Researcher Portfolio

 
   

Elgeti, Stefan

Material Research (MF), Max Planck Institute for Plasma Physics, Max Planck Society, Plasma Edge and Wall (E2M), Max Planck Institute for Plasma Physics, Max Planck Society, Surface Science (OP), Max Planck Institute for Plasma Physics, Max Planck Society  

 

Researcher Profile

 
Position: Plasma Edge and Wall (E2M), Max Planck Institute for Plasma Physics, Max Planck Society
Position: Material Research (MF), Max Planck Institute for Plasma Physics, Max Planck Society
Position: Surface Science (OP), Max Planck Institute for Plasma Physics, Max Planck Society
Researcher ID: https://pure.mpg.de/cone/persons/resource/persons109813

External references

 

Publications

 
 
 : Tyranowski, T. (2024). Data-driven structure-preserving model reduction for stochastic Hamiltonian systems. Journal of Computational Dynamics, 11(2), 220-255. doi:10.3934/jcd.2024010. [PubMan] : Raiessi Toussi, S. A., Maj, O., & Tyranowski, T. (2025). A Stochastic Variational Principle for a Two-Fluid Model Arising in Fusion Plasma Physics. Talk presented at DPG-Frühjahrstagung der Sektion Materie und Kosmos (SMuK). Göttingen. 2025-03-31 - 2025-04-04. [PubMan] : Tyranowski, T. M., & Kraus, M. (2023). Symplectic model reduction methods for the Vlasov equation. Contributions to Plasma Physics, 63(5-6): e202200046. doi:10.1002/ctpp.202200046. [PubMan] : Raiessi Toussi, S. A., Maj, O., & Tyranowski, T. (2023). Quasi-Neutral Multi-Fluid Models: A Variational Principle and Numerical Methods. Poster presented at 86. Jahrestagung der DPG und DPG-Frühjahrstagung der Sektion Materie und Kosmos (SMuK), Dresden. [PubMan] : Kraus, M., & Tyranowski, T. (2021). Variational integrators for stochastic dissipative Hamiltonian systems. IMA Journal of Numerical Analysis, 41(2), 1318-1367. doi:10.1093/imanum/draa022. [PubMan] : Tyranowski, T. (2020). Stochastic variational integrators for collisional Vlasov equations. Talk presented at Numerical Methods for the Kinetic Equations of Plasma Physics (NumKin 2020) (Virtual). Garching. 2020-10-19 - 2020-10-23. [PubMan] : Tyranowski, T. (2021). Stochastic variational principles for the collisional Vlasov-Maxwell and Vlasov-Poisson equations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 477(2233): 20210167. doi:10.1098/rspa.2021.0167. [PubMan] : Kraus, M., & Tyranowski, T. (2019). Variational integrators for stochastic dissipative Hamiltonian systems. Talk presented at International Congress on Industrial and Applied Mathematics (ICIAM 2019). Valencia. 2019-07-15 - 2019-07-19. [PubMan] : Tyranowski, T. (2020). Applied Introduction to Differential Geometry. Seminar (SS 2020). Technische Universität München. [PubMan] : Tyranowski, T. M., & Desbrun, M. (2019). Variational Partitioned Runge-Kutta Methods for Lagrangians Linear in Velocities. Mathematics, 7(9): 861. doi:10.3390/math7090861. [PubMan] : Tyranowski, T. M., & Desbrun, M. (2019). R-Adaptive Multisymplectic and Variational Integrators. Mathematics, 7(7): 642. doi:10.3390/math7070642. [PubMan] : Tyranowski, T. (2019). Applied Introduction to Differential Geometry. Seminar (SS 2019). Technische Universität München. [PubMan] : Holm, D. D., & Tyranowski, T. M. (2018). New variational and multisymplectic formulations of the Euler-Poincaré equation on the Virasoro-Bott group using the inverse map. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 474(2213): 20180052. doi:10.1098/rspa.2018.0052. [PubMan] : Holm, D. D., & Tyranowski, T. M. (2018). Stochastic discrete Hamiltonian variational integrators. BIT Numerical Mathematics, 58, 1009-1048. doi:10.1007/s10543-018-0720-2. [PubMan]