, is still an interesting open issue that could not yet be reasonably
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answered [e. g., Crowley, 2000a; Timmermann et al., 2004]. Neither proxy data from different sources

[Lee and Slowey, 1999; Hostetler and Mix, 1999; Mix et al., 2001; Henderson, 2002] nor summarising

independent simulations have led to a general consensus so far [e. g., Liu et al., 2000; Timmermann

et al., 2004].

Palaeoclimatic modelling studies, aimed at reconstructing past climate states such as the LGM and

the last interglacial, are usually performed on the basis of time slices. However, the modelling of time

slices cannot provide insights into the temporal evolution of the climate system. Since complex GCMs

are restricted by computer resources, models of intermediate complexity have been used for transient

simulations of glacial and Holocene periods [Berger et al., 1990; Stocker et al., 1992; Ganopolski

and Rahmstorf , 2001; Schmittner et al., 2002; Crucifix et al., 2002; Weber et al., 2004; Renssen

et al., 2005], where the complexity of sub-models is reduced. For example, internal atmospheric

variability is statistically prescribed or parameterised instead of resolving it explicitly [Claussen et al.,

2002]. This strategy allows for longer simulation times as well as a detailed analysis of several

feedback processes by switching on and off the effect of different climatic components [Ganopolski

et al., 1998]. In this thesis another approach is followed: applying the acceleration technique for

the orbitally driven insolation changes into the ECHO-G model enabled ensemble integrations of the

long-term evolution of the Eemian and the Holocene interglacials with this complex model.

However, using this technique does not provide for adequate consideration of the long-term evo-

lution or abrupt shifts of the MOC, because its timescale is too long (about 1,000 years) to be in

equilibrium with the artificially accelerated orbital forcing. In the marine geological record no

evidence for strong changes in the deep ocean circulation during interglacial periods can be found,

when glacial ice caps were absent, such as the middle to late Holocene [Grootes et al., 1993; Clark

et al., 2002] and the Eemian interglacial [Hillaire-Marcel et al., 2001; Kukla et al., 2002]. The as-

tronomical forcing could effect changes in the location and strength of convection sites. During

interglacials though, ocean circulation changes might be of minor importance, without global im-

pact. The Holocene experiments, using different acceleration factors, exhibit no significant changes

in the MOC in the multi-decadal as well as in the centennial simulations (Figure 3.5). This confirms

the prerequisite that the ocean circulation was relatively stable during the respective period and thus

the orbital insolation forcing is responsible for the major part of the global-scale alkenone-derived

Holocene SST trends. Consistently, the changes in the deep ocean circulation during the Eemian

were only minor when simulating a quasi-equilibrium response of the coupled ECHAM1/LSG model

to adjusted orbital and CO2 boundary conditions [Montoya et al., 2000].

The modelling studies discussed in this thesis lack important components of the climate system:

modules for the dynamic evolution of (1) vegetation and (2) continental ice caps under changing

boundary conditions as well as their related feedback on the climate. For the glacial simulations with

the ECHAM3 as well as for the transient simulations with the ECHO-G model, the parameters for the

terrestrial biosphere (albedo, vegetation ratio, leaf area index, etc.) were prescribed to modern values,

apart from the LGM ice caps. The vegetation-climate feedback can significantly alter the response to

external forcing via nonlinear mechanisms: (1) the taiga–tundra feedback, controlled via the winter

albedo [Brovkin et al., 2003], and similarly, the sea ice–snow cover–albedo feedback [Lohmann et al.,

2005]; (2) the desertification through a weakening of the hydrological cycle [Zeng et al., 1999]; (3)
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sustainment or extinction of tropical rainforest controlled by moisture availability (partly via deep

root vegetation [Kleidon and Lorenz, 2001]); and (4) continental-scale amplification via influencing

subtropical monsoon variability [Braconnot et al., 2002]. Ganopolski et al. [1998] have demonstrated

that responses of atmosphere, ocean, and vegetation components to changing boundary conditions do

not sum up to a combined response, but result in a strong nonlinear behaviour.

Furthermore, the transient simulations around the Eemian period (140 to 110 kyr ago) should not be

regarded as a detailed simulation of the last interglacial period, because the dynamic evolution of the

continental ice caps is not accounted for. A dynamic land-ice module would be essential for the sound

modelling of climate transitions such as a deglaciation as well as the onset of the last glaciation at

about 115 kyr ago. Moreover, an additional change in the greenhouse gas concentrations, as recorded

in the Vostok ice core [Petit et al., 1999] (see Figure 1.1), could help to initiate ice accumulation on

the continents of the Northern Hemisphere. The interglacial simulations with the ECHO-G model

are considered as a sensitivity study to test the effect of a changing insolation cycle on the coupled

atmosphere-ocean system.

For the first time, an AOGCM could be launched for the investigation of the multi-millennial effect

of orbital forcing on climate by applying the acceleration technique to the ECHO-G model. This

provides for effects of changes in the entire seasonal cycle on the atmosphere-ocean system. The

orbital insolation change in the order of 100 Wm−2 is a dominant factor in triggering climate change

during the Quaternary [Imbrie et al., 1992]. The insolation anomaly during the LGM, which was

also regarded in the LGM experiments of Chapter 2, is only minor (Figure 1.8). But this is im-

portant, because it is unlikely that the maximum glaciation occurs during a period with enhanced

boreal summer insolation, therewith favouring ice melting. The influence of orbitally driven inso-

lation changes was formerly often related to boreal summer insolation. Mid-June insolation at high

latitudes was regarded to be the predominant pacemaker of long-term climate changes by affecting

the Northern Hemisphere continents and their ice caps [Milankovǐc, 1941; Hays et al., 1976; Imbrie

et al., 1992, 1993]. In the transient ECHO-G simulations, summer insolation directly drives surface

temperature trends in the high northern latitudes. Specifically in the tropics, the winter insolation is

important for climate change, presumably by affecting tropical-extratropical teleconnection patterns.

These results could supplement the previous findings of the effect of boreal summer insolation on

palaeoclimate change: the comparison of the GCM experiments with coral and alkenone data sug-

gests that the climate transitions during the last glacial cycle are to a large part affected by nonlinear

changes in the entire seasonal cycle of insolation.

The strong impact of the orbital insolation forcing on the AO/NAO index during the period with

enhanced eccentricity (see Figure 1.6) is depicted in Figure 6.1: The subtropical minus high-latitude

Atlantic pressure difference (index areas are marked in Figure 5.6) is varied by more than 6 hPa. A

high AO/NAO index (warm European and cold Middle Eastern winters) occurred during the Eemian.

The lowest index values are found after 115 kyr ago, which could probably influence the build-up

of a European continental ice cap. A possible link between tropical insolation and the AO/NAO via

atmospheric circulation changes needs further evaluation. The long-term model simulations depict a

strong correlation between a positive phase of the AO/NAO-index and decreased atmospheric convec-

tion in the central tropical Pacific corresponding with the winter insolation at the equator [Lohmann
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and Lorenz, 2006]. This is complementary to recent studies: Kucharski et al. [2006] evaluated the

observed correlation between the NAO-index and the N-S temperature gradient in the western Pacific

tropical warm pool. The mechanisms behind this link are in debate and no consensus has yet been

found [Kucharski et al., 2006; Hoerling et al., 2001].

Apart from the astronomical forcing, the variation of the Sun’s output into space and severe volcanic

eruptions represent other external driving mechanisms for the Quaternary climate, which are not taken

into account in the model simulations of this thesis. The insolation forcing due to solar variability

is several orders of magnitude smaller than the differences in the seasonal cycle due to the orbital

parameters. Satellite-based measurements over the last two decades indicate solar irradiance cycles

with 11 years length and 0.1% amplitude [Beer et al., 2000]. Estimates of the strength of the solar

output forcing [Lean and Rind, 1998; Beer et al., 2000; Crowley, 2000b] and model simulations

investigating this effect on the historical climate are available [e. g., Cubasch et al., 1997; Shindell

et al., 2003]. Changes in the radiation balance in the atmosphere due to atmospheric dust loads

and chemical processes induced by severe volcanic eruptions have influenced the Holocene climate.

However, estimates of the amount of erupted debris as well as the load of chemically active gases

reaching the stratosphere are not well known. Apart from recent estimates [e. g., Solanki et al., 2004],

assessment of both solar output variations and volcanic eruptions are more or less restricted to the last

millennium [Crowley, 2000b].

6.3 Outlook

For the investigation of the multi-millennial effect of orbitally driven insolation changes on climate,

transient ensemble simulations of palaeoclimates have been performed utilising a coupled AOGCM,

the ECHO-G model. Surface temperature trends, in the annual mean as well as for the different sea-

sons, could be calculated and compared with proxy data. As an extension of this physical approach,

a next step could be the direct simulation of the biogeophysical generation of proxy data, such as

simulation of sedimentation rates [Heinze et al., 1999] in a changing palaeoclimate. For this purpose,

AOGCM results are essential for providing the necessary palaeoenvironmental boundary conditions.

The production of coccolithophorids and therewith the alkenone flux to sediments varies during the

annual cycle. The seasonal timing of production could have changed under extreme climate condi-

tions. Müller et al. [1998] estimated that regional variations in the seasonality of primary production

have only a minor effect on the alkenone-derived temperature. However, other studies [Sachs et al.,

2000; Bard, 2001] summarise arguments that could possibly bias an SST time series, e. g. by a shift

in the growing of the main alkenone producers from late spring to early summer under extreme cold

conditions [Bard, 2001]. The biogeophysical simulation of organic rain to the deep sea floor and

seasonal production changes according to palaeoclimate transitions could help to assess how such a

climate transition in the upper ocean is recorded in the alkenone unsaturation index.

To properly address the question of anthropogenic influence on climate, it is necessary to test the

results of AOGCMs beyond the industrial period when the anthropogenic influence is absent. During

the last years the discussion of a potential long-term cooling trend of the last millennium was initiated

by the statistical evaluation of mainly tree-ring records in comparison with the instrumental tempera-
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ture record by Mann et al. [1998, 1999], recently extended to cover the last two millennia [Mann and

Jones, 2003; Moberg et al., 2005]. Interpretation of ECHO-G model results, driven by solar output

changes and solar radiation decrease due to volcanic dust loads in the atmosphere [Gonźalez-Rouco

et al., 2003; von Storch et al., 2004] according to the collection of forcing data by Crowley [2000b],

suggests that a large part of the reconstructed variability of the last millennium is the result of a

response to these radiative changes [Moberg et al., 2005].

A comparison of the simulated temperature trends driven by the changing Earth’s orbit during the

last 7 kyr with the ones forced by increasing greenhouse gases (CO2, CH4, N2O, and the most promi-

nent CFCs) during the last 200 years reveals that a Northern Hemisphere cooling trend over the last

7 kyr during summer (∼0.6 K, Figure 3.11) is exceeded by the simulated warming trend during the

last century (∼0.9 K). The annual mean cooling trend is even smaller (0.2-0.4 K over the last 7 kyr).

In comparison with the estimated millennium trend by Mann et al. [1999] (0.4 K during 1 kyr), the

ECHO-G experiments [Lorenz and Lohmann, 2004] exhibit an orbitally driven long-term Holocene

background cooling of the Northern Hemisphere that is about one order of magnitude weaker How-

ever, when such studies are extended back to several millennia, the orbitally driven insolation forcing

should be considered in estimating natural climate variability, in particular when investigating sea-

sonal temperature changes.

For the simulation of the next centuries, existing data sets have to be collected to determine the

expected natural and anthropogenic forcing. Emissions of greenhouse gases and aerosols can be ap-

plied according to the Special Report on Emissions Scenarios [SRES, 2000]. As far as possible, such

simulations should include future projections of natural forcing, i. e. probability of volcanic erup-

tions [Hyde and Crowley, 2000] as well as periodic continuation of solar cycles [Beer et al., 2000].

These experiments could quantitatively examine the climate change for the last 6,000 years before,

and the next 1,000 years beyond the present. This approach would lead GCM-based research into

investigation of long-term (after 2100 AD, which is beyond the near future as envisaged by the Inter-

governmental Panel on Climate Change [2001]) impacts on climate, influenced by the anthropogenic

increase of greenhouse gases. The analysis of a model experiment covering the Holocene, including

the recent period of anthropogenic greenhouse warming and the simulation of the future millennium,

enables the comparison of climate variability under natural and anthropogenic conditions. Such an

approach has never been accomplished before. This could help to understand the mechanisms of

natural climate variability and man-made climate change and, furthermore, can help to improve the

predictability of the climate in the mid-term future.
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Reconstructing and Modelling the Last

Glacial Maximum: Beyond CLIMAP

Abstract.

The update and extension of the CLIMAP data set - preliminarily called “CLIMAP 2000”

- is discussed. Although newer data exist, CLIMAP (1981) is still the most widely used

source of boundary conditions for modelling the last glacial maximum. Besides the

new data, CLIMAP 2000 should also incorporate climate models to create global fields

of sea surface temperatures (SSTs) and other climate parameters. Atmospheric general

circulation models can be used to check the consistency of SSTs and sea ice margins

with data on certain land conditions. In a similar way tracer concentrations resulting

from ocean models including biogeochemical processes can be compared with marine

proxy data. Coupled atmosphere-ocean models applicable to paleoclimate, which are still

under development, would yield complete SST fields. The reconstruction of ice-sheets

and vegetation zones can be improved by considering corresponding models. Inverse

models can be used to extend sparse data sets by integrating various types of data. From

this review, a three-step concept for CLIMAP 2000 is suggested and the key points of the

new CLIMAP 2000 data base and maps are listed.

Coupled atmosphere-ocean modelling

Recently, coupled models of atmosphere and ocean have been developed to investigate the effect of

an anthropogenic increase of greenhouse gases on the general circulation [Meehl et al., 1993; Manabe

and Stouffer, 1994; Cubasch et al., 1994; Murphy, 1995; Lunkeit et al., 1996]. Model initialization

is based on stand-alone runs of the submodels which have been spun up using accurately collected

modern data sets at the atmosphere-ocean interface. A typical simulation time for these climate

change experiments with coupled models is 200 years.

Herterich et al., in Use of Proxies in Paleoceanography: Examples from the South Atlantic, S. 687-714, c©1999
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Simulation of paleoclimatic states using coupled atmosphere-ocean models can be approached by

two different strategies. Similar to the climate change experiments a coupled simulation of a pale-

oclimate can be initialized with an equilibrium circulation resulting from separate runs of the sub-

models. Because these results have been generated without feedback between the submodels, they

are strongly dependent on our knowledge of the paleoclimatic boundary conditions at the interface,

such as the CLIMAP reconstruction (cf. section “Atmospheric modelling” and “Ocean modelling” of

this article). Another approach is to integrate a coupled model until a new equilibrium circulation of

atmosphere and ocean is achieved. This has the potential to make boundary conditions at the interface

superfluous. Driven by paleoclimatic boundary conditions far away from the ocean surface (i. e.solar

radiation and land surface characteristics) coupled models should be able to derive independent sea

surface data (SST, SSS).

Unfortunately, current general circulation models have two major shortcomings: (1) An atmo-

spheric model with a time step in the range of minutes is too computation expensive to extend the

length of a model run to the range of the response time of the deep ocean, which is at least 1000

years. (2) The accuracy of both atmospheric and oceanic submodels is not yet sufficient to directly

couple the fluxes at the interface on such a long time scale. Small errors in the surface fluxes of both

models lead to an artificial drift towards an unrealistic state of the global ocean circulation. Presently,

so-called flux adjustments are used to avoid such a drift [Sausen et al., 1988; Sausen and Lunkeit,

1990], but they restrict the application of the coupled model to simulations of a general circulation

similar to the modern one.

In order to reduce the excessive computing time required for running a synchronously coupled

time

FLUX  MANAGEMENT

ATMOSPHERE

OCEAN OCEAN

SST
sea ice

surface
fluxes

surface
fluxes

coupled
phase ocean−only

Figure A.1: Scheme of the periodically-synchronous coupling method: Ocean forcing fluxes (annual cycle and

annual mean of heat flux, fresh water flux and wind stress) are calculated during each synchronously coupled

phase. These fluxes drive the ocean during the longer ocean-only phases.
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Figure A.2: Time series of mean ocean temperature and salinity in the mixed layer (25 m depth) and at 2000

m depth of the North Atlantic Ocean (north of 30◦ N, solid curve), the central Atlantic between 30◦ N and

30◦ S (dashed curve) and the Southern Oceans south of 30 ◦ S (dotted curve). Shown are differences between

the spinup ocean model run and an experiment with the periodically-synchronously coupled model simulating

the recent climate without flux adjustments.

model, the method of periodically-synchronous coupling, suggested by Gates [Schlesinger, 1979],

has been applied to the coupled ECHAM-LSG model [Cubasch et al., 1992; Sausen and Voss, 1996;

Voss and Sausen, 1996]. Short periods of synchronous coupling alternate with long ocean-only pe-

riods. During the latter periods the ocean is forced by the surface boundary conditions generated

during previous synchronously coupled periods (Fig. A.1). from a first long term experiment with

the coupled model under modern boundary conditions. This run has been performed without flux ad-

justments over a simulation period of 1600 years with synchronously coupled periods of 15 months.

During the first 230 years of simulation time the ocean-only phases were successively extended, start-

ing with a length of 3 years at the beginning of the simulation, up to a length of 50 years. The time

series of ocean layer temperatures (Fig. A.2) mark a strong drift of the model towards a cooler cli-

mate during the first 100 years of coupling, which is mainly the result of the different representation

of surface fluxes in the submodels. The small peaks of the upper layer temperatures show the onsets

of the synchronously coupled phases, when the atmosphere responds to the new distribution of SSTs

and sea ice, which were calculated during the former ocean-only phase without feedback from the
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Figure A.3: Atlantic Ocean meridional stream function (Sv) of ocean model spinup run after 4000 years

of simulation time under restoring boundary conditions (top) and of the coupled model after 1600 years of

periodically-synchronously coupled run, simulating the recent climate without flux adjustments (bottom).

atmosphere model. The deep ocean temperatures and salinities (Fig. A.2) indicate that an equilib-

rium ocean circulation has not yet been reached. The meridional stream function of the ocean model

spinup run (Fig. A.3, top) shows a reasonable circulation with formation of North Atlantic Deep Wa-

ter and export into the Southern Ocean. The long term integration (over 1600 years) of the coupled

model without flux adjustments exhibits also a conveyor-type thermohaline circulation, with a weaker

formation of NADW but lacking any AABW (Fig. A.3, bottom).

This coupled model is now fast enough to perform a complete series of experiments with an inte-

gration time of several thousand model years for each run. The objective is to determine the required

minimum flux adjustment which might be unavoidable to prevent this unrealistic climate drift. If an

adjustment can be found which depends on systematic deficiencies of the model components but is

mostly independent of the simulated climate, then the model is able to simulate paleoclimate states
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like the LGM which may strongly deviate from the modern one. The resultant global data sets at the

atmosphere-ocean interface would be a valuable contribution to CLIMAP 2000.

References
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