Researcher Portfolio

 
   

Ott, U.

Biogeochemistry, Max Planck Institute for Chemistry, Max Planck Society, Cosmochemistry, Max Planck Institute for Chemistry, Max Planck Society, Geochemistry, Max Planck Institute for Chemistry, Max Planck Society  

 

Researcher Profile

 
Position: Geochemistry, Max Planck Institute for Chemistry, Max Planck Society
Position: Biogeochemistry, Max Planck Institute for Chemistry, Max Planck Society
Position: Cosmochemistry, Max Planck Institute for Chemistry, Max Planck Society
Researcher ID: https://pure.mpg.de/cone/persons/resource/persons101167

External references

 

Publications

 
 
 : Budhathoki, K., Boley, M., & Vreeken, J. (2021). Discovering Reliable Causal Rules. In C. Demeniconi, & I. Davidson (Eds.), Proceedings of the SIAM International Conference on Data Mining (pp. 1-9). Philadelphis, PA: SIAM. doi:10.1137/1.9781611976700.1. [PubMan] : Mandros, P., Boley, M., & Vreeken, J. (2020). Discovering Dependencies with Reliable Mutual Information. Knowledge and Information Systems, 62, 4223-4253. doi:10.1007/s10115-020-01494-9. [PubMan] : Sutton, C., Boley, M., Ghiringhelli, L., Rupp, M., Vreeken, J., & Scheffler, M. (2020). Identifying Domains of Applicability of Machine Learning Models for Materials Science. Nature Communications, 11: 4428. doi:10.1038/s41467-020-17112-9. [PubMan] : Mandros, P., Boley, M., & Vreeken, J. (2019). Discovering Reliable Dependencies from Data: Hardness and Improved Algorithms. In S. Krais (Ed.), Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (pp. 6206-6210). IJCAI. doi:10.24963/ijcai.2019/864. [PubMan] : Mandros, P., Boley, M., & Vreeken, J. (2019). Discovering Reliable Correlations in Categorical Data. In 19th IEEE International Conference on Data Mining (pp. 1252-1257). Piscataway, NJ: IEEE. doi: 10.1109/ICDM.2019.00156. [PubMan] : Mandros, P., Boley, M., & Vreeken, J. (2019). Discovering Reliable Correlations in Categorical Data. Retrieved from http://arxiv.org/abs/1908.11682. [PubMan] : Kalofolias, J., Boley, M., & Vreeken, J. (2019). Discovering Robustly Connected Subgraphs with Simple Descriptions. In 19th IEEE International Conference on Data Mining (pp. 1150-1155). Piscataway, NJ: IEEE. doi:10.1109/ICDM.2019.00139. [PubMan] : Mandros, P., Boley, M., & Vreeken, J. (2018). Discovering Reliable Dependencies from Data: Hardness and Improved Algorithms. In IEEE International Conference on Data Mining (pp. 317-326). Piscataway, NJ: IEEE. doi:10.1109/ICDM.2018.00047. [PubMan] : Budhathoki, K., Boley, M., & Vreeken, J. (2018). Rule Discovery for Exploratory Causal Reasoning. In Proceedings of the NeurIPS 2018 workshop on Causal Learning. Retrieved from https://drive.google.com/file/d/1r-KTsok3VLIz-wUh0YtsK5YaEu53DcTf/view. [PubMan] : Mandros, P., Boley, M., & Vreeken, J. (2018). Discovering Reliable Dependencies from Data: Hardness and Improved Algorithms. Retrieved from http://arxiv.org/abs/1809.05467. [PubMan] : Boley, M., Goldsmith, B. R., Ghiringhelli, L. M., & Vreeken, J. (2017). Identifying Consistent Statements about Numerical Data with Dispersion-Corrected Subgroup Discovery. Data Mining and Knowledge Discovery, 31(5), 1391-1418. doi:10.1007/s10618-017-0520-3. [PubMan] : Goldsmith, B., Boley, M., Vreeken, J., Scheffler, M., & Ghiringhelli, L. M. (2017). Uncovering structure-property relationships of materials by subgroup discovery. New Journal of Physics, 19(1): 013031. doi:10.1088/1367-2630/aa57c2. [PubMan] : Mandros, P., Boley, M., & Vreeken, J. (2017). Discovering Reliable Approximate Functional Dependencies. Retrieved from http://arxiv.org/abs/1705.09391. [PubMan] : Boley, M., Goldsmith, B. R., Ghiringhelli, L. M., & Vreeken, J. (2017). Identifying Consistent Statements about Numerical Data with Dispersion-Corrected Subgroup Discovery. Retrieved from http://arxiv.org/abs/1701.07696. [PubMan] : Kalofolias, J., Boley, M., & Vreeken, J. (2017). Efficiently Discovering Locally Exceptional yet Globally Representative Subgroups. Retrieved from http://arxiv.org/abs/1709.07941. [PubMan] : Mandros, P., Boley, M., & Vreeken, J. (2017). Discovering Reliable Approximate Functional Dependencies. In KDD '17 Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 355-363). [PubMan] : Kamp, M., Boley, M., Missura, O., & Gärtner, T. (2017). Effective Parallelisation for Machine Learning. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in Neural Information Processing Systems 30 (pp. 6477-6488). Curran Associates. [PubMan] : Kalofolias, J., Boley, M., & Vreeken, J. (2017). Efficiently Discovering Locally Exceptional Yet Globally Representative Subgroups. In 17th IEEE International Conference on Data Mining (pp. 197-206). Piscataway, NJ: IEEE. doi:10.1109/ICDM.2017.29. [PubMan] : Goldsmith, B., Boley, M., Vreeken, J., Scheffler, M., & Ghiringhelli, L. (2017). Uncovering Structure-property Relationships of Materials by Subgroup Discovery. New Journal of Physics, 19(1): 013031. doi:10.1088/1367-2630/aa57c2. [PubMan] : Mandros, P., Boley, M., & Vreeken, J. (2017). Discovering Reliable Approximate Functional Dependencies. In KDD'17 (pp. 355-363). New York, NY: ACM. doi:10.1145/3097983.3098062. [PubMan] : Boley, M. (2018). Subgroup Discovery in Materials Science. Talk presented at NOMAD Summer - A hands-on course on tools for novel-materials discovery, CECAM. Lausanne, Switzerland. 2018-09. [PubMan] : Boley, M. (2017). Subgroup Discovery. Talk presented at NOMAD Summer - A hands-on course on tools for novel materials discovery. Berlin, Germany. 2017-09. [PubMan]