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Abstract—A method of processing the radio-occultation data on the Earth’s atmosphere obtained from the
Challenging Minisatellite Payload (CHAMP) is described. The method includes (i) filtering noises and inferior
data on the basis of analysis of local spatial spectra of the measured wave field, (ii) determining bending angles
by the canonical transform method, (iii) evaluating errors in the resulting bending angles from analysis of local
spectra of the transformed wave field, and (iv) evaluating errors in the retrieved temperature profiles. Examples
of processing and analyzing the measurement data are presented.

1. INTRODUCTION

Satellite radio-occultation sounding is a promising
method of studying the Earth’s atmosphere for weather
forecasting and for revealing climate changes [1]. The
use of Global Positioning System (GPS) signals for
radio-occultation sounding was proposed in [2]. A high
frequency stability of GPS signals ensures the accuracy
of determining atmospheric parameters required for
dynamic weather forecasting. The first radio-occulta-
tion experiment based on GPS signals was conducted
using the Microlab-1 satellite in 1995 [3, 4]. The data
obtained with the Microlab-1 satellite during 1995-
1997 have demonstrated high potentialities of the radio
occultation method [5-7]. At the present time, the
Microlab-1 satellite resources have been exhausted. In
2000, the Challenging Minisatellite Payload (CHAMP)
[8] was launched, which performed 200 to 300 daily
occultation events.

The principle of radio-occultation sounding lies in
measuring and interpreting the amplitudes and phases
of radio signals transmitted through the Earth’s atmo-
sphere. The source of the signals is a GPS satellite, and
the receiver is located on a low-orbit satellite (an orbital
altitude of about 700 km above the Earth’s surface).
The propagation of radio waves is controlled by the
atmospheric refractive index, which is the given func-
tion of pressure, temperature, and humidity. From mea-
sured radio signals, the spatial distribution of the refrac-
tive index is retrieved. In polar regions, the contribution
of humidity is small at all altitudes, and, in the tropics,
itis small above 7—10 km. If the contribution of humid-
ity to the refractive index can be neglected, the hydro-
static equation makes it possible to determine tempera-

ture and pressure profiles from a refractive-index pro-
file. If the contribution of humidity is significant, it is
necessary to use either additional data (such as prior
humidity or temperature profiles from forecasts [4]) or
schemes of direct variational assimilation [9-12].
Major data on radio-occultation sounding are presented
in Section 2.

The wave fields measured in radio-occultation
experiments are interpreted in two steps. First, the
bending angles are calculated, and, after that, the
inverse problem of determining the vertical profile of
the refractive index from the refraction-angle profile is
solved. This paper describes original algorithms for
determining bending angles from wave fields.

The simplest approach to determining bending
angles from measurements of the Doppler frequency is
based on the geometric-optics approximation and the
assumption of single-path propagation [13]. This
approach is invalid in the troposphere, where the effects
of multipath propagation and diffraction become
important owing to a complex structure of the refrac-
tive-index field. The simplest method of determining
bending angles in multipath regions is based on an anal-
ysis of local spatial spectra of the measured wave field
in moving apertures [14—16]. The canonical transform
method for reconstructing the ray structure of a wave
field was proposed in [17]. This method uses Fourier
integral operators, which allow the extension of the for-
malism of canonical transforms used in geometric
optics to wave optics. A canonical transform is consid-
ered such that the projection of the ray manifold onto
the new coordinate axis is single-valued. The corre-
sponding Fourier integral operator transforms the wave
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Fig. 1. Geometry of radio-occultation sounding.

field into a representation in which there is no multipath
propagation. The canonical transform method yields a
substantially higher accuracy of determining bending
angles in comparison with analysis of local spatial
spectra.

The canonical transform method was modified in
[18], where the global-spectrum method was intro-
duced. This method is based on the fact that the Fourier
integral operator reduces to the Fourier transformation
in the case of a circular geometry of radio setting (cir-
cular coplanar satellite orbits, a spherical shape of the
Earth). An approximate operator was constructed in
[18] to take into account departures of a real geometry
of observations from the circular geometry. The authors
of [19] introduced a new type of Fourier integral oper-
ators (the second type, as distinguished from the first
type used previously [19]), which extends the global-
spectrum method to an arbitrary geometry of radio set-
ting. An exact solution for the phase function of such an
integral operator was obtained in [20]. This solution is
exact; however, the operator with such a phase function
does not reduce to the Fourier transformation in a gen-
eral case. This substantially reduces the efficiency of a
numerical algorithm based on this operator.

Fourier integral operators of the second type are
considered in Section 3. Equations for their amplitude
and phase functions are derived, and the solutions of
these equations are obtained. The relation of these oper-
ators to canonical transforms is considered. On the
basis of the linearization of the canonical transform, we
construct an approximation reducing the operator to the
Fourier transformation for an arbitrary realistic geome-
try of observations.

Experimental data processing requires the filtering
of noises and inferior data. It is also necessary to eval-
uate the errors in the refraction-angle profiles obtained
and in the retrieved temperature profiles. These prob-
lems are considered in Section 4 and are solved by ana-
lyzing local spatial spectra of both the measured field
and the wave field transformed into the representation
of ray coordinates by using the Fourier integral opera-
tor. Although this method shows a rather low resolution
in multipath regions, it has a wider range of applicabil-
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ity and is very suitable for data visualization. The width
of the spectrum is a very convenient measure of mea-
surement errors. Thus, analysis of local spectra repre-
sents a method additional to the methods based on glo-
bal Fourier integral operators.

Examples of processing the data of CHAMP mea-
surements are presented. We demonstrate the applica-
tion of the aforementioned method to analysis of the
data of measurements in the lower troposphere, where
the errors in signal tracking increase substantially. The
visualization of local spatial spectra clearly demon-
strates the high quality of measurement data. Retrieved
temperature profiles and the estimates of their errors are
presented. Statistical comparison of the CHAMP data
with the data of the German Weather Service is made.

2. INFORMATION ON RADIO-OCCULTATION
SOUNDING

In the course of a radio-occultation experiment, the
satellites move so that the radio ray connecting the
transmitter and receiver descends into the atmosphere
(Fig. 1). The signal amplitude and phase are measured.
The experiment is conducted until the radio-shadow
region is reached, where a weak signal cannot be mea-
sured. The transmitter is located on a GPS satellite, and
the receiver is located on a low Earth orbiter (LEO).
The measured wave field is U(f) = C(t)A(¢) sin (k'Y (1) —
imt), where o is the transmitter’s frequency, A(f) is the
amplitude of the received signal, ‘\¥'(¢) is the optical path
of the beam between the transmitter and the receiver,
and C(¢) is the modulation of the GPS signal by a pseu-
dorandom code. Digital processing of the measured
field U() is used to demodulate the signal and to deter-
mine its complex amplitude u(t) = A(f)exp (ik'Pr) [21-
23]. The vacuum optical path W(¢) calculated for a
direct beam between the transmitter and the receiver is
subtracted from the total optical path. The radio-occul-
tation data contain the amplitude A(f) and the atmo-
spheric optical path A¥Y(¢) = W(¢) — W,(?), as well as sat-
ellite orbital data.

Consideration for relativistic effects is important in
calculating (1) [13]. However, the relativistic factor
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depends only on the magnitudes of satellite velocities
and it is cancelled in the difference ¥(f) — ¥(¢) with a
relative accuracy of V?/c?> = 107°. Consequently, if the
atmospheric optical path was calculated correctly at the
stage of data preprocessing, we can calculate the opti-
cal path W(¢) as the sum of AW(¢) and the distance
between the transmitter and the receiver by using non-
relativistic theory. The relative errors in the bending
angles constitute 10~°, which is three to four orders of
magnitude smaller than the main measurement and cal-
culation errors.

The derivative of the optical path ¥ is equal to
V,u; - Vgug, where V,  are the satellite velocities and
u; ¢ are the unit vectors in the directions of the beam
near the transmitter and receiver, respectively. (Hereaf-
ter, the index G denotes a GPS satellite and the index L
denotes a LEO.) This expression will be represented as
the sum of the contributions of the angular and radial
components of the satellite velocities. From satellite
orbital data, one can determine the distances r;(¢) and
ri(¢) of the satellites from the Earth’s center and the
angular separation 0(f) = 0,(¢) — 0,(¢), where 0,(¢) and
0,(?) are the angular coordinates of the satellites in the

instantaneous vertical plane (Fig. 1). It can be written
that [24]

¥ = O siny, — Bgrgsiny, )

+7.COSY, + FCOSY ;.

Under the assumption of local spherical symmetry [25],
the impact parameter (impact height) of the beam p is
the same for the transmitter and receiver: p = r; siny; =
rgsinyg. This is a special case of Bouguer’s formula
(or the Snell law) for a spherically layered medium:
rn(r)siny = p, where n(r) is the vertical profile of the
atmospheric refractive index. As a result, the derivative
of the optical path of the beam can be written as follows
[24]:

. . }/'. }/"
Y= =0p+ i ple -
L G

Here, ¥ is the measured quantity and 6, 7 Lcandrg |

are the known functions of time #; therefore, the right-
hand side n(p, ¢) will be the known function of p and 1.

Consequently, if the measurements of W (¢) are speci-
fied, one can solve Eq. (2) for p(). (Although the solu-
tion is not unique, it is easy to choose a unique solution
that is physically meaningful.) The simplest way to
solve Eq. (2) is numerical because its analytical solu-
tion is very cumbersome. The bending angle (bending)
of the beam ¢ is determined by the simple geometrical
relation

g = 0 arccos 2 — arccos Z. 3)

ry e’
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The bending angle €(¢) is calculated on the basis of (3)
from the known function p(#) and orbital data on (),
ri(?), and O(r). The functions p(¢) and &(¢) specify the
profile of the bending angle €(p) in a parametric form.
The above consideration is based substantially on the
assumption that only one beam is observed at each
moment ¢. In the case of the interference of many
beams, the calculation of the profiles of the bending
angle from the derivative of the optical path leads to
unlikely strongly oscillating profiles of the bending
angle [17]. Methods for determining the bending angles
in multipath regions will be discussed in Section 3.
With the aid of the Abelian transformation, it is pos-

sible to find the profile of the index of refraction from
the profile of the bending angle [26]:

o[ [ewadp
= = e 4
n(x) nexp[ T ) 0
xNPp —X

where x(r) = rn(r) is the refraction radius. The retrieved
profile n(x) and the dependence r(x) = x/n(x) specify the
profile n(r) in a parametric form.

This study disregards the retrieval of atmospheric
humidity. If the effect of humidity is neglected, the
refractive index will be [24]

n=1+C§=1+CRp, ®))

where P is the pressure, 7T is the temperature, R is the
gas constant of dry air, p is the density, and C = 77.6 X
1076 K/hPa. With consideration for the equations of
state and hydrostatics, it is possible to obtain the tem-
perature from the retrieved profile of the refractive
index [24]:

fe@p@az  [e)ne) - 114z
"= @ T T Rme-1

where z = r — ry is the height above the Earth’s surface
and g(z) is the vertical profile of the acceleration of
gravity.

(6)

3. RECONSTRUCTION OF THE RAY PATTERN
OF WAVE FIELDS

For a complicated profile of the refractive index
n(r), the corresponding profile of the bending angle &(p)
will be a nonmonotonic function. This will lead to the
multipath propagation of a radio signal [14]. To see
this, we will consider geometrical relation (3). It will be
an equation for the impact parameters of the rays con-
necting the source to the receiver if the profile € = &(p)
is specified, and the relative position of the transmitter
and receiver, which is determined by the parameters r;,
rg, and 0, is fixed. Let us denote the right-hand side of
(3) by g4(p). We define the distances from the transmit-
Vol. 41
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ter and receiver to the Earth’s limb, D ; = A/rzG, L= p2 ,

and the reduced observation distance D = (Dz1 + D_G1 Y.
Then, we may write

deg(p) _ 1 >0
dp ’

D

Thus, €4(p) is a monotonically increasing function of
the impact parameter. For a smooth exponential model
of the atmosphere, €(p) decreases monotonically
(de(p)/dp < 0) and the dependences €(p) and €,(p) have
no more than one intersection point for each position of
the satellites. In this case, multipath propagation does
not occur. However, if the dependence €(p) is non-
monotonic and such values of p exist at which
de(p)/dp > D', then there are observation points at
which multiple rays arrive. It follows that a nonmono-
tonic profile €(p) will necessarily result in multipath
propagation if the observation distance is sufficiently
large.

The wave field in the region of multipath propaga-
tion can be approximated by the sum of the fields cor-
responding to different interfering rays:

w(t) = Yu(1) = Y Anyexp(ik¥;(n),  (8)
J

(N

J

where the index j numbers the rays that interfere at the
moment ¢ and have the impact parameters p,(#). For the

functions p(7) and ¥, (¢), relation (2) will be true. How-
ever, the decomposition of the total measured field u(r)
into the components u,(f) and the number of interfering
rays are not known in advance; therefore, Eq. (2) cannot
be used to determine the impact parameters immedi-
ately. It is also clear that the derivative of the eikonal

W (1) of the total field u(¢) cannot be substituted into (2)
for a multipath region.

The simplest way to separate interfering rays is
based on analysis of local spatial spectra. This approach
was used previously for processing the data of sounding
planetary atmospheres [27]. As applied to the Earth’s
atmosphere, it was modified through the use of a syn-
thesized focused aperture [14—16, 28, 29]. In the con-
text of this approach, spectral analysis of the wave field
u(?) is carried out with moving apertures:

t+T/2 M

vy = |

t-T/2

u(t)cos

A, (D explik(¥, (1) - ¥u(nD)] @)
x exp(—iknt)dr,

where A, ()exp(ik'V,,(?)) is the reference signal deter-
mined for a smooth model of the refractive index and T
is the aperture value. The use of the reference signal is
important because it adjusts the curvature of the wave
front, thus focusing the synthesized aperture [15, 28].
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The peaks of the spectrum |v(¢, 1)| for each 7 will reveal
physical rays interfering at a given observation point.
The impact parameter p and the bending angle € can be
expressed as functions p(¢, 1) and €(¢, n) from Egs. (2)
and (3). As a result, the amplitude of a local spatial
spectrum can be obtained in a parametric form as a
function of |v(p, €)|. There is a limitation on the resolu-
tion of this method; however, it is very convenient for
visualizing and diagnosing experimental data [30].

The canonical transform method will be used to
determine the ray pattern of the wave field [17, 19].
This method lies in the following. There are measure-
ments of the wave field u(y) = A(y)exp(ik'¥(y)) along
the orbit of a satellite parameterized by an arbitrary
coordinate y (in particular, y = f). It is necessary to
determine the ray pattern of this field, i.e., ray direc-
tions at each point. In the context of the Hamilton for-
mulation of geometrical optics, rays are described by
the canonical Hamiltonian system of equations for the
coordinate y and momentum 1 [31]. The momentum is
equal to the derivative of the eikonal of the field 9'¥/dy
if there is only one ray at a given point y [31]. If multi-
ple rays are present, their momenta m; are determined
on the basis of formula (8) as 0'¥;/dy. Multiple rays
appear in the case where the projection of the ray man-
ifold onto the y axis is not unique [32]. The formulan =
dY¥/dy is inapplicable in this case. A canonical trans-
form of the coordinate and momentum in the phase
space makes it possible to choose the new coordinate z
and momentum & such that the projection of the ray
manifold onto the new coordinate axis becomes unique
[17]. The corresponding transformation of the wave
field is implemented by the Fourier integral operator

® . The momentum in the new representation i) u(z) =
A'(z)exp(ik¥'(z)) can be determined from the trans-
formed field &(z) = 0¥'/0z.

The author of paper [17] used a Fourier integral
operator, which was further referred to as the operator
of the first type [19]. This operator was applied in com-
bination with the operation of reverse propagation
(wave-front reversal). For the generalization of the glo-
bal-spectrum method [18], Fourier integral operators of
the second type were introduced in [19]. These opera-
tors are applied immediately to the measured field u(r)
without preliminary reverse propagation, which leads
to a higher numerical efficiency.

The Fourier integral operator of the second type has
the form

dyu(z) = Jg‘jaz(z, 1) exp(ikS,(z, ))u(t)dt. (10)

The functions a,(z, f) and S,(z, f) are referred to as the
amplitude and phase functions of the operator, respec-
tively. Let us consider the relationship between this
operator and canonical transforms. For this purpose, we
will use the method of stationary phase. To simplify the
notation, we will consider the field u(f), meaning that an
Vol. 41
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individual component «(7) can be considered when nec-
essary. The point of stationary phase #,(z) of the integral
in (10) is determined by the equation

IS _ d¥W)_ ).

ot dt (1D

Let &, u(z) = A'(z)exp(ikW'(z)). The eikonal V' of the

transformed field @, u(z) is

V'(2) = S,(z, IS(Z))+‘P(%(Z))+%, 12)

where ¥ = 2m/2. The term 7y/k vanishes asymptotically
for large values of k, thus being unimportant for our
analysis. Let us find the derivative of the eikonal, i.e.,
the momentum &(z) of the transformed field, with con-
sideration for Eq. (11):

_d¥'(2) _ d_ts(aSz(z, 1) d‘I’(t))
S@)= iz d\ o T4 = 1)
S (13)
L 08:(z,1) _ 95,z 1(2))
aZ t=1,z) 81 ‘

The equation for the total differential of the phase
function follows from Egs. (11) and (13):
ds, = &dz—nd:. (14)

The quantity ndt is a truncated form of the action in the
old representation. Similarly, Edz is a truncated form of
the action in terms of the transformed coordinate z.
Since the difference Edz — Mdr is equal to the total dif-
ferential dS,, the transform (£, ) — (x, &) is canonical
[33]. A detailed analysis of the relationship between

Fourier integral operators and canonical transforms
was made in [34].

The amplitude function is determined from the con-
dition of energy conservation

[Dau(2)dz = Ju(r, ()t (2), (15)
where L = U(z, ?) is the density of measure, which will
be defined below. Using the conventional expression
obtained for the amplitude by the method of stationary
phase, we obtain

la,(z, A1) dz
9°Sx(z.1)  dPW(1)
‘_ (;l‘2 - dr’ =1,(2) (16)

= AX(1,(2))|ud1,(2)].
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It follows that the amplitude function can be written as

|ay(z, 1,(2))|?

_ ‘_3252(1, H &P
or’ dr’

wdrz) 47

dz

t=12)

Differentiating the equation for the point of stationary
phase (11) with respect to z, we obtain the following
equation:

O°Sy(z, 1) PP (1) dt(z)
[ ok ar ] dz
t=14(2) (18)
_ 9’5z 0)
- dz0t t=ts(z)'

Therefore, the final expression for the amplitude func-
tion can be written as

| 9%S,(z, ¢t
a(z, t) = ‘H%

Now, we will use the apparatus of Fourier integral
operators to reconstruct the ray pattern of the measured
wave field u(f). Several rays with different impact
parameters p can interfere at each moment ¢. The
impact parameters of different rays in a spherically
symmetrical layered medium always differ from one
another. This result follows from the fact that the
impact parameters of the rays produced by the transmit-
ter are p = rgsin\g. Since different rays have different
directions g, these rays will have different impact
parameters. Since the impact parameter of a ray is iden-
tical for the transmitter and receiver, all the rays
received during the radio-occultation experiment will
have different impact parameters.

19)

Let us consider a ray manifold in the phase space
with the coordinate r and momentum 1. Multipath
propagation occurs if the projection of the ray manifold
onto the ¢ axis is not unique. If we consider the new
coordinate z = p, as is shown above, the projection of
the ray manifold onto the p axis will be unique. There-
fore, we will use the canonical transformation
(t,m) — (p, §), where the new momentum & will be
determined from the canonicity condition.

Since the Fourier integral operator is bound to con-
serve energy, we start with the determination of the
density of measure L. Let the power of the transmitter
be P. We require that the following equality be satisfied:

P _ a2
E;cdp = A"udt. (20)
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Fig. 2. Geometry of the ray tube for determining the amplitude of a radio-occultation signal.

The energy radiated within an infinitely small cone
by a transmitter with an omnidirectional antenna is
given by the expression [35]

P .
dE; = —dygsinyedo, Q1)

where P is the total power of radiation. The impact
parameter p is equal to rgsinyg. It follows that dp =

rgecosYedys = A/ré - p2 dy;. Therefore, the following

expression is obtained for the impact-parameter distri-
bution of energy:

P 1 P
————"dbdp.
4r ,rzG—per ¢

Let us consider a receiving aperture in the form of
an infinitely small element of a sphere centered at the
Earth’s center (Fig. 2). The received energy dEy is equal
to A2cos\y,;dS, where A is the refraction amplitude, , is
the angle between the ray tube and the normal to the

receiving aperture, and dS is the area of the aperture
[35]:

dE, = (22)

dE, = %AzcoserLrLsined(bBO

| (23)
§A2 1y — par,sin0dode.

The symbol 0 is used to denote the partial differential
calculated along the sphere at fixed r; and r;. Equating
the transmitted and received energies, we obtain the fol-
lowing expression for the amplitude:

2

P 1
- - v
p__dp_Pdp

rgr;sin0d0  2mudt

(24)
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The size of a virtual receiving aperture 56 may be writ-
ten as

B 90 90

66 = de—(a—rc)pdr(;—(a—rl‘\)pdl’l
(25)
_ g0

re

p__ 4dn_p

From here, we obtain the following expression for the
measure (under the assumption of spherical symmetry):

rr
n = A/ri—pzﬁlré—pZLTGsine

. 2
P fi_p 20

CNAS rLJri—pz]'

With the use of Egs. (2) and (14), we find the phase
function [20, 34]

$:0p.1) = ~[n(p. 0t = ~[(pa0+ [

G

dr
+ r—Lvri—pz) = —pO—.Jrg—p’ @7
L
+parccosZ — Jr - p* + parccosrﬁ.
e L

This expression is determined to within an arbitrary
function F(p), which will be assumed to be zero for
convenience. The point of the path at which the ray with
a given impact parameter p is observed will be denoted
by #,(p). On the basis of formula (14), the derivative of

the eikonal of the transformed field &, u(p), or the new
momentum &, is calculated as follows [20, 34]:
Vol. 41
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E(p) = 9S,(p, 1)
p i

= —0 + arccos Z + arccos . = —e(p).
r

e L

(28)

Thus, to calculate the profile of the bending angle,
the measured wave field is transformed using an opera-
tor of the second type. The transformed field is equal to

drup) = Ap) exp(ik¥'(p)). The derivative of its
eikonal '(p) taken with a negative sign is equal to the
bending angle €(p). The phase function is defined to
within an arbitrary function F(p) and can be redefined
as S5 (p, 1) = Sy(p, 1) + F(p). In this case, the momentum
is &' =& + dE(p)/dp. This result corresponds to the mul-
tiplication of ®,u(p) by exp(ikF(p)). The bending
angle will be €(p) =-&' + dF(p)/dp. Thus, the new
momentum is determined to within an arbitrary func-
tion of the impact parameter. The choice of this func-
tion 1s unimportant.

In view of determining the amplitude function a,(p, f)
from formulas (15) and (20), the amplitude of the trans-
formed field |<i>2 u(p)| is close to a O-function and is
approximately constant in the illuminated region and
decreases abruptly to small values in the shadow region
[30].

For a circular geometry (r; = const, r; = const), the
phase function depends linearly on 0 and the depen-
dence on 0 in the amplitude function is factorable:

bou(p) = I_Lkexp[ik(— A/rZG —p2 + parccosﬁ
2n e
- A/ri—pz + parccos P )}

ro
12
2 2 [ 2 2 g
X(«/”L—P NFG—D 7)

><J-exp(—ikpe(t))u(t)A/sin(e(t))é(t)dt.

As aresult, the operator is reduced to a combination of

the Fourier transformation of u(#(0))./sin® with
respect to the variable 6 and multiplication by the
known function of p. We will describe the approxima-
tion that reduces this operator to the Fourier transfor-
mation for an arbitrary geometry of observations.
From Eq. (2), the impact parameter p can be
expressed as a function p(#, n). Instead of the exact

impact parameter, we introduce its approximate value p

(29)

- )
PEM) = po(n)+ 32N =1y()
n
(30)

_ dpo
- f(t) + -a—ﬁn,
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F(1) = pot) - ?

N |n=ne(t)

jl (€2))
MNo»
N

where 1M(?) is a smooth model of the derivative of the
optical path and p(?) = p(¢, No(?)). The model 1(¢) can
be obtained by differentiating the measured optical path
with a strong smoothing. The error of this approxima-
tion of the impact parameter turns out to be about 1 m
for a typical geometry of observations. Let us define a
new parameter of the path Y = ¥(¢) and the correspond-
ing momentum G as follows:

Mo(?)
= p (9 F¢  Po 'L Do
= po—|0-—= - =

"L r - py

dpoY ! am
dYy = (—) dt = —dt, 32
on I, 42
_ ap,

For brevity, we will use the notation u(Y) instead of
u((Y)). To switch to the representation of an approxi-
mate impact parameter, we introduce a linear canonical
transform:

p = f(Y)+o, (34)
§=-Y (35
Its generating function is determined from Eq. (14):
dS, = &dp-ndY = -Ydp-(p- f(Y))dY, (36)
Y
Sx(p.¥) = ~pY + [f(¥)dY. (37)
0
For dY, we have the following expression:
d d
dy = do-¢_Po T Po _59 (33

"o Jro=po "t Ar-po
We can approximately write that 86/dY = 1. Since
102S,/0 p 9Y] = 1, the amplitude function is equal to /j1:

. — — : e 12
(5. Y) = («/ri—pi/ré—p”ﬁfgﬂl—) . (9)

The amplitude function a*(p , Y) in the operator &,

can be replaced by a,(p, Y,(p)) and factored outside
the integral sign. The resulting operator will be the
composition of the multiplication of the field by the ref-
erence signal, Fourier transformation, and multiplica-
tion by the amplitude function:
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(IA)ZM(;’) = /\/;%CaZ(ﬁa Yv(ﬁ))

v (40)
x Jexp(—ik pY)exp Likj f(r)dY')u(Y)dY.
0

The function Y,(p) is equal to —&, where the momen-
tum § is equal to the derivative of the eikonal of the
transformed field. In order to find the eikonal, it is pos-
sible first to substitute 1 for a,(p, Y,(p)) in (40), then
to calculate the momentum & and to multiply the trans-
formed wave function by a,(p, Y,(p)). The bending
angle € as a function of p and Y is determined by rela-
tion (3) and orbital data on rg(#(Y)), r.(t(Y)), and
0(#(Y)). Substituting Y = Y,(p), we obtain the profile of
the bending angle £(p):

B S
e(p) = O(1(Y(p))) — arccos =S
(41)
— arccos

p .
ra(1(Ys(p)))

4. ANALYSIS OF THE CHAMP DATA

Let us show how the method developed above is
employed to analyze experimental data obtained from
the CHAMP satellite. The measurement of signals in
multipath regions, where the amplitude and phase of a
signal are subject to strong fluctuations, is a complex
engineering problem. In such conditions, the receiver
often loses the signal or introduces significant errors in
measurements [21, 22]. The quality of the CHAMP data
for the troposphere (at heights below 10 km) is low [23,
36, 37]. The quality of a signal in channel L2 turns out to
be especially low. Therefore, noise filtering is required.

The measurement data include satellite orbital data
and the amplitudes A, ,(#,) and atmospheric optical paths
AY, (1, for two GPS channels (L1 at 1.57542 GHz and
L2 at 1.22760 GHz) with a sampling rate of 50 Hz (¢, =
to + 0.02i s). The total optical paths are calculated as
Y (1) = Wo(t) + AW, 5(1;), where W (1)) is the distance
from the transmitter to the receiver. The velocity of the
ray’s vertical descent into the atmosphere is about 2 km/s
under the conditions of weak refraction at heights above
10 km. This corresponds to a resolution of about 40 m.
Owing to strong regular refraction, the velocity of the
ray’s descent is decreased in the troposphere and has an
average value of 0.2 km/s near the Earth’s surface.

Data processing consists of the following stages.

(1) Preprocessing. At this stage, terminal fragments
of the data measured in the lower troposphere, where
the signal-tracking errors are very large, are rejected.
The data in channel L2 are also corrected because the
signal-tracking errors in channel L2 are substantially
greater than those in channel L1, a result which is due
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to the use of different algorithms of pseudorandom cod-
ing of signals in these two channels.

(2) Determination of the bending angles by using
the method of Fourier integral operators developed in
Section 3.

(3) Evaluation of the errors in the bending angles on
the basis of analysis of the local spectra of the trans-

formed wave field @, u,(p).

(4) Inversion of the bending angles and evaluation of
the errors in temperature retrieval on the basis of the
previously obtained errors in the bending angle.

4.1. Preprocessing of Measurement Data

At the first stage of data processing, a coarse esti-
mate is made for the profile of the bending angle on the

basis of formulas (2) and (3), where ¥ is calculated
with a strong smoothing (with a vertical scale of about
2 km). The data starting at the time when the bending
angle reaches 0.02 rad are rejected. Statistical analysis
shows that such data are practically unsuitable for fur-
ther processing.

Next, the local spatial spectra v, ,(z, M) of the signals
uy () = A (explik; ¥, »(r)] are analyzed. An
example of the spectra is shown in Figs. 3a and 3b. The
spectra are recalculated to the coordinates €, p with the
use of the functions €(¢, 1) and p(#, n) and are shown in
pseudocolor. Instead of the impact parameter of a ray p,
we use the impact height of the ray above the Earth’s
limb p — rg, where r; is the radius of local curvature of
the geoid in the plane of radio setting. The ray tangent
to the Earth has a typical impact height of rg(n(rg) — 1) =
2 km because a typical value of the refractive index » at
the Earth’s surface is 1 + 3 x 10 and r = 6370 km. In
channel L1, the spectra visualize the profile of the
bending angle especially well for impact heights
greater than 6.5 km. In channel L2, the situation is quite
different. After the impact height of the ray reaches
6.5 km and the bending angle reaches 0.011 rad, the
spectra exhibit a very rapid increase in the bending
angle, which also leads to heavily overstated impact
heights of rays because, for a fixed observation point,
rays with a larger bending angle arrive from a larger
height. This implies that the signal in channel L2 was
lost and this portion of measurement data is completely
erroneous and unsuitable for processing. A quality esti-
mator for L2 signals is formed to reject such data and to
filter noise. The mean of the impact parameter and its
spectral width are calculated from the spectra:

_ J|V1,2(t’ |’ p(t, m)dn
Pio(1) = >
[Ivia(m)fdn

) (42)
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Fig. 3. Occultation event 0004, Jan. 18, 2004; UT = 00:24; 50.4° N, 116.1° W: (a) local spatial spectra for channel L1, (b) the same
for channel L2, (c) bending angles calculated for the fields of DWD analyses and from the CHAMP data, and (d) temperature from

the data of DWD analyses and CHAMP data.

51’1,2(0
. (j |v1,2(t,n)|2(p(t,n)—ﬁl,z(t))zdﬂ)l/z 43)
JIvi.a(e, [ dn '

An empirical estimator is assumed to be

— — 2 2
W(t) = l—exp[ (pZ(t)_plA(t)z) +6p2(t)} (44)
P

where the parameter Ap equals 0.2 km. This estimator
assesses the deterioration of the quality of data in chan-
nel L2. The indicators of data-quality deterioration are
a large width of the spectrum 0p,(f) and a large differ-
ence p,(f) — p, (f) between the impact parameters in

channels L1 and L2.

IZVESTIYA, ATMOSPHERIC AND OCEANIC PHYSICS

The smoothed phase paths are calculated from the
profiles of the smoothed impact parameter:

Fia(n) = (B o), )dr

Iy

(45)

The smoothed difference of ionospheric optical

paths is calculated as AY (1) = W, (t) — ¥, (¢) in the
time interval when W(f) < 0.7. In the troposphere,
where the quality of L2 signals is usually very low

(W(t) > 0.7), the quantity AY (¥) is extrapolated lin-

early. For this purpose, the linear regression of AY (7)
is constructed between the time when the ray reaches a
height of 30 km and the time when W(¢) attains a value
of 0.7.
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Let us denote the operation of calculating finite dif-
ferences for the grid function by the symbol D;: D;F =

cor

F(t;, ) — F(t,). The corrected optical path ¥, (¢) and

cor

amplitude A, (¢) for channel L2 are defined as a linear

combination of the L1 and L2 data with the weight
determined by the estimator W(z):

D\¥y" = D¥,(1-W(t)

_ (46)
+ (DY, + DAY)W(t)),
i-1
W) = Y DM (47)
j=1
A (1) = A1) (1= W(1). (48)

The combination defined in terms of finite differences
makes it possible to avoid the influence of the arbitrary

constants ‘I‘? , appearing in the definitions of the opti-

cal paths in channels L1 and L2. If a combination of the
optical paths themselves is taken, the linear combina-

tion of two constants ‘Pg(l - W(t)) + ‘I’? (t;) will no

longer be a constant, thus leading to significant errors
in calculating the bending angle.

4.2. Determination of the Bending Angles

The wave fields u,(f) and u;” () are transformed

using the Fourier integral operator &, determined by
formulas (37), (39), and (40). The bending angles
€. »(p) are calculated by formula (41). The boundary of
the geometrical-optics shadow p; is determined from
the peak of the correlation between the amplitude

| @, u,(p)| and the O-function. For the data in channel
L2, the peak p, of the correlation between the ampli-

tude |, u,(p)| and the O-function controls the boundary
below which the data in channel L2 are unsuitable for
processing (as arule, p, > p,). For p € [p;, p,], the bend-
ing angles in channel L2 &,(p) were defined as €,(p) +
Ag(p), where Ag(p) is an estimate of the ionospheric
difference €,(p) — €,(p), which is calculated over the
interval of impact parameters [p;, p; + 1 km].

The profiles of bending angles €, ,(p) contain the
contribution of the ionosphere. Since the ionospheric
contribution is inversely proportional to the frequency
squared, in the context of the linear approximation, one
can eliminate the ionospheric contribution and calculate
the component of the bending angle (p) related to the
neutral atmosphere [38—41]. At heights above 50 km, the
ionospheric component of the bending angle becomes
substantially greater than the neutral component. As a
result, it is possible to estimate the residual error of the
ionospheric correction d¢/(p) in the profile of the bending
angle g(p) [40].
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4.3. Estimation of the Errors of Bending Angles

The errors of €(p) in the lower troposphere are esti-
mated from analysis of the local spectra of the trans-
formed wave field ®, u,(p) = A'(p)exp(ik¥'(p)). For this

purpose, the eikonal ¥' (p) smoothed with a 0.25-km win-
dow and moving spectra are calculated similarly to (9):

p+Apl2 ( ) (I’\) ( ')
- np —p) Ca(p
w(p, &) = p{pncos Ap  exp(ikP'(p)) (49)

x exp(—ikEp")dp',

where Ap = 1 km. The spectral peak is, on the average,
located near & = 0. The tropospheric error of the bending
angle de;(p) is estimated as the width of the spectrum:

e [ [Iwp, é)lzﬁfd&J“z

&) =\ -
[Iw(p, )t

The rms error d¢(p) in determining the bending angle

was taken equal to de/(p) for heights of the ray p — rp >
10 km and to d¢;(p) for heights of the ray p — ry < 10 km.

(50)

4.4. Inversion and the Estimation of Errors
in the Retrieved Temperature

With the use of the Abelian inversion (see (4)), the
refractive index n(r) is calculated from the neutral-atmo-
sphere component €(p) of the bending angle. The vari-
ance of the retrieved refractive index is calculated as

o

2oy o [ [(BEW)Be(p")dpidp"
(8n’(0) = | yror ol

where the covariance matrix of bending angles,
(0e(p"de(p")), is taken equal to de*(p) for p'=p" = p and,
for the other values of p' and p", it is assumed to be a
triangular matrix with a characteristic width of 1 km in
accordance with the estimates obtained in [41].

For the error in temperature retrieval, the following
expression is obtained from (6):

(5T(2)) = (8n’(2)) 72

[n(z) - 11’
[e@)@n()dn(2)az
_Dz - T (52)
R[n(z)-1]

”g(z")g(z’)<5n(z')8n(z")>dz'dz"

+Z

R’[n(z)-17°
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Fig. 4. Occultation event 0041, Jan. 18, 2004; UT = 04:09; 26.0° S, 19.4° E: (a) local spatial spectra for channel L1, (b) the same
for channel L2, (c) bending angles calculated for the fields of DWD analyses and from the CHAMP data, and (d) temperature from

the data of DWD analyses and CHAMP data.

Assuming that the correlation length of the error
dn(z) is substantially smaller than the homogeneous-
atmosphere height, one can approximately write

172 172

Samr= (37" = (30" Lo (53)

4.5. Examples

Below, examples of processing the data of CHAMP
measurements are given. We determine bending angles
and temperature profiles and estimate their errors by
formulas (50) and (53). The bending angles and tem-
peratures calculated from the global meteorological
fields taken from the recent analysis of the German
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Weather Service (Deutscher WetterDienst—DWD) are
also presented. It is significant that the discrepancy
between the radio occultation data and the DWD data
includes both the errors of the radio occultation data
and the errors of analysis. To assess the degree of agree-
ment between the radio occultation data and the DWD
analyses, we also present the errors of temperature pro-
files estimated from the analyses of Gpyp.

Figures 3¢ and 3d show the bending angles and tem-
peratures retrieved from a CHAMP occultation event
and the estimates of their errors. Above 25 km, the
errors of temperature retrieval related to the back-
ground ionospheric fluctuations start to increase and
constitute about 5 K at a height of 30 km. Above 30 km,
the value of radio occultation data for dynamic weather
forecasting becomes low [40, 41]. Between 25 and
2005
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Fig. 5. Occultation event 0097, Jan. 18, 2004; UT = 09:50; 78.8° N, 125.6° W: (a) local spatial spectra for channel L1, (b) the same
for channel L2, (c) bending angles calculated for the fields of DWD analyses and from the CHAMP data, and (d) temperature from

the data of DWD analyses and CHAMP data.

7 km, the estimated errors in temperature retrieval turn
out to be small (basically within 1 K). This is due to the
fact that the bending angles in this height range are suf-
ficiently large compared to the background ionospheric
fluctuations and the effects of multipath propagation
are of little importance for GPS frequencies. Therefore,
the accuracy of amplitude and phase measurements
turns out to be fairly high. Below 7 km, multipath prop-
agation occurs, a phenomenon which is observed from
the nonmonotonic profiles of bending angle obtained
from both CHAMP data processing and DWD analyses
of meteorological fields. The estimated errors in deter-
mining bending angles and temperature increase sub-
stantially here.

Figure 4 presents the results of processing the data of
another occultation event. In this session, ionospheric
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fluctuations are weaker than those in the previous exam-
ple and the estimated error in temperature retrieval
amounts to about 3 K at a height of 30 km. The profile
of the bending angle is nonmonotonic below 8 km,
which is indicative of multipath propagation. The spectra
exhibit a high level of noise in channel L2 below 12 km.
In multipath regions, the level of noise in channel L2
increases significantly. An increase in the errors of the
bending angles in multipath-propagation regions leads
to an increase in the errors of temperature retrieval,
which amount to about 5-10 K below 7 km.

Figure 5 presents the results of processing the data
of a occultation event characterized by a good quality
of the signal and a low level of errors. In all the exam-
ples presented above, the discrepancy between the
2005
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CHAMP and DWD data is consistent with the esti-
mated errors and is no greater than

2 2 172
2(Ocuamp + Opwp) -

Statistical comparison was also made between radio
occultation data and DWD data on the basis of 90 occul-
tation events conducted during January 18, 2004 (Fig. 6).
A systematic difference between the CHAMP and DWD
data is no greater than 0.5 K at heights above 5 km. The
rms data spread is 2—4 K. The largest systematic dis-
crepancy is observed in the lower 5-km layer, where it
reaches 4 K according to the data presented in [7, 37].
Here, statistical comparison is made only for heights
greater than 3 km, where the systematic difference does
not exceed 1 K. Below 3 km, the amount of radio-
occultation data decreases substantially, thus making
the results of statistical analysis less reliable. As was
noted above, the increase in systematic errors in the
lower troposphere is due to an unstable operation of the
receiver in the regions of multipath propagation, where
the signal can be lost. A more detailed statistical analy-
sis was carried out in [7, 37] on the basis of a longer
series of observations and the data of the European
Centre of Medium-Range Weather Forecasts.

We also compared the discrepancies between the
CHAMP and DWD data with independent estimates of
the errors in the CHAMP and DWD data. The errors in
the CHAMP data were estimated using the method
described in this paper. The errors in the DWD data
were estimated from a comparison of DWD numerical
forecasts with the data of real measurements. The esti-
mated errors in the CHAMP data 6oyaype and DWD
data opywp and the rms difference CHAMP — DWD are
plotted in Fig. 6 on the right. All data presented are
averaged over 90 occultation events conducted during
January 18, 2004. The plots demonstrate that the esti-
mated errors in the CHAMP and DWD data are in good
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agreement with the discrepancy between these data. In
the height ranges 8-15 km and above 24 km, the esti-
mated errors in DWD analyses seem to be somewhat
overstated.

5. CONCLUSIONS

Methods for interpreting the data of satellite radio-
occultation remote sensing of the Earth’s atmosphere
with the aid of GPS signals were discussed. The meth-
ods include (1) the filtering of noise and inferior data in
channel L2 on the basis of analysis of the local spatial
spectra of the measured wave field, (2) the determina-
tion of bending angles by the canonical transform
method, (3) the estimation of the errors in bending
angles from analysis of the local spatial spectra of the
transformed wave field, (4) ionospheric correction
combined with statistical regularization, (5) the Abe-
lian inversion of the profiles of bending angle for
obtaining the profiles of refractive index, and (6) the
retrieval of temperature profiles in the hydrostatic
approximation. It is significant that the errors can be
estimated without using a priori information. At large
heights, the background ionospheric fluctuations pre-
dominate in the signal. This phenomenon makes it pos-
sible to estimate the errors in bending angles above 8—
10 km, where the main source of errors is ionospheric
fluctuations. The errors in determining the bending
angles in the troposphere at heights below 8—10 km are
related mainly to multipath propagation. These errors
are estimated from the width of the local spectra of the
transformed wave field. The errors related to multipath
propagation in the troposphere turn out to be rather sig-
nificant. This result implies that the existing receiver
needs modification. On the other hand, this problem is
not fundamental and has a purely engineering charac-
ter. In the opinion of most specialists in the field of
radio-occultation sounding, this problem should be
Vol. 41
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solved by successively employing open-loop facilities
in the signal tracking circuit. Statistical comparison
was made between the CHAMP data and the data of
analyses of the German Weather Service (DWD). Such
a comparison has shown that the estimated errors in the
CHAMP and DWD data are in good agreement with the
rms discrepancies between the CHAMP and DWD
data. The ultimate goal of developing the methods of
data processing and estimating the errors in retrieved
temperature profiles is the use of these methods in the
system of a direct variational assimilation of radio-
occultation data into an atmospheric global-circulation
model. Work on incorporating the algorithms described
in this paper into the data assimilation system of the
German Weather Service is being carried out at the
present time.
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