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[1] A three-dimensional (3-D) inverse modeling scheme is used to constrain the direct
surface emissions of carbon monoxide CO. A priori estimates of CO emissions are taken
from various inventories and are included in the IMAGES model to compute the
distribution of CO. The modeled CO mixing ratios are compared with observations at 39
CMDL stations, averaged over the years 1990–1996. The interannual variability of CO
sources is therefore ignored. We show that the method used (time-dependent synthesis
inversion) is able to adjust the surface fluxes on a monthly basis in order to improve the
agreement between the observed and the modeled CO mixing ratios at the stations. The
Earth surface is divided into regions. The spatial distribution of CO sources is fixed inside
each of these regions. The inversion scheme optimizes the intensities of the emissions
fluxes for the following processes: technological activities, forest and savanna burning,
agricultural waste burning and fuelwood use, soil/vegetation emissions, and oceanic
emissions. The inversion significantly reduces the uncertainties on the surface sources
over Europe, North America and Asia. The most striking result is the increase (almost by a
factor of 2) of CO flux from Asia in all a posteriori scenarios. The uncertainties on the
Southern Hemisphere emissions remain large after the inversion, because the current
observational surface network is too sparse at these latitudes. The inversion, moreover,
shifts the peak in biomass burning emissions in the Southern Hemisphere by one month.
This temporal shift ensures a better match of the observed and modeled CO seasonal cycle
at the Ascension Island station. We also attempted to optimize the annual and global
productions of CO due to methane and NMHC. With the current set of data, the scheme
was not able to differentiate between these two sources, and hence only the total chemical
production of CO can be optimized. INDEX TERMS: 0322 Atmospheric Composition and

Structure: Constituent sources and sinks; 3210 Mathematical Geophysics: Modeling; 3260 Mathematical

Geophysics: Inverse theory; KEYWORDS: carbon monoxide, emissions, inverse modeling, CMDL
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1. Introduction

[2] It is estimated that the global amount of tropospheric
carbon monoxide (CO) has doubled since the pre-industrial

time [Cicerone, 1988; Müller, 1992; Haan et al., 1996], as a
result of extensive use of fossil fuel, burning of large zones
of forests, and increase in emissions of methane and several
other hydrocarbons. In the free troposphere, the primary sink
for CO is its oxidation by the major atmospheric ‘‘cleans-
ing’’ agent, the OH radical [Logan et al., 1981]. The global
average lifetime of CO is about 2 months [Cicerone, 1988].
An increase in the atmospheric amount of CO could reduce
the self-cleansing ability of the atmosphere and thus modify
its chemical, physical and climatological properties [Graedel
and Crutzen, 1996]. Predicting the full consequences of such
an increase is not straightforward, as the distribution of other
pollutants could also have an impact on the OH distribution
and feedback effects may reduce or amplify the trend. In the
presence of sufficiently high nitrogen oxides concentrations
and sunlight, CO is a precursor of tropospheric ozone.
Therefore, a detailed knowledge of the processes regulating
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the carbon monoxide distribution is essential in studies of the
tropospheric chemistry.
[3] The processes leading to the emission and/or produc-

tion of CO in the troposphere are fairly well established. Its
budget, however, is still uncertain. Its sources and sinks
(approximately 90% of the sink being its reaction with OH,
the rest being due to dry deposition) are quite variable in
space and time. 75% of CO surface sources are located in
the Northern Hemisphere. Since the CO lifetime is shorter
than the interhemispheric exchange time, the source distri-
bution heterogeneity is reflected in the spatial distribution of
the CO mixing ratio at the surface, as measured for example
by the NOAA-Climate Monitoring and Diagnostics Labo-
ratory (CMDL) flask sampling network stations [Novelli et
al., 1998]. CO mixing ratios at the surface in the Southern
Hemisphere are about one third of the surface values
measured in the Northern Hemisphere. Manning et al.
[1997] estimated that, on average, 30% of CO in the
Southern Hemisphere extra-tropics is due to Northern
Hemisphere sources. Most of the CO sources and sinks
also have a high seasonal and interannual variability. Higher
mixing ratios of OH in the Northern high latitudes during
the summer months significantly increase the CO sink
[Novelli et al., 1998]. In the tropics, savanna burning
typically occurs at the end of the dry season, the timing
of which differs from one region to another [Hao and Liu,
1994; Galanter et al., 2000]. The time and spatial variability
of CO sources makes it quite difficult to extrapolate local
and noncontinuous measurements of CO fluxes to emis-
sions on the global scale.
[4] Emission inventories are essential inputs to models

simulating the composition of the atmosphere and its
evolution. Different ranges of global emission fluxes have
been proposed by several studies [see, e.g., World Mete-
orological Organization/United Nations Environment Pro-
gramme (WMO/UNEP), 1998; Houghton et al., 2001]. CO
emissions due to fossil fuel use are estimated to be between
300 and 600 TgCO/yr, biomass burning emissions of CO
between 300 and 900 TgCO/yr, vegetation and soil emis-
sions between 50 and 200 TgCO/yr and the oceanic
emissions between 6 and 30 TgCO/yr. The production of
CO due to the oxidation of methane and nonmethane
hydrocarbons (NMHC) ranges between 400 and 1000
TgCO/yr and between 300 and 1000 TgCO/yr respectively.
As the ranges given above clearly show, the uncertainties
attached to CO global sources are still high. Besides the
difficulties mentioned earlier in extrapolating local flux
studies (bottom-up approach), accurate estimates of national
emissions are available for only few countries. Interannual
variations are also not easily predictable as many factors
such as change in land use can affect the emissions.
[5] Since CO sources can not be directly monitored on a

global scale and regular timescale, scientists have tried to
better constrain CO budget using observations of CO
mixing ratio together with chemistry-transport models
(CTM) of the atmosphere. A monitoring network (CMDL)
has been created in the late 1980s to measure the back-
ground concentrations of CO (and of other trace gases) at
stations located in remote areas. In parallel, chemistry and
transport forward models have been developed to reproduce
the tropospheric distribution of CO and other chemical
compounds using prescribed surface emissions. A forward

CTM is a numerical discrete representation of the relation-
ship between sources and atmospheric mixing ratios.
Observed and simulated distributions of atmospheric com-
pounds are compared to improve and validate the models
(e.g., chemistry and transport parameterizations) as well as
emission inventories. The information contained in the
measurements of tropospheric CO distribution together with
the information contained in a CTM can also be combined
in order to better assess CO sources (top-down approach).
This is referred to as inverse modeling.
[6] Inverse techniques aim at optimizing parameters of a

system, based on data and knowledge of the theoretical
relationship between these data and the parameters. In
atmospheric research, inverse techniques have been devel-
oped to optimize global emissions of long-lived pollutants
using a CTM as a forward model and concentration meas-
urements at surface stations (CFCs by Hartley and Prinn
[1993], CO2 by Enting et al. [1995], Bousquet et al. [1999a,
1999b], Peylin et al. [1999], and Baker [2001], and CH4 by
Hein and Heimann [1994] and Houweling et al. [1999]).
Manning et al. [1997] were the first to develop an inverse
model of CO sources. Their scheme optimized 6 annual and
global sources using CO mixing ratio and 13C data from
Baring Head (New Zealand) together with a 2D model.
Bergamaschi et al. [2000a, 2000b] performed the first 3-D
time-independent inversion of eight CO global and annual
sources using 31 CMDL stations and the TM2 model
[Heimann, 1996]. The present study adopts the time-
dependent inverse technique used for the optimization of
long-lived tracer sources [Peylin et al., 1999] to optimize
monthly CO direct surface emissions for 6 different pro-
cesses. The spatial distribution of the emission flux for each
process is fixed over each of the 7 continental and 5 oceanic
regions considered (see Figure 1). This type of inverse
modeling is called synthesis inversion as only the average
flux intensity over a relatively large region is optimized.
This study presents the first inversion of CO sources on a
monthly and regional basis. Other techniques have been
developed to deduce time-varying sources and sinks. For
example, Haas-Laursen et al. [1996] and Gilliland and
Abbitt [2001] worked on adaptations of the Kalman filter
and tested their algorithms with pseudodata. Following this
approach, Chang et al. [1996, 1997] estimated the hourly
emissions of isoprene and CO in Atlanta, Georgia.
[7] Since the late 1980s/early 1990s, CO concentrations

have been measured weekly at several stations of the
CMDL network. The objective of the present study is to
better estimate surface emissions of CO on a monthly
timescale, using monthly means of CO mixing ratio obser-
vations from the CMDL flask sampling network ftp://
ftp.cmdl.noaa.gov/ccg/co/flask/README.html) together
with climatological transport inputs in the three-dimensional
tropospheric chemistry and transport model IMAGES.
Monthly mean CO mixing ratios are obtained from 39
stations of the CMDL network between 1989 and 1996
(Table 1 and Figure 1). These data are compared with the
outputs from the IMAGES model described in section 2.
The inversion scheme attempts to minimize the discrepan-
cies between observed and modeled mixing ratios at the
stations first by optimizing the direct surface emissions of
CO alone and then by optimizing the direct surface emis-
sions of CO together with the global chemical production of

ACH 10 - 2 PETRON ET AL.: INVERSE MODELING OF CARBON MONOXIDE SURFACE EMISSIONS

 21562202d, 2002, D
24, D

ow
nloaded from

 https://agupubs.onlinelibrary.w
iley.com

/doi/10.1029/2001JD
001305 by M

PI 348 M
eteorology, W

iley O
nline L

ibrary on [17/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CO. The direct surface emissions of CO are aggregated over
five oceanic and seven continental source regions. The
continental surface emissions are subdivided into 4 pro-
cesses. The geographical distribution of each type of emis-
sion is fixed inside each of the source regions and the
inverse scheme optimizes the emission intensities for the 12
source regions on a monthly basis.
[8] The inverse technique is presented in section 3,

together with a discussion of the observations used in the
study, the assumptions and the fundamental numerical
equations. Results are shown and discussed in section 4
and, finally, the advantages and limitations of the method
will be discussed in section 5.

2. Description of IMAGES

[9] A detailed description of IMAGES (Intermediate
Model of the Annual and Global Evolution of Species) is
presented by Müller and Brasseur [1995], and the most
recent changes are described byMüller and Brasseur [1999]
and Granier et al. [2000a, 2000b]. Thus, this section only
summarizes the major features of the model and gives some
recent updates to the surface emissions, the dynamics and
the chemistry.
[10] IMAGES has a 5� � 5� horizontal resolution and 25

vertical levels from the surface to 50 hPa, with five levels in
the planetary boundary layer and two-three levels in the
lower stratosphere. The model transport parameters are
specified based on the monthly mean climatological fields
from ECMWF (European Centre for Medium–Range
Weather Forecasts, http://www.ecmwf.int/) analysis (winds,
temperature, humidity) for the period 1985–1989. The
interannual variability is therefore ignored. IMAGES
employs a semi-Lagrangian transport scheme for the tracer
advection [Smolarkiewicz and Grell, 1991]. The time-step is
one day, except for the first 3 days of each month during
which the full diurnal cycle is simulated (0.5 to 1 hour time-

step). Small-scale transport processes are accounted for via
macro-scale diffusion coefficients in the zonal and meri-
dional direction. The convection parameterization used is
based on Costen et al. [1988]. The distribution of cumu-
lonimbus clouds is derived from the International Satellite
Cloud Climatology Project (ISCCP), using monthly average
data over the period 1984–1987.
[11] The equations controlling the concentrations of Ox,

NOx, HOx, SOx compounds and several hydrocarbons and
their oxidation products (i.e., key species which are known
to have an impact on the tropospheric oxidizing power and
on the photochemical production of ozone) are included in
IMAGES. The standard chemical scheme of the model
includes 43 chemical species (among which 17 compounds
are long-lived, i.e., having lifetimes greater than a few
hours), 125 chemical reactions and 26 photolytic reactions.
The photo-dissociation coefficients are interpolated from
pre-calculated tabulated values [Müller and Brasseur,
1995]. ECMWF analyses are used to produce monthly
mean distribution of the water vapor mixing ratio. The
chemical scheme includes five hydrocarbons (ethane, ethyl-
ene, propylene, isoprene, terpenes (a-pinene) and a lumped
species that represents the other NMHC chemistry. The
same lumping technique is used to reduce the number of
intermediate radicals. The oxidation scheme of isoprene is
treated with some details based on a scheme proposed by
Paulson and Seinfeld [1992].
[12] The model provides estimates of the monthly aver-

aged distribution of several tropospheric chemical species,
but it does not reproduce the high frequency variability of
some tracer distributions. Therefore, the IMAGES-calcu-
lated distributions should only be compared with climato-
logical averages of observed mixing ratio distributions.
[13] The trace gas surface emissions and deposition

velocities in the model are monthly mean averages, based
on currently available inventories. The emission fields are
specified on a 5� � 5� horizontal grid.

Figure 1. Locations of the 12 emission regions and 39 CMDL stations used in this study.
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[14] Anthropogenic sources, which include emissions
from fossil fuel use (e.g., industry, transportation, fuel
production), biofuel combustion, emissions due to specific
industrial activities (iron and steel production) and solvent
use, waste treatment, and agricultural waste burning, are
taken from the EDGAR v2.0 global 1 � 1 degree inventory
developed by Olivier et al. [1996]. This inventory provides
yearly averages for 1990, and the seasonality is taken from
Müller [1992], based on the seasonal variation of fossil fuel
use and production and on the temperature dependence of
vehicle emissions. The technological emissions used in this
study correspond to the sum of the fossil fuel, the industrial
biofuel and the industrial processes provided by the
EDGAR v2.0 database. The agricultural waste burning
and fuelwood use source is the sum of the EDGAR v2.0
estimates for the agricultural waste burning source (207.6
TgCO/yr) and the biofuel source (181 TgCO/yr).
[15] The emissions due to forest and savanna fires are

taken from Granier et al. [2000b]. The monthly averages of
the amount of biomass burnt each year in forest and savanna
fires are derived from the evaluation by Hao and Liu [1994]

at a 5� � 5� horizontal resolution. The conversion to fluxes
of non-CO2 trace gases resulting from these fires is similar
to the one described by Granier et al. [2000b, Table 2].
[16] Biogenic sources include emissions of NMHC and

NOx by the vegetation and microorganisms in the soil, as
well as emission of methane by ruminants, rice paddies,
termites and wetlands. Continental biogenic emissions of
isoprene, terpenes and other NMHC, and NOx are taken
from the Global Emission Inventory Analysis database
http://www.geiacenter.org), based on Guenther et al.
[1993, 1995]. All other emissions are similar to the ones
described by Müller [1992]. Global yearly emissions rep-
resent 500 TgC/yr for isoprene and 127 TgC/yr for terpenes.
The distribution of NO production due to lightning is
derived from Price and Rind [1994] and Pickering et al.
[1998]. Dry deposition at the surface accounts for less than
10% of CO global sink. This sink is not optimized in this
study. The deposition velocities are fixed and taken from
Müller [1992, 1993].
[17] The emission of CO by the ocean has a relative

distribution derived from Erickson [1989] and its total and
global flux is close to the middle point of the range
recommended by Brasseur et al. [1999], based on the study
of Bates et al. [1995].
[18] The CO anthropogenic emissions used in the model

correspond to those for the year 1990. These emissions,
together with natural emissions, are taken as the a priori
emissions for the inversion scheme. Uncertainties are
assigned on the a priori monthly emission fluxes as a
percentage of their intensity. Relative uncertainties of 50%
are assigned to all surface monthly source flux, except for
technological emissions, similar to Bergamaschi et al.
[2000a]. In this study, everywhere except over Asia, the
technological emissions are given a 10% relative uncer-
tainty, reflecting the fact that these emissions are believed to
be better known. The Asian technological emissions how-
ever are not as much documented, as a result they are given
a 50% relative uncertainty.
[19] The ‘‘tagging’’ technique [Lamarque et al., 1996;

Granier et al., 2000a], which consists of separating the
modeled CO into different tracers depending on its origin
(region and type of emission), has been implemented to
decrease the number of simulations to be performed.

3. Description of the Inverse Technique

[20] The discrepancies between the observed and the
modeled distributions of tropospheric CO can be minimized
by optimizing model parameters. In the present study, these
parameters are the direct surface emissions of CO. Since we
use a climatological CTM, the modeled CO mixing ratios
are compared with a long-term measurement program.

3.1. CMDL Measurements of CO

[21] As indicated earlier, this study uses the CMDL
measurements of CO mixing ratios at a network of stations,
most of which sample marine boundary layer air. There is
some evidence that CO surface concentration trends
changed significantly at observing sites after the mid-
1980s [Khalil and Rasmussen, 1994; Novelli et al., 1994].
The observed decrease of CO concentration in the boundary
layer was estimated to be 2.6%/yr between 1987 and 1992

Table 1. Longitudes and Latitudes of the 39 NOAA/CMDL In

Situ Measurement Stations Used for the Inversiona

Station
Longitude,

decimal degrees
Latitude,

decimal degrees

Alert �62.52 82.45
Ascension Island �14.42 �7.92
Baltic Sea 16.67 55.50
St. David’s Head (Bermuda) �64.65 32.37
Tudor Hill (Bermuda) �64.88 32.27
Barrow �156.60 71.32
Black Sea 28.68 44.17
Cold Bay �162.72 55.20
Cape Grim 144.68 �40.68
Christmas Island �157.17 1.70
Cape Meares �123.97 45.48
Crozet Island 51.85 �46.45
Easter Island �109.45 �27.15
Guam 144.78 13.43
Dwejra Point 14.18 36.05
Hegyhatsal 16.65 46.95
Heimaey �20.15 63.25
Grifton �77.38 35.35
Tenerife �16.48 28.30
Key Biscayne �80.20 25.67
Cape Kumukahi �154.82 19.52
Park Falls �90.27 45.93
Mould Bay �119.35 76.25
Mace Head �9.90 53.33
Midway �177.37 28.22
Mauna Loa �155.58 19.53
Niwot Ridge �105.58 40.05
Palmer Station �64 �64.92
Qinghai Province 100.55 36.16
Ragged Point �59.43 13.17
Seychelles 55.17 �4.67
Shemya Island 174.10 52.72
Samoa �170.57 �14.25
South Pole �24.80 �89.98
Syowa Station 39.58 �69.00
Tae-Ahn 126.13 36.73
Wendover �113.72 39.90
Ulaan Uul 111.10 44.45
Spitsbergen 11.88 78.90

aLatitudes north of the equator and longitudes east of the Greenwich
meridian are positive (see also the map in Figure 1).
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by Khalil and Rasmussen [1994] and 2.3%/yr between 1990
and 1995 by Novelli et al. [1998]. In 1992 and 1993,
observations show a significant decrease in global tropo-
spheric CO [Novelli et al., 1998], part of this change has
been related to an increase in OH production resulting from
the eruption of Mount Pinatubo in June 1991 [Bekki et al.,
1994]. In theWotawa et al. [2001] study of summertime CO
concentrations interannual variability in the extra-tropical
Northern Hemisphere (ENH, where 22 out of the 39 stations
considered in this study are located), the authors pointed out
that the ENH CO time series (based on measurements at 17
CMDL stations north of 30�N) from 1991 to 1999 show
significant interannual variability but no clear trend. Total
columns of CO measured at different sites show either
stabilization or a quite small decline during these periods
(L. Yurganov, unpublished report, 2000). A steady CO
distribution in the atmosphere for the period 1990–1996
is assumed and monthly averages of the measurements are
computed (the length of the measurements time series varies
by site). These averages are supposed to represent the
climatological seasonal cycle of CO distribution during
the early 1990s. The interannual variations of CO monthly
mean mixing ratios are used to estimate the interannual
variability of the CO fields averaged over the period of
sampling. The monthly measurement error for each data
needs to be provided in the inversion algorithm and is taken
to be the maximum of the COmonthly averaged mixing ratio
interannual variability at the station and 10% of the data
value. This 10% minimal relative uncertainty on the data
slightly overestimates the observation errors due to the
sampling procedure, the analysis and the data reduction
[Novelli et al., 1998], and thus part of these 10% represent
the error due to the no-trend hypothesis. 18 out of 39 stations
have the interannual variability of their 12 monthly mean CO
mixing ratios below 10%. The interannual variabilities of the
12 monthly mean CO mixing ratios are below 20% at 17
other stations. Finally for 4 stations (Black Sea, Hegyhatsal,
Dwejra Point and Tae-Ahn), the interannual variability of
monthly mean CO mixing ratios reaches a value over 20%
for at least one month. The synoptic variability within a
month is not taken into account as the CTM uses monthly
averaged wind fields and cannot consequently reproduce
high frequency events. The observation error is the minimal
estimate of the uncertainty on the data at the stations since
the modeling error (also called the representation error) is
not added [see Tarantola and Valette, 1982a, section 10].
Some results are described in Appendix B, which show the
impact of adding the modeling errors to the measurement
errors in the inversion scheme. 30 of the CMDL stations are
located in the Northern Hemisphere. There are no stations in
Africa and South America. The CMDL measurements
correspond to clean air conditions at local stations. For
stations near the coast (Cape Grim, Key Biscayne, Mace
Head) only air originating from the marine boundary layer
is sampled. The model provides mixing ratios averaged over
a grid box of 5� � 5�, and no filtering is applied for wind
directions.

3.2. Numerical Method

[22] In this synthesis inversion study, four types of
emissions for 7 continents (emissions due to technological
activities, biomass burning (2 subcategories: (1) forest and

savanna burning and (2) agricultural waste burning and
fuelwood use) and vegetation/microorganisms in soils) and
5 oceanic source regions bring a total of 33 tagged CO
sources, ~x. At first, only the direct surface emissions of
CO are optimized, as specified earlier. The emissions of
CO precursors (methane and NMHC) are fixed, except in
the last inversion study. The amount of CO chemically
produced from the oxidation of hydrocarbons is derived
from the chemistry-transport model itself.
[23] The relationship between the vector of Nx = 12 � 33

monthly CO surface fluxes x ¼ xið Þi¼1;Nx
¼ ~xjanuary;

�
~xfebruary; � � � ; ~xdecemberÞ and the vector of Ny = 12 � 39
monthly mean COmixing ratios at the stations y ¼ yj

� �
j¼1;Ny¼ ð~yjanuary; ~yfebruary; � � � ; ~ydecemberÞ can be written as y =

h(x). We assume that a linear approximation can be used
locally, i.e., in the vicinity of a reference state of the system
characterized by the a priori emissions xb. It will be shown
later (section 4.4) that the linearization assumption holds
sufficiently well for the tropospheric CO chemistry. The
linearized relationship between (xi)i=1,Nx and (yj)j=1,Ny
around xb can be represented by a matrix H (Ny, Nx). This
matrix is calculated by simulating the impact of each CO
surface monthly flux (for example, technological emissions
of CO over the Northern American continent in August) on
the CO monthly mean mixing ratios at the stations. For these
simulations, the chemical state of the atmosphere (OH
concentrations) is the same as the one computed by the full
chemistry model using the a priori emissions. H is later
referred to as the observation matrix (see Figure 3 from
Peylin et al. [1999] for a schematic representation of the H
matrix for a time-dependent inversion problem).
[24] As the calculations of the observation matrix coef-

ficients require a very large amount of computer time, the
construction of H has been made possible by simplifying
the model to a reasonable extent. Hence, a tracer version of
the IMAGES model has been written. It uses monthly OH
distributions computed off-line by running the full version
of the CTM. The tracer version of IMAGES reads the 33
tagged CO surface fluxes each month and contains 33 CO
tracers reacting with the fixed OH. The agreement on the
CO distribution between the full model and the tracer
version for CO is good to within a few percent, as far as
CO emitted at the surface is concerned. Nevertheless, the
computational cost stays quite significant and limits our
ability to perform numerical experiments.
[25] To calculate the impacts at the stations of month m

fluxes, the CO-tracer model is run for 6 months with fixed
OH monthly 3-D distributions, and starting at the beginning
of month m with an atmosphere free of CO. All fluxes are set
to zero, except for the first month of simulation. The model
therefore computes the lasting impact on CO distribution of
each of the 33 tagged CO surface fluxes emitted during
month m. The simulated monthly averaged mixing ratios for
the 33 tagged CO tracers are saved at the stations location.
To get the H matrix coefficients, these values are divided by
the respective intensity of the tagged fluxes of month m. Let
Hm)n be the matrix of dimension 39 � 33 representing the
normalized impact of month m fluxes on month n observa-
tions. A block-representation of the H matrix (equivalent to
the one of Peylin et al. [1999], with a few permutations of
lines) is given in Figure 2. The impact of any monthly flux
has been truncated to only last 6 months. This assumption
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allowed us to divide by a factor of 2 the computer time
needed to build H and it contributes, to some extent, to a
better conditioning of H by replacing small coefficients with
zeroes. This assumption is justified when considering the
following results.
[26] First the singular values of 6 subspaces of the H

matrix (Hm)June)m=January,June have been computed and
plotted (Figure 3). The singular values of HApril)June

(reflecting the capacity of June observations to constrain
April emissions) are smaller than the corresponding singular

values of HJune)June. For emissions older than two months
(m = January to April), the SVD spectrum drops quite
rapidly. It means that only a few fluxes are still well
constrained by the June observations. The shape and range
of the 6 SVD spectra are quite similar. The SVD plot would
be quite similar if we were considering December observa-
tions (or any other month) and the emissions of the previous
6 months. From this analysis, we infer that six months after
CO was emitted, the observations at the stations contain
little information about the emissions.

Figure 2. Schematic representation of the observation matrix H (the submatrix H1)2 represents the
normalized impact of the January emissions on the CO mixing ratios in February at the stations locations,
as computed by the model). Each Hn)m matrix has the dimension (39, 33). We note H)m = (H1)m,
H2)m,. . .,H12)m), the mth row in the representation above.

Figure 3. Singular value spectra of the 6 submatrices (Hm)June)m = January, June (each submatrix has
the dimension 39*33) The bold line shows the SVD spectrum of the HJune)June matrix, which gives the
modeled impact of June emissions on June CO mixing ratios at the stations. The subsequent lower lines
show the SVD spectra of the submatrices giving the impacts of January emissions (bottom line), February
emissions (second line),. . .and, finally, May emissions (line right below the bold line).
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[27] Six preliminary inversions were performed to further
test the assumed six-month-long contribution of the surface
CO monthly emissions to the stations CO mixing ratios. For
these inversions, the impact timescale was set to last up to 6
months. For the first inversion, observations of month m
were assumed to depend only on the emissions from month
m. Figure 4 shows the evolution of the a posteriori global
and annual flux for each process, depending on how long
the impact timescale of all monthly emissions was assumed
to last. The values corresponding to ‘‘zero’’-month-long
impact are the a priori intensities. As can be seen on the
plot, for an impact lasting from 3 to 6 months (last four
inversions), the a posteriori yearly fluxes hardly change. For
each region and each process, the yearly emissions vary by
less than 6% around a mean value in these four inversions,
except for the forest and savanna burning source over
Southern America (15%). Completing an inversion with a
3-month-long impact for all CO surface monthly fluxes, the
a posteriori fluxes have a seasonal cycle and monthly
intensities within a 0 to 10% relative difference compared
to the ‘‘standard’’ inversion results (assuming a six-month-
long impact). Moreover, the a posteriori uncertainties on the
fluxes are not affected. These results validate our choice to
limit the impact timescale of the monthly emissions on the
stations CO mixing ratios to 6 months.
[28] Given the dimensions of the vector of 396 monthly

mean fluxes, x, and the dimension of the vector of 468
monthly mean observations at the stations, y, the problem
appears to be over-determined. In general, since there are
more equations than unknowns and given errors in the
observations, there is no solution (xi)i=1,Nx that exactly
satisfies the Ny equations y = h(x). To solve such problem,
a common technique is to look for the best solution in the
least squares sense [Lanczos, 1961] and thus to minimize
the quadratic sum of the differences between the two sides
of the equation: J(x) = (h(x) � y)T (h(x) � y). In this
equation, the errors on the observations are not represented
and the L2 norm is considered, giving the same weight to
each observation.

[29] For reasons discussed in Appendix A, the solution
obtained by minimizing J is often not unique and the
problem is said to be ill constrained. When the ‘‘true’’
solution of the problem is known to be confined in some
domain (for example, Gaussian distribution around a best a
priori estimate xb) and the errors in the observations, e, are
also known, the problem is well constrained and it has a
unique solution. However, this solution will now depend on
the a priori information used and on the degree of con-
fidence put on it.
[30] Most geophysical inverse studies use the concept of

conjunction of independent states of information. They aim
at making the best use of the a priori knowledge of a system
and of the information contained in data to better estimate
poorly known parameters of the system [Tarantola and
Valette, 1982a, 1982b; Tarantola, 1987]. To assign weights
to these two types of information, a precise description of
their uncertainties/errors is necessary. Basically, the a pos-
teriori value of a parameter will be constrained the most by
the most reliable piece of information. With the assumptions
that the system is linear around its a priori state and that all
errors are independent and Gaussian, the least squares
criterion becomes equivalent to the maximum likelihood
estimator. The best solution of the system, y = h(xb) + H(x
� xb) + E, now in the weighted least squares sense, is the set
of parameters which minimizes the weighted sum of the
quadratic distance between the CO mixing ratios observed
at the stations and the corresponding model outputs and the
quadratic distance between the a priori and the new sets of
parameters.
[31] With the notations described below, the best solution

of the system can be obtained by minimizing the following
function with respect to x:

J xð Þ ¼ hðxð Þ � yÞTR�1 h xð Þ � yð Þ þ x� xb
� �T

P�1
b x� xb
� �

[32] With the assumptions above, the solution can be
fairly well approached (with the hypothesis of weak non-

Figure 4. Evolution of the analysis when the impact of monthly emissions is set to last one to six
months in the observation matrix H. Values on the vertical axis are the a priori global estimates for 6
surface sources.
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linearity) by minimizing:

J 0 xð Þ 
 h xb
� �

þH x� xb
� �

� y
� �T

R�1 h xb
� ��

þ H x� xb
� �

� yÞ þ x� xb
� �T

P�1
b x� xb
� �

J 0 xð Þ 
 aþ 2 x� xb
� �T

HTR�1 h xb
� �

� y
� �

þ x� xb
� �T

HTR�1Hþ P�1
b

� �
x� xb
� �

where a is a constant.
[33] The minimization of J 0 provides the solution, called

the a posteriori sources xa , by combining the information
contained in the following entities: (1) The first one is the a
priori set of monthly surface fluxes xb, of dimension Nx =
33 � 12 = 396. Theoretically, xb is taken to be the mean for
the set of real (‘‘true’’) surface fluxes intensities xtrue for the
true distribution of CO, ytrue. The fluxes are expressed in
TgCO/yr. The CO surface annual fluxes used as a priori in
this study are given in the first column of Table 2. (2) The
second one is the vector of observations y, of dimension
Ny = 39 � 12 = 468. Theoretically, y is taken to be the mean
for the set of real (‘‘true’’) observations ytrue, expressed in
ppbv. (3) The third one is the observation matrix H (Ny, Nx).
It represents the monthly averaged contributions at all
stations and over 6 months of each monthly tagged CO
surface flux normalized to 1 TgCO/yr (around the a priori
state). This way, the vector h(xb)+H(x � xb) gives the total
modeled mixing ratios of CO at the stations in ppbv, x being
the CO emissions close to xb. (4) The fourth and fifth
entities are the covariance matrices Pb(Nx, Nx) of x

b and R
(Ny, Ny) of observations y. The vector of observation errors
e (y = ytrue + e) and the vector of a priori errors on the
emissions x(xtrue = xb + x) are assumed to have a zero
mean. This is equivalent to supposing there is no bias in
either the observations or the emissions estimates. More-
over, since the errors are supposed to be independent, Pb

and R are diagonal matrices and the diagonal terms are the
variances of the a priori emissions errors (xi)i=1,Nx and of the
observation errors (ej)j=1,Ny, respectively.
[34] The solution of the minimization problem is called

the a posteriori set of surface fluxes or the analysis xa. Here,
it is easy to derive the expression of the solution analytically
from deriving J 0 with respect to x. The equations for the a
posteriori sources vector xa and its corresponding a poste-
riori covariance matrix Pa are given below [Gelb, 1974;
Tarantola, 1987; Talagrand, 1997]:

xa ¼ xb þ HTR�1Hþ P�1
b

� ��1
HTR�1 y� h xbð Þð Þ

Pa ¼ HTR�1Hþ P�1
b

� ��1

ð1Þ

Tarantola [1987] shows that these equations are equivalent
to the following ones:

xa ¼ xb þ PbH
T HPbH

T þ R
� ��1

y� h xbð Þð Þ

Pa ¼ Pb � PbH
T HPbH

T þ R
� ��1

HPb

ð2Þ
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[35] Haas-Laursen et al. [1996] used equation (2) to
solve for time-varying emissions using pseudo observations
and various adaptations of the Kalman filter. By using the
same notations, we can show that the solution of the
minimization problem takes the same form in both studies
(equations (1) or (2)), however the two approaches use
different state vectors and representations for the observa-
tion matrix. In the paper by Haas-Laursen et al. [1996], the
observation matrix at time step m was the Jacobian matrix
of the change in the concentrations at observing sites at time
step m, Y(m), due to a change in the sources during this
specific time step m only, X(m). In the paper by Haas-
Laursen et al. [1996], the analysis for time step m (emis-
sions + covariance matrix) was used as prior for time step m
+ 1. In our study, the submatrix H)m of the observation
matrix H (see Figure 2) represents the contributions of the
emissions from the previous 6 months, x(m) = (X(m), X(m
� 1), X(m � 2), X(m � 3), X(m � 4), X(m � 5)), to the
average concentrations at the CMDL stations for month m.
The subsets of monthly emissions, X(m)m=1,12, and their
variances are independent from each other. The adjustment
of the emissions of previous months m� � m is used to
solve for the residuals of month m. The inversion is not
repeated for each monthly set of observations. It is per-
formed ‘‘globally’’ for all observations (or residuals) and all
emissions in one single computation. Comparing results
obtained with different adaptations of the Kaman Filter,
Haas-Laursen et al. [1996] concluded that the most accu-
rate method to retrieve the ‘‘correct’’ emissions is the
adaptive-iterative Kalman filter. In our study, the inversion
is only iterated once to test the nonlinearity of our problem.
Fairly good results were obtained after the first inversion, as
discussed at the end of this section.
[36] The combination of measurements, a priori and

theoretical information allows us to deduce the a posteriori
state of information for the emissions. This state is optimal
for the assumed statistics when the problem is linear. The
nonlinear chemistry of CO-OH does not significantly vio-
late this assumption. The tracer model is a linearized
formulation, which approximates quite well the behavior
of the full model for sources not too different from the a
priori ones.
[37] The emission fields used as prior in the model fix the

geographical location of the sources, which is assumed to be
climatologically correct. This assumption is more question-
able for highly variable sources such as emissions due to
biomass burning. The synthesis inversion technique does
not optimize for the location of the emissions of CO inside
the large regions tagged (see Figure 1). It uses the fixed
spatial distribution of the a priori emissions on the model
surface grid and optimizes the total intensity of CO fluxes
over the 12 regions.
[38] The quality of the inverse method presented above

was first tested using pseudodata. The pseudo data set has
been created by running the full model with prescribed
‘‘true’’ sources and by archiving the simulated monthly
mean CO mixing ratios at the CMDL station locations.
For the inversion, 0% to 20% random relative errors have
been added (1) to the pseudodata (modeled CO mixing
ratios at the stations) to create pseudo observations and (2)
to the ‘‘true’’ sources to create a first (nonoptimal) guess or
prior for the sources. This test attempts to reproduce the

‘‘real’’ problem of the atmospheric tracer sources inversion;
that is, nothing is known perfectly. In the inversion scheme,
the relative errors on the pseudo observations and on the a
priori sources have been set to 20%. Ten inversions have
been performed. Each inversion has used one vector of
pseudo observations and one vector of a priori emissions,
none of these being the ‘‘truth.’’ Given the reasonable
amplitude of the perturbation applied to the ‘‘true’’ sources
and the ‘‘true’’ observations, the inverse scheme had to be
able to retrieve a fairly close estimate of the ‘‘true’’ sources
to be qualified for the rest of the study. The 10 sets of a
posteriori surface sources were compared to the ‘‘true’’
sources. On the yearly basis, the maximum relative mean
deviation of the a posteriori emissions from the ‘‘true’’
emissions is 4.7%, occurring for European CO emissions
due to agricultural waste burning and fuelwood use. The
seasonal cycles for forest and savanna burning emissions,
soils and vegetation emissions and oceanic emissions are
properly retrieved, even though on the monthly basis, the
random errors added to the pseudodata introduce some
small dispersion of the a posteriori emissions around the
‘‘true’’ sources. This point underlines the consistency
expected by the inversion scheme between the seasonality
of the emissions and the seasonality of the observed CO
mixing ratios at the stations. One inversion was however
sufficient to get a reasonably good estimate of the monthly
emissions used to create the pseudodata.

4. Results and Discussion

4.1. Results of the Inversions

[39] Carbon monoxide monthly surface sources are opti-
mized assuming a six-month-long impact timescale at the
stations and using a synthesis inversion technique (see
assumptions in section 3.2). Yearly averaged regional a
posteriori fluxes are presented in Table 2, columns in the
middle, and the regional and seasonal source distributions
for the three major continental processes (emissions due to
technological activities and to biomass burning) are shown
in Figure 5. Plots of CO monthly mean mixing ratios at 6
CMDL stations are given in Figure 6. The different lines
correspond to the observations (black circles), the observa-
tions plus/minus the square root of the observed variability
(two bold lines, no symbols), the simulated mixing ratios
obtained with the a priori (diamonds) and the a posteriori
emissions (squares).
[40] The yearly global surface emission flux of CO

increases from the a priori 1295.5 TgCO/yr up to 1639.5
TgCO/yr. This increase is mostly due to the new estimate
for the annual flux over Asia: 708.3 TgCO/yr in comparison
with the 355.3 TgCO/yr for the prior. Total emissions over
Europe and Northern America are increased by less than
10%.
[41] As pointed out by Holloway et al. [2000], the

technological emission taken from EDGAR-v2 is under-
estimated, especially for Asia. The a posteriori global
technological emission obtained here is 342.6 TgCO/yr, to
be compared with its a priori value of 293.6 TgCO/yr
(slightly less than the 297 TgCO/yr of the original inventory
due to the mapping of the sources in the tracer model). The
new seasonality of the global technological source is mostly
due to a seasonality change of the emissions over Asia. As
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explained in the next paragraphs, this new seasonality is
probably an artifact of the method.
[42] The biggest changes from the a priori values occur in

Asia, where the a priori uncertainties on the emissions are
quite high. For the Asian region, the a posteriori CO surface
emissions due to industrial activities and forest burning are
increased by 58% and 53% respectively. The most striking
feature over Asia though is the large increase in the
emission flux due to agricultural waste burning and fuel-
wood use. The intensity of this flux doubles on an annual
basis compared to the a priori values we used; it even triples

in March, reaching a peak over 600TgCO/yr. These results
point out that the already high uncertainties in the Asian
sources may have been underestimated since the deviation
of the solution from the a priori values was assumed to be
within a 50% range. Furthermore, because the technological
source and the two types of biomass burning emissions over
Asia have similar seasonal impacts, in the model, at the
downwind stations, these three sources cannot be distin-
guished in the inverse modeling approach. The differences
between these sources’ spatial distributions over Asia are
not seen by the network. As a result, the inversion modifies

Figure 5. Seasonal distribution of CO technological and biomass burning sources. In each column, the
different patterns show the contributions due to the 7 continental regions considered in the synthesis
inversion. The plots on the left correspond to the a priori emissions, and the plots on the right to the a
posteriori emissions.
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these 3 fluxes into similar seasonal patterns. As a sensitivity
test, a second inversion is performed, where the 3 sources
are aggregated into one single source having an assumed
100% mean deviation. The new a posteriori seasonal cycle
for the Asian aggregated source has the same shape as the
one from the previous inversion. It peaks in March at almost
1200 TgCO/yr. The annual flux over Asia is 743.5 TgCO/yr.

The emissions over Europe and the Northern American
continent are 168.9 and 197 TgCO/yr. In the previous
analysis, these fluxes were 175.8 and 210.9 TgCO/yr.
[43] In order to understand the increased peak of the

March Asian flux, the assumptions made for the previous
inversion are used (same a priori emissions and diagonal
covariance matrices). For this experiment, the technological

Figure 6. Observed and simulated CO mixing ratios ( ppbv) at 6 CMDL stations. The black dots
correspond to the observations. The bold lines with no symbol show the standard deviation of the
observations. The open diamonds correspond to CO simulated using the a priori emissions, and the open
squares correspond to CO simulated using the a posteriori emissions.
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and the biomass burning sources are aggregated over Asia.
By looking more closely at the ‘‘new’’ observation matrix
H, it is possible to get a better understanding of the impact
of the Asian aggregated source on CO mixing ratios at the
stations. Similarly, by looking more closely at the matrix
[HTR�1H + Pb

�1]�1HTR�1, it is possible to get a better
understanding of the impact of the monthly mean residual
observation vector (y � h(xb)) on the change in the Asian
source, (xa � xb)March,Asia.
[44] Figure 7 shows the modeled contribution of March

Asian aggregated source to the monthly mean CO con-
centrations at Tae-ahn and at Midway (Pacific Ocean,
28N-177W). In the model, the biggest impact of this
source on CO at the stations locations occurs at the Tae-
ahn station, in the Korean peninsula, with a contribution to
its mixing ratio in March of 53 ppbv. The largest con-
tribution to CO mixing ratio at Midway (8.7 ppbv) occurs
in April, the delay being due to the distance between the
source region and the station location. The simulation
using the a priori sources underestimates the CO mixing
ratios, (compared to the observations), at Midway in
March and April by 35 and 40 ppbv respectively and at
Tae-ahn by 70 ppbv (Figure 6). As seen on Figure 7, the
contributions of the aggregated source become almost
negligible at both stations after June. The contributions
are set to zero from September to February since we
assume a 6 months impact timescale.
[45] Following the equation (1) from section 3.2 (see also

Appendix C), the change in the Asian aggregated flux in
March, (xa � xb)March,Asia, is a weighted sum of the differ-
ences between the observed and modeled mixing ratios at
each station (i.e., the residual vector y � h(xb)). More
precisely, the difference between the a posteriori and the a
priori Asian aggregated fluxes in March is the product of the
corresponding row in the matrix [HTR�1H + Pb

�1]�1

HTR�1 (of dimension (Nx, Ny)) times the residual vector
(of dimension Ny). Figure 7 shows the contribution of Tae-

ahn and Midway residual subvectors (y � h(xb))at Tae-ahn

and (y � h(xb))at Midway (of dimension 12) to the change in
the Asian aggregated source in March. Among all stations
(not shown), the Midway residual subvector has the biggest
impact. Its contribution to (xa � xb)March,Asia is + 69 TgCO/
yr, which corresponds to approximately 10% of the total
increase of March Asian flux. Tae-ahn contribution is + 5.3
TgCO/yr. As a consequence, at least 10 stations contribute
to the peak and thus ‘‘constrain’’ the Asian source in March,
making this inversion result more robust. As seen on Figure
7, the contributions of Tae-ahn and Midway residual sub-
vectors can be negative, representing a decrease in the Asian
emissions in March. The following lines give some further
explanations. As seen on Figure 7, the model significantly
under-estimates CO mixing ratios at Tae-ahn and Midway
in spring. The February residual at Tae-ahn is 61.4 ppbv. In
the inversion, this residual contributes to a 48.45 TgCO/yr
increase in the February emissions over Asia (the total
increase of the Asian emissions in February is 401.5
TgCO/yr). The direct effect of this increase is to reduce
the CO mixing ratio residual (computed with the ‘‘new’’
sources) at Tae-ahn in February but also in March since CO
lifetime is greater than one month at these latitudes in spring
[Holloway et al., 2000]. As a result, the contribution of the
February residual at Tae-ahn to (xa � xb)March,Asia is
negative (�17.52 TgCO/yr) and cancels out part of the
positive contribution of March residual at Tae-ahn (+39.85
TgCO/yr).
[46] For the two sets of a posteriori sources presented

above, the major difference is in the Asian source. The a
posteriori fluxes for the different processes in the Southern
Hemisphere are not affected by the change in the Asian a
priori uncertainty (not shown). In both cases the peak in the
forest and savanna burning emissions over the Southern
American and Southern African continents occurs one
month earlier than in the prior. Moreover, even though
the emissions due to agricultural waste burning and fuel-

Figure 7. Origin of the March Asian increased peak. The first two curves show the modeled
contributions in ppbv of the March aggregated Asian source to the concentrations at Midway and Tae-
Ahn over a year. The last two curves show the contributions in TgCO/yr of the 12 monthly averaged
residuals at Midway and Tae-Ahn to the change in the March aggregated Asian source.
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wood were kept constant throughout the year over all
regions in the a priori estimates, in the analysis these
emissions clearly show a seasonal cycle and reach their
peak during the respective winter-spring months of the
considered Hemisphere.
[47] The timing of the maximum for the a posteriori CO

emissions due to forest and savanna fires disagrees with
Hao and Liu [1994] for the Southern American and South-
ern African continents. In this study, the a posteriori
estimates for these sources already peak in September
instead of October (see Figure 8). Similarly, Bergamaschi
et al. [2000a, 2000b] shifted the seasonality of their global
biomass burning a priori source (also based on Hao and Liu
[1994]) by one month, based on the work of Dywer and
Gregoire [1998]. Galanter et al. [2000] recently proposed
some corrections to the Hao and Liu [1994] inventory,
dividing the various continents by ecosystem, with more
detail than in the previous study and using remote sensing
data to time the peak of emissions. They also found that the
biomass burning emissions peak occurs earlier in Southern
Africa. As an indication that the shifting of the emission
peak improves the agreement between the observed and the
modeled CO mixing ratios, Figure 9 displays the monthly
mean observed CO mixing ratios at Ascensio.n Island (8S -
14W) together with the modeled CO mixing ratios obtained
with the a priori sources (xb) and the first inversion a
posteriori sources (xa). With the a posteriori emissions set,
xa, the model reproduces slightly better the observed
seasonal cycle (timing and amplitude). As seen on Figure
9, CO due to chemical production in the model accounts for
half to two-thirds of the total modeled CO mixing ratio at
the station location. The seasonality though is mostly due to
the contributions of CO direct sources. The a posteriori
sources (xa) decrease the root mean square difference
(RMSD) between the monthly mean observed and modeled
CO mixing ratios at Ascension Island from 9.48 to 6.09
ppbv. To reduce even more the disagreement between the
modeled and the observed CO at Ascension Island, the

biomass burning emissions over Southern America should
be increased in August and September. The inversion does
not calculate such an increase, due to the fact that this
change would not further decrease the global RMSD.
Indeed, the increase of biomass burning emissions in the
Southern hemisphere leads to higher RMSD at the stations
located in Antarctica: South Pole, Palmer station, Syowa.
[48] Holloway et al. [2000] studied the model response to

the OH field and explained that away from major source
regions, CO is more sensitive to OH (and to transport than
to emissions). Using the measurements at the ALE-GAGE
stations (see description given by Prinn et al. [2000])
between 1978 and 1994, Prinn et al. [1995] derived new
estimates for the trichloroethane, CH3CCl3, (total) lifetime
and the methane lifetime due to the reaction with OH. These
estimates for the total atmosphere are 4.8 ± 0.3 years and
8.9 ± 0.6 years respectively. The authors also show that OH
concentrations have not substantially changed from 1978 to
1994. Using the same data set as Prinn et al. but a different
method, Krol et al. [1998] obtained quite different results
for the period 1978 to 1993. Their estimate for OH
concentration trend was 0.46 ± 0.6%/yr. They also com-
puted the global lifetime of trichloroethane in the tropo-
sphere to have changed from 4.7 ± 0.1 yr in 1978 to 4.5 ±
0.1 yr in 1993 and the methane lifetime due to the reaction
with OH to have changed from 9.2�0.8

+1.7 yr in 1978 to
8.6�0.8

+1.6 yr in 1993. The global photochemical lifetime of
methane in the troposphere deduced from a full chemistry
and transport model simulation using the a posteriori CO
surface sources is 8.74 years, to be compared with 8.42
years in the simulation with the a priori CO surface sources.
The global lifetime of CH3CCl3 in the troposphere, is 4.41
years to be compared with 4.27 years in the simulation with
the a priori CO surface sources. The comparison of these
different lifetimes values shows that the IMAGES model
running with the a posteriori CO surface sources agrees
better with the Prinn et al. and Krol et al. estimates, even
though these two studies obtained different conclusions

Figure 8. A priori (xb) and a posteriori (xa) monthly emissions due to forest and savanna burning over
Southern Africa (triangles) and Southern America (circles).
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using the same data set (see, for a detailed discussion, Prinn
and Huang [2001] and Krol et al. [2001]). This is not
sufficient either to validate the OH fields computed by
IMAGES or to support the a posteriori CO surface sources
since the global lifetime of CH3CCl3 mostly contains
information about OH in the tropics,.
[49] One way to validate the inversion results is to calcu-

late the root mean square difference between the monthly
mean observed and modeled CO mixing ratios at all stations.
The RMSD obtained using the a priori set of sources is 30.47
ppbv.When using the linear version of the model and the first
inversion results, the new (‘‘linear’’) RMSD computed is
17.56 ppbv (the modeled CO is here expressed as h(xb) +
H(xa � xb)). In order to estimate the importance of the
chemical feedback (impact of CO on OH and hence on its
chemical lifetime), the full model was run in a 2-year-long
simulation with the a posteriori sources obtained in the first
inversion, thus long enough to allow the OH field to adjust to
the new set of emissions. The newRMSD (the modeled CO is
now expressed as h(xa)) is 17.73 ppbv. It is very close to the
‘‘linear’’ RMSD of 17.56, showing that the nonlinearity of
the problem is reasonably weak.
[50] A second iteration of the inversion has been performed

to check the impact of the new sources on OH, and its
feedback on CO distribution. This inversion uses the a
posteriori fluxes from the first analysis, x1

a, as the new a

priori sources. A simulationwith the full chemistrymodel and
the newCOdirect sources has been performed to compute the
newOH fields. These fields were read by the tracer version of
the model to compute the new observation matrix H1. The
expression to calculate the new a posteriori sources, x2

a, is
taken from Tarantola and Valette [1982b] generalization to
the nonlinear case of the inverse problem solution:

xa2 ¼ xa1 þ HT
1R

�1H1 þ P�1
b

� ��1
HT

1R
�1 y� h xa1

� �� ��

�P�1
b xa1 � xb
� �

g ð3Þ

H1 is the new observation matrix calculated by linearizing the
model around the first analysis solution, x1

a, so that the system
to be solved can be written: y = h(x1

a) + H(x � x1
a) + E.

[51] The results of the second iteration are shown in
Table 2, last columns. The total for each process differs
from the first inversion results (Tabel 2) by less than 6%.
As expected, the estimates of regional fluxes responsible of
high CO mixing ratios at stations in their downwind flow
can be substantially affected by the nonlinearity of the CO-
OH chemistry.

4.2. Sensitivity Studies

[52] The inversion of surface sources aims not only at
optimizing fluxes by minimizing the deviation of the model

Figure 9. Observed and modeled monthly averaged CO mixing ratio, at Ascension Island (7.92S,
14.42W). The 33 tagged contributions to the simulated mixing ratio are added up with first the oceanic
emissions, then the emissions due to vegetation/soils, the emissions due to technological activities, the
emissions due to forest and/or savanna fires, and, finally, the emissions due to fuelwood use and
agricultural waste burning. The simulated [CO] chemically produced is added to [CO] due to surface
emissions to get the total modeled [CO] with the a priori sources xb. The total [CO] obtained with the a
posteriori sources xa and the monthly averaged CMDL observations are also shown.
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from the observations, but it also aims at reducing the
uncertainty on the fluxes values. As the number of param-
eters to optimize increases, the error in the a posteriori
estimates does not decrease as much. Clearly, increasing the
number of the unknowns, while keeping the same set of
observations, reduces the constraint on each unknown
[Enting et al., 1995; Enting, 1993]. As a result, to substan-
tially reduce the uncertainty on the analysis, it is necessary
to adjust the number of parameters to be optimized.
[53] In this section, the inversion is performed on

monthly total surface fluxes. The emissions due to the 4
continental processes tagged in the previous sections are
now aggregated into one single flux over each continent.
Over each region, the uncertainty attached to the total flux is
arbitrarily set to 50% of its a priori value. The annual results
for this new ‘‘control inversion’’ are presented in Table 3
(columns 4 and 5). They agree quite well with the regional
sum of annual a posteriori fluxes from the first inversion
analysis shown in Table 2 (except for Oceania), which
shows the consistency of the inverse method for regions
which are well constrained by the network. The Asian and
Northern African fluxes are bigger in the control inversion
by 7% and 14% respectively. The flux over Oceania is down
to 15.3 TgCO/yr in the control inversion, to be compared
with 27.7 TgCO/yr in the first inversion. The other fluxes
differ by less than 3%. The new (‘‘linear’’) RMSD value is
17.56 ppbv, which is exactly equal to the global linear
RMSD computed when using the emissions from the first
analysis (section 4.4).
[54] A major source of uncertainties for the inversion of

sources is the transport model [Bousquet et al., 1999a,
1999b]. The results of the inversion depend on the model
spatial resolution (horizontal and vertical), on the convec-
tion scheme, on the winds used for the forcing, on the
subgrid-scale mixing representation (diffusion, convection).
As the transport in IMAGES is based on a monthly
averaged climatological parameterization, it is not used to
study a specific year of data or the interannual variability of
observations. The spatial resolution of the model is also

rather coarse. The model consequently does not capture
either local and short events or fine vertical gradients. We
consider that our model results are less affected by local
pollution than can occur at observations location. The
influence of the transport model on the results has not been
quantified in this study.
[55] Besides the transport model, there are other sources

of errors for the inversion results. The a priori information
used in the inversion scheme has a great influence on the a
posteriori sources and their uncertainties. To test the influ-
ence of the values given to the a priori 396 CO emission
fluxes, random 0% up to 20% relative perturbation are
added to the values used as a priori sources in the previous
inversions. Ten inversions have been performed with per-
turbed a priori fluxes, keeping everything else as in the
‘‘first’’ inversion (presented in section 4.4). For the 10
inversions, the a posteriori global annual fluxes obtained
deviate from the unperturbed inversion results by less than
4%. The difference in the annual regional a posteriori
surface fluxes is less than 10% in all regions except for
Northern America (<13%) and Northern Africa (<20%).
This shows that while the inversion results depend on the
fluxes a priori values, the a posteriori fluxes for most
regions stay quite close to the first inversion results. The
information contained in the observations provides a good
constraint for these fluxes, especially for the global and
annual CO surface source.
[56] In the next experiment, everything is set up as in the

previous inversion scheme, except that the a priori fluxes
relative errors now vary and are successively set to 10, 25,
50, 75, 100% of the fluxes a priori values. Figure 10 shows
the impact of the a priori relative error on the annual a
posteriori total fluxes for the 7 continental regions. The
values at 0% relative error correspond to the values of the a
priori fluxes. The behavior of the curves suggests a range of
uncertainty for the fluxes. Total fluxes over Northern Africa
and Oceania are the most influenced when a priori errors are
larger than 25%. The other fluxes tend to reach a stable
value when relative errors are above 50%. The relative

Figure 10. Impact of the relative errors in the a priori fluxes on the analyzed fluxes over the 7
continental regions considered.

PETRON ET AL.: INVERSE MODELING OF CARBON MONOXIDE SURFACE EMISSIONS ACH 10 - 15

 21562202d, 2002, D
24, D

ow
nloaded from

 https://agupubs.onlinelibrary.w
iley.com

/doi/10.1029/2001JD
001305 by M

PI 348 M
eteorology, W

iley O
nline L

ibrary on [17/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



errors attached to the a posteriori total fluxes are given in
Figure 11. For all fluxes, a posteriori absolute errors are
equal to or smaller than the a priori absolute error values.
The regions for which the uncertainty on the total flux
decreases the most (Europe, Northern America and Asia)
are best constrained by the CMDL network. This is in large
part due to the fact that 17 stations out of 39 are located
between 30�N and 60�N. With 100% uncertainty on the a
priori surface fluxes, the relative uncertainty on the a
posteriori (for each region: a posteriori error divided by
the a posteriori estimate) is as low as 14.4% for Europe,
13.9% for Asia and 17.3% for Northern America, whereas it
is as high as 230% for the flux over Oceania.
[57] The high relative uncertainty in the flux over Oce-

ania is due to a bias in the inversion method. On one hand,
the variability of the observations at Cape Grim (Tasmania)
is underestimated since the measurements are filtered to
only sample marine air. On the other hand, the averaged
modeled concentrations at Cape Grim are over-estimated
since no filtering is applied on the modeled outputs. This
bias will be reduced when observed winds are used in the
transport model and the same filtering is applied to the
observed and to the modeled sampled mixing ratios.
[58] In the next inversion, the 396 monthly surface fluxes

as well as the annual and global production of CO due to
methane oxidation, PCH4(CO), and the annual and global
production of CO due to the non methane hydrocarbons
oxidation (isoprene, terpenes,. . .), PNMHC(CO), are opti-
mized. The a priori relative errors on the two production
terms are set to 50%. All the other statistics are taken as in
the first inversion performed in section 4.1. The two pro-
ductions a posteriori values are 1121 TgCO/yr and 161
TgCO/yr respectively, which is unrealistic. When the a priori
relative error on PCH4(CO) is set to 1%, the two production
terms a posteriori values are 740 TgCO/yr and 660 TgCO/yr
respectively. The inversion scheme used here does not seem

to be able to differentiate between the two production terms.
The cosine of the angle between the two column-vectors
corresponding to the PCH4(CO) and PNMHC(CO) contribu-
tions at the stations in the observation H matrix is 0.9755.
This value very close to 1 confirms the fact that the
normalized impacts of the two production terms are almost
identical in the model and consequently only the total
chemical production of CO, P(CO), can be optimized.
Using almost the same scheme as before but now with
the total and annual chemical production of CO, P(CO) a
posteriori value is 1461 TgCO/yr and the attached uncer-
tainty has not decreased. The a posteriori global surface
emission value, resulting from the same inversion, is 1590
TgCO/yr. For the next inversion, the control scheme, from
section 4.2, is used to optimize the monthly total surface
fluxes for the 12 regions considered before, as well as the
global and annual chemical production of CO. The a
posteriori value for CO production is 1536 ± 41 TgCO/yr
and the a posteriori global and total CO surface flux is 1528
TgCO/yr. The results per region are given in the last two
columns of Table 3. The total source of CO is quite similar
for the two inversions presented in this table (3045 and
3064 TgCO/yr). The increase in the chemical production of
CO obtained in the last inversion is compensated by a
decrease in the fluxes over all continental regions, except
over Europe.
[59] As a consequence, to better separate the surface

emissions and the chemical production of CO in the
inversion, more data (total CO and isotopic ratios, measure-
ments closer to the emissions location) are needed as well
as improved inventories of CO precursors emissions. In the
present study, the a posteriori direct global emissions of CO
ranged from 1528 to 1694 TgCO/yr and the chemical
production of CO changed from 1373 when fixed to
1461–1536 TgCO/yr when optimized. These values are
in the high end of the Kanakidou et al. [1999] range as well

Figure 11. Impact of the relative errors in the a priori fluxes on the analyzed fluxes uncertainties for the
7 continental regions considered.
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as the Bergamaschi et al. [2000a] range. Most of the
increase in CO surface source occurred over Asia. Such
an increase has not been reported before, except for a
15.7% increase of CO emissions in China between 1990
and 1995 (99 to 115 TgCO/yr; Streets and Waldhoff
[2000]). Such accurate estimates of CO emissions in the
other countries of our Asian region are not available at
present. Future studies and inventories should help validate
inversion results.

4.3. Comparison With Other Studies

[60] Our method is first compared with Bergamaschi et
al. [2000a, 2000b] time-independent approach. The season-
ality of all sources is fixed and the inversion scheme is
modified to only optimize the annual and global surface
sources for 5 processes. Bergamaschi et al. used data from
31 CMDL stations for the year 1994. Here, we use the same
observations as considered before at the 39 CMDL stations.
Bergamaschi et al. used different a priori sources and
categories: they aggregated the CO biogenic direct emis-
sions with the biogenic indirect source, adding another 100
TgCO/yr to this last source a priori value. Their total annual
surface a priori source was 1470 TgCO/yr (+100) compared
with 1296 TgCO/yr in this study. In the time-independent
inversion scheme, relative errors of 50% are put on all
global sources except for the technological one, the uncer-
tainty of which is put at 10%. The total a posteriori surface
source obtained by Bergamaschi et al. ranged from 1347
TgCO/yr to 1560 TgCO/yr, depending on the OH field, the
wind field, the number of stations they used. The results of
our time-independent inversion (to be compared with the
last row of Table 2) are as follow: emissions due to
technological activities increase from 294 to 309 TgCO/
yr, emissions due to forest and savanna burning increase
from 436 to 606 TgCO/yr, emissions due to agricultural
waste burning and fuelwood use increase from 384 to 561
TgCO/yr, soil-vegetation and oceanic emissions slightly
increase from 165 to 167 TgCO/yr and from 16.5 to 20
TgCO/yr respectively. Consequently, the a posteriori total
surface flux of 1663 TgCO/yr obtained here compares well
with the highest Bergamaschi et al. estimate (1560+ 100
TgCO/yr). With the new annual and global values for the

fluxes, the RMS of the observed minus modeled CO mixing
ratios at the stations is 21 ppbv, which is 2/3 of the RMSD
obtained with the a priori emissions. Hence, even if we do
not correct either for the seasonality or for the spatial
distribution of the emissions, changes in the global and
annual fluxes already significantly decrease the distance
between the observed and the modeled CO mixing ratios at
the stations.
[61] Table 4 shows the global and annual budget of CO

as reported in published forward or inverse studies. For the
inverse studies (Bergamaschi et al. [2000a] and this study),
the a priori sources and the range of the a posteriori sources
are given. The forward studies include the GIM/IGAC
intercomparison performed in 1997 [Kanakidou et al.,
1999] and the study of CO global distribution by Holloway
et al. [2000]. The GIM/IGAC intercomparison evaluated
the performance of eleven 3-D chemistry and transport
models in reproducing the tropospheric ozone chemistry.
Kanakidou et al. [1999] reported the results for the distri-
butions of CO, which is the best documented precursor of
ozone. Part of the differences in the modeled CO distribu-
tions was due to the fact that the models used different
emissions for CO and its precursors. For the 11 models, the
direct global emissions of CO ranged from 1040 to 2362
TgCO/yr and the chemical production of CO ranged from
840 to 1459 TgCO/yr, this upper limit corresponding to the
IMAGES model (1997 version). For comparison, in the full
IMAGES (2001) model run with the a priori emissions, the
total chemical production of CO is 1373 TgCO/yr, of which
735 TgCO/yr are due to methane oxidation. In the Hollo-
way et al. [2000] study, the sum of all CO sources used in
the GFDL model was 2491 TgCO/yr. They used fixed
monthly OH fields derived from Spivakovsky et al. [1990],
which they increased by 15% to agree with Prinn et al.’s
[1995] 4.8 years estimate of trichloroethane lifetime. The
authors point out that the fossil fuel sources (300 TgCO/yr)
could be too low as their model significantly under-esti-
mates the spring peak in CO mixing ratios at higher
northern latitudes. This feature also appeared in the CO
distribution obtained with IMAGES using the a priori
emissions. Indeed the transport in the Arctic region is not
always well reproduced by models, especially during the

Table 3. Regional Total Fluxes and Their Uncertaintiesa

Region

A Priori
Annual

Emission Flux
A Priori

Uncertainty

Without Optimizing P(CO) Optimizing P(CO) As Well

A Posteriori
Annual

Emission Flux
A Posteriori
Uncertainty

A Posteriori
Annual

Emission Flux
A Posteriori
Uncertainty

Europe 162.6 81.3 174.9 23.1 173.2 23.2
Asia 395.2 197.6 756.3 95.7 719.5 96.2
Northern Africa 197.4 98.7 255.4 96.0 226.3 96.4
Southern Africa 98.4 49.2 90.2 46.2 75.47 46.4
Oceania 31 15.5 15.3 12.2 12.11 12.3
Northern America 192.7 96.3 204.7 31.9 190.2 32.2
Southern America 202.2 101 180.1 89.1 114.7 90.9
Oceans 16.4 4.0 16.7 4.0 16.2 2.9
Global surface emissions 1296 1694 1528
Global chemical

production 1373 686.5
Not optimized

(1373) 1536 41
Total source 2669 3067 3064

aRegional total fluxes and their uncertainties are given in TgCO/yr. Shown here are (1) a priori values (columns 2 and 3), (2) a posteriori values for the
inversion of regional and monthly surface total fluxes (columns 4 and 5) and (3) a posteriori values for the concomitant inversion of regional and monthly
surface total fluxes and the global annual chemical production of CO.
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winter-spring season. Errors in the transport model prob-
ably explain part of the mismatch between the modeled and
the observed CO distributions over the Arctic region in
spring. It is nevertheless difficult to estimate how much of
the disagreement is due to errors in the transport model and
how much is due to errors in the emissions. In this study,
the disagreement is for a great part corrected when using
the a posteriori fluxes from section 4.1 (Figure 6). The
RMSD at Alert, Barrow, Cold Bay, Heimaey, Mould Bay
and Shemya Island are divided by a factor ranging from 2.5
to 6. The a posteriori fluxes lead to a very small number of
increase in the disagreement at the Northern latitudes:
Baltic, Mace Head and Key Biscayne are the three stations
where the RMS of the modeled minus the observed CO
mixing ratios increases with the a posteriori fluxes. The
improvement at most surface and remotely located stations
may be misleading. Higher emissions in one region may be
compensating errors in the transport model and errors in
other sources. The use of models running with observed
winds together with measurements (surface and vertical
profiles) taken downwind of and close to the emissions
location could prevent errors in the transport model and in
the OH field from having a strong influence on the
inversion results.
[62] Granier et al. [2000a] and Holloway et al. [2000]

showed that the contribution of methane oxidation to CO
surface mixing ratio does not significantly vary with the
season and the latitude. Most of the uncertainty lays in the
CO yield of methane oxidation. Holloway et al. [2000]
model over-estimated CO over Antarctica, more especially
during the peak of biomass burning and biogenic emissions.
The authors first suggested that this could be (partly) due to
the CO yield assumed for the methane oxidation. They also
proposed that the biomass burning and biogenic emissions
in the South hemisphere could be too high in their model.
When Bergamaschi et al. [2000b] incorporated 12C/13C
ratios in their inverse scheme, their results indicated that
CO yield from methane oxidation is likely to be signifi-
cantly lower than 1. In the Holloway et al. [2000] study, the
yield was 1, and in the Kanakidou and Crutzen [1999]
study, it was 0.9. The carbon yield for CO due to the
oxidation of methane is 0.82 in our study. Holloway et al.
[2000] reduced the carbon yield in their study from 1 down
to 0.82. This changed the source of CO due to the oxidation
of methane from 760 TgCO/yr down to 623 TgCO/y. The
direct effect was to decrease CO modeled mixing ratios in

Antarctica and Tasmania by 4 ppbv, which lead to a
generally better agreement and also to a slight under-
estimate of CO in the first months of the year. With the a
priori sources, the IMAGES model reproduces quite well
the CO mixing ratios at the most Southern stations (see
Figure 6). With the first a posteriori emissions set described
in section 4.1, the IMAGES model still reproduces quite
well the CO mixing ratios over Antarctica but only during
half of the year. The increased emissions during the bio-
mass burning peak season of the Southern Hemisphere
results in a slight over-estimation of CO over Antarctica
from August to February. These results tend to show that
the Southern hemisphere biomass burning emissions in the
Holloway et al. [2000] model could be responsible for the
misfit between the observations and the modeled CO. It
clearly appears here that the inverse modeling approach can
complement forward studies. Indeed the inversion deduces,
from data and the forward model, the fluxes to be changed
to improve the agreement between the model and the
observations.
[63] Novelli et al. [1994] estimated that 23% (44%) of

total atmospheric CO in the Northern (Southern) Hemi-
sphere is provided by methane oxidation. In another study
using the IMAGES model [Granier et al., 2000a], the
oxidation of methane contributed to 28% of the total
content of CO. This is close to Novelli et al. [1994] values,
considering that, in the IMAGES model, almost 60% of CO
atmospheric burden (310 Tg) is in the Northern Hemi-
sphere. Methane oxidation clearly fixes a ‘‘background’’
level for CO at all stations. In section 4.2, we showed that
our method does not allow us to decrease the uncertainty on
the contribution to CO of methane oxidation alone. In
IMAGES, this contribution is 735 TgCO/yr (when using
the a priori CO emissions). The methane oxidation contri-
butions given by Holloway et al. [2000], Bergamashi et al.
[2000b] and Kanakidou and Crutzen [1999] are in the same
range.

5. Conclusion

[64] In this study, we presented how the concept of states
of information has been used in a 3-D synthesis time-
dependent inversion technique to optimize CO surface
emissions. Outputs from the climatological model IMAGES
have been compared with monthly averaged measurements
of CO mixing ratios over the period 1990–1996 at 39

Table 4. Comparison of CO Budgets From Four Different Studies

TgCO/yr

This Work Bergamaschi et al. [2000a]a Holloway
et al. [2000]b

Kanakidou
et al. [1999]A Priori A Posteriori A Priori A Posteriori

Direct source 1296 1528–1694 1470 1347–1565 1048 1040–2362
Indirect source

CH4 735 830 760
NMHC 638 560 683
Total 1373 1461–1536 1390 1391–1653 1443 840–1459

Total source 2669 2960–3067 2860 2867–3009 2491 1218–2742
aBergamaschi et al. [2000a] aggregated the CO direct biogenic emission with the biogenic NMHC source, adding 100 TgCO/yr to the indirect source of

CO (and thus reducing the direct source).
bThree sources included in this study were not taken into account in the Holloway et al. [2000] CO budget. These sources are as follows: CO due to the

oxidation of anthropogenic NMHC, CO emitted by the vegetation and soil and CO emitted by the ocean. Given estimates by Kanakidou and Crutzen
[1999] and Granier et al. [2000a], these sources would add up to 280 TgCO/yr.
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stations from the CMDL network. The discrepancies
between the observed and the modeled CO mixing ratios
at the stations location were minimized by optimizing the
monthly surface CO fluxes over 5 oceanic regions and over
7 continental regions for 4 different processes (technolog-
ical activities, forest and savanna burning, fuelwood use and
agricultural waste burning, vegetation/soils).
[65] The surface CO emission fluxes have been optimized

over each continent for 4 different processes and on a
monthly basis. The spatial distribution inside each region
and for each process was fixed. The time-dependent inver-
sion technique proves to be a powerful tool to study the
intensity and the seasonality of each emission process,
supposing a sufficient number of observations are available.
As tested by Peylin et al. [1999] for CO2, the inversion
scheme is able to retrieve the origins of a tracer observed at
a network of stations.
[66] The 1990 a priori estimate of the CO total flux over

Asia is significantly lower than the optimized flux obtained
using the observations. The inversion results also showed a
different timing for the biomass burning emission peak over
Southern Africa and Southern America. By shifting the
maximum one month earlier (September instead of Octo-
ber), the modeled CO mixing ratio at Ascension agrees
better with the observations, which peak in September. The
synthesis inversion technique cannot change the location of
the sources inside the regions. It only optimizes the magni-
tude of each emission process over each large region.
Further studies will use different emission inventories to
test the impact of the sources location. To optimize the
location of the emissions and supposing enough observa-
tions are available, adjoint models should be used since they
can be designed to optimize the fluxes on the forward model
grid scale [Kaminski et al., 1999a, 1999b; Houweling et al.,
1999].
[67] Although it is clear that a posteriori results depend

on the winds fields and on the convection parameterization
in the model, in the present study, the errors associated with
the transport model are not considered. As noted before,
measurements from CMDL coastal sites (MHD, CGO,
KEY) are filtered to sample only oceanic air. In a study
presenting key issues for the improvement of methane
sources inversion, Houweling et al. [2000] showed how
critical it is to use observed winds in the CTM and to apply
the wind sector filtering to the model data. In further
studies, these two requirements should be fulfilled.
[68] The emissions of CO precursors have been specified,

except in the last experiment. In the last two inversions, the
annual and global production of CO due to methane and
NMHC oxidation was optimized together with the surface
fluxes of CO. In the model, the oxidations of CH4 and
NMHC have quite similar impacts at the stations, making it
difficult to optimize both of them separately with CO data
only. Bergamaschi et al. [2000b] showed that the introduc-
tion of 13CO/12CO and C18O/C16O isotopic data in the
inversion scheme helps better constrain CO surface emis-
sions and the CO global yields from the oxidation of various
hydrocarbons. As more measurements of isotopic signatures
of emissions and of isotopic fractionation by reactions
become available, the comparison between data and the
distribution of stable isotopes computed by models should
further constrain the global budget of CO.

[69] Many factors in the models affect the distribution
of CO, the emissions used as boundary conditions being
one of them. For further intercomparison studies, all
models should use the same set of emissions and include
a comparison of their OH distributions. Errors in one type
of emission can indeed be compensated by errors in other
sources, in the transport or in the OH field. The total
source of CO in IMAGES is in the high end of the range
reported by Kanakidou et al. [1999]. The CO total source
reported by Holloway et al. [2000] is quite close to our
total a priori source: 2500 TgCO/yr and 2669 TgCO/yr
respectively. The carbon yield for CO due to the oxida-
tion of methane is different in both studies: ranging from
0.82 to 1. However, the source of CO due to the
oxidation of methane is close to 750 TgCO/yr in both
models. More studies on CO secondary sources should
help improve the model chemistry schemes and thus the
inversion results.
[70] The inverse modeling technique described here

provides a good diagnostic tool to assess CO surface
emissions at the continental scale. If sufficient observations
become available and with appropriate additions/improve-
ments in the models, the inverse modeling experiments can
also be designed to help characterizing the emission
processes. As explained in section 4.1, the inversion of
33 CO surface fluxes using 39 CMDL stations is a poorly
constrained problem for several emissions. The few con-
tinental stations sampling downwind of land sources are
located in Europe (Baltic Sea, Poland; Gozo, Malta; and
Hegyhatsal, Hungary), in the USA (Park Falls, Wisconsin;
Niwot Ridge, Colorado; and Wendover, Utah), and Asia
(Ulaan Uul, Mongolia, and Qinghai Province, China).
Given its 2 months average lifetime, CO is a good tracer
for synoptic events. Despite the presence of 4 stations in
the Southern Hemisphere tropics, emissions due to biomass
burning in Africa and Southern America are poorly
sampled. Consequently, the corresponding a posteriori
fluxes are mostly constrained by the a priori values and
the uncertainties in the fluxes do not significantly decrease
(Table 3, see columns 2 and 3). The extension of the
regular measurement operations to sites downwind of
major source regions, as well as the improvements of
emissions inventories using bottom-up and top-down
approaches, are two important initiatives to be encouraged.
Inverse modeling studies using higher resolution models
and observed winds could be used to indicate where new
observation sites should be located to help better constrain
emissions.
[71] The advantage of the top-down approach is that

fluxes can be estimated over larges areas. The disadvantage
is that it does not bring any direct information about the
mechanisms driving the sources. To better describe each
process source, smaller regions with homogeneous land
cover, industrial development and activities, population
densities, climatology should be used for the inversion.
Nevertheless, the number of surface fluxes that may be
optimized is greatly limited by the number and the quality
of the available observations.
[72] Further studies will employ assimilated meteorology

and higher resolution CTM to optimize CO sources (season-
ality as well as spatial distribution) using the limited but
high quality measurements at surface stations as well as the
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newly available satellite observations (IMG, Clerbaux et al.
[2001]; MOPITT, Drummond [1992]).

Appendix A: Characterization of the Properties of
the Linear System y = h(xb) + H(x � xb) + E

[73] As first explained in section 3.2, the system y = h(xb)
+H(x� xb) + E =Hx + ychem + E (with ychem = h(xb)�Hxb)
is over-determined, since there are more observations than
unknowns (Ny > Nx). Out of the 33 fluxes to be optimized
monthly, 15 are in the Southern Hemisphere and out of 39
CMDL stations, 9 only are in the Southern Hemisphere.
Given the lifetime of CO and the interhemispheric transfer
time, measurements at most stations in the Northern Hemi-
sphere do not carry much information on sources in the
Southern latitudes. As a consequence, the problem is ill
conditioned in the Southern Hemisphere and some continen-
tal sources are not sampled well by the network. A common
technique to solve an ill-conditioned least square problem
(with no prior) is to use the singular value decomposition
(SVD) [Lanczos, 1961]. This decomposition is a handy tool
to characterize the linear system properties. Using the SVD
function, the H matrix may be written as the product of 3
matrices H = U�VTwhere the columns vectors uj of U(Ny ,
Ny) form an orthonormal basis in the observations space, so
that

y ¼
XNy

j¼1

bjuj ; ychem ¼
XNy

j¼1

gjuj

(the gj are fixed) and

E ¼
XNy

j¼1

djuj

the columns vectors vi of V(Nx, Nx) form an orthonormal
basis in the surface emissions space so that

x ¼
XNx
i¼1

aivi;

and � is a rectangular matrix (Ny , Nx) so that

+ ¼

m1 0 � � � 0

0 m2
. .
. ..

.

..

. . .
. . .

.
0

0 . . . 0 mNx
0

..

.

0

2
666666666666664

3
777777777777775

where (mi)i=1,Nx is the singular value spectrum of H. This
decomposition is unique, except for trivial changes like
permutations. The vi verify Hvi = miui.

[74] Suppose M � Nx is the number of singular values mi
not equal to zero. By substituting x, y, ychem and e in the
system’s equation [Wunsch, 1996; Haine, 2001], we obtain
a new system where the unknowns are the (ai)i=1,Nx and the
(dj)j=1,Ny:

XNx
i¼1

aiHvi þ
XNy

j¼1

gjuj þ
XNy

j¼1

djuj ¼
XNy

j¼1

bjuj

,
XM
i¼1

aimiui þ
XNy

j¼1

gjuj þ
XNy

j¼1

djuj ¼
XNy

j¼1

bjuj

so that

aimi þ gi þ di ¼ bi for i ¼ 1;M ðA1Þ

and

0þ gi þ di ¼ bi for i ¼ M þ 1;Ny

, di ¼ bi � gi for i ¼ M þ 1;Ny ðA2Þ

[75] If M is less than Nx, the coefficients (ai)i=M + 1,Nx can
be chosen arbitrarily, making the number of solutions
infinite. For i = M + 1,Ny, the coefficients di are determined
from equations (A2). This leaves the first part of the system
(A1) to be solved, with M equations and 2M unknowns the
(ai )i=1,M and the (di )i=1,M. Another piece of information is
needed to solve the system: in the least squares approach,
the deviation between the observations and the modeled
data is minimized, which is equivalent to the minimization
of e norm, (ETE)1/2. Since

EET ¼
XNy

j¼1

d2j ¼
XM
j¼1

d2j þ
XNy

j¼Mþ1

bj � gj
� �2

;

the only way to minimize the sum is to take di = 0 for i=1,M.
Using the SVD decomposition to solve the least squares
problem gives the M first coefficients of x projection on the
(vi)i=1, M as ai = bi/mi.
[76] The singular values spectrum of the observation

matrix H is shown in descending order in Figure A1.
Mostly due to the atmospheric mixing (no place is
perfectly isolated from CO emissions) and also due to
the precision of the computation, none of the singular
values mi is zero. The order of magnitude of the singular
values of H depends on the units chosen for x and y, it is
therefore the ratio between its largest and smallest singular
values which reflects the conditioning of the least square
problem. The first and last singular values in Figure A1
differ by 5 orders of magnitude. The closer to 1 the ratio
is, however, the better the conditioning is. Let xo be the
solution of the system when H and y are perfectly known
(i.e., when there are no observation or model errors). If
now, H and y are slightly perturbed, the solution of the
new system will stay close to xo as long as the condition-
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ing number is close to 1. In the present study, the
conditioning number of H is about 105, which is high.
The existence of very small singular values is related to
two factors. First of all, given the coverage of the present
surface network, some sources (Africa, South America)
have very little impact on the observed CO mixing ratios
at the stations. The observations cannot constrain such
sources. Second, the different linear combinations of
sources can add up to the same total contribution at the
stations. Then the sum of these sources is well constrained
yet the partition between the sources is not. These two
cases are reflected by the smallest singular values in the
SVD spectrum of the observation matrix H. In such a
case, any perturbation/error in the matrix H and/or in the
observations vector can lead to a very different solution for
the CO surface fluxes. When the conditioning number of a
matrix is too big, it is better to truncate the spectrum
(mi)i=1,Nx and limit the problem to the optimization of a
subset of parameters. To improve the conditioning number,
fluxes can also be aggregated. In the present study, H was
not truncated. The SVD of H gives some insight into the
system properties, yet the SVD was not used, here, to
compute the optimum surface fluxes. The conjunction of
prior and theoretical information has been chosen because
it ensures ‘‘realistic’’ and unique results for the solution.

Appendix B: Impact of Adding a Modeling Error
to the Measurement Error in the Inversion Scheme

[77] At each station and for each month, the modeling
error was taken to be half of the absolute difference between
the monthly mean observed and simulated CO mixing
ratios. With the modeling errors added to the observation
errors, the global surface emission of CO is 1525 TgCO/yr
to be compared with the 1640 TgCO/yr obtained without
the modeling errors. Two thirds of the difference are due to
smaller technological and biomass burning emissions in
Asia. Consequently, 25% of the increase obtained during
the inversion may be due to modeling errors. In future

studies, these errors will be further analyzed and taken into
account.

Appendix C: Interpretation of the Analytical
Expression of the Solution to the Minimization
Problem

[78] The vector of a posteriori surface fluxes can be
deduced in an analytical way from the statistics assumed
for the problem. The two expressions below are equivalent
[see Tarantola, 1987, pp. 70 and 158]:

xa ¼ xb þ HTR�1Hþ P�1
b

� ��1
HTR�1 y� h xb

� �� �

Pa ¼ HTR�1Hþ P�1
b

� ��1 ðC1Þ

xa ¼ xb þ PbH
T HPbH

T þ R
� ��1

y� h xb
� �� �

Pa ¼ Pb � PbH
T HPbH

T þ R
� ��1

HPb ðC2Þ

[79] Writing the contribution of a particular residual �yk
to the change in a source xi helps understand what drives the
scheme towards the optimal solution (refer to equation (C2)
above):

xai � xbi ¼ HTR�1Hþ Pb�1
� ��1

HTR�1

 �

i; kð Þ y� h xb
� �� �

k

¼ Pb
ii

X468
j¼1

HjiðP�1Þjk�yk :

The monthly residuals at each station are correlated with
each other and with the residuals at other stations as the
‘‘covariance’’ matrix P = [HPbHT + R] expresses it:

Pij ¼
X396
l¼1

Pb
ll

� �2
HilHjl þ dijRii:

The multiplication of �ykk by P�1 projects the residual k
into normalized errors at all stations. The multiplication by

Figure A1. Singular value spectrum of the observation matrix H.
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H then projects from the residuals space into the surface
emissions space and the multiplication by Pb transforms the
normalized error on the emissions into the ‘‘final’’ change in
the emissions.
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