Researcher Portfolio
Svensson, Jakob
Stellarator Dynamics and Transport (E5), Max Planck Institute for Plasma Physics, Max Planck Society, Stellarator Optimisation (E3), Max Planck Institute for Plasma Physics, Max Planck Society, Stellarator Scenario Development (E5), Max Planck Institute for Plasma Physics, Max Planck Society, W7-X: Heating and CoDaC (HC), Max Planck Institute for Plasma Physics, Max Planck Society, W7-X: Physics (PH), Max Planck Institute for Plasma Physics, Max Planck Society
Researcher Profile
Position: Stellarator Scenario Development (E5), Max Planck Institute for Plasma Physics, Max Planck Society
Position: Stellarator Optimisation (E3), Max Planck Institute for Plasma Physics, Max Planck Society
Position: W7-X: Physics (PH), Max Planck Institute for Plasma Physics, Max Planck Society
Position: W7-X: Heating and CoDaC (HC), Max Planck Institute for Plasma Physics, Max Planck Society
Position: Stellarator Dynamics and Transport (E5), Max Planck Institute for Plasma Physics, Max Planck Society
Researcher ID: https://pure.mpg.de/cone/persons/resource/persons110611
Publications
: Strachan, J., Leidecker, O., Spanos, C., Le Coz, C., Chapman, E., Arsenijevic, A., Zhang, H., Zhao, N., Spoel, S. H., & Bayne, E. H. (2023). SUMOylation regulates Lem2 function in centromere clustering and silencing. Journal of Cell Science. doi:10.1242/jcs.260868. [PubMan] : Ratz, L., Brambillasca, C., Bartke, L., Huetzen, M. A., Goergens, J., Leidecker, O., Jachimowicz, R. D., van de Ven, M., Proost, N., Siteur, B., de Korte-Grimmerink, R., Bouwman, P., Pulver, E. M., de Bruijn, R., Isensee, J., Hucho, T., Pandey, G., van Lohuizen, M., Mallmann, P., Reinhardt, H. C., Jonkers, J., & Puppe, J. (2022). Combined inhibition of EZH2 and ATM is synthetic lethal in BRCA1-deficient breast cancer. Breast Cancer Res, 24(1), 41. doi:10.1186/s13058-022-01534-y. [PubMan] : Bonfiglio, J. J., Leidecker, O., Dauben, H., Longarini, E. J., Colby, T., San Segundo-Acosta, P., Perez, K. A., & Matic, I. (2020). An HPF1/PARP1-Based Chemical Biology Strategy for Exploring ADP-Ribosylation. Cell, 183(4), 1086-1102 e23. doi:10.1016/j.cell.2020.09.055. [PubMan] : Palazzo, L., Leidecker, O., Prokhorova, E., Dauben, H., Matić, I., & Ahel, I. (2018). Serine is the major residue for ADP-ribosylation upon DNA damage. Elife, 7. doi:10.7554/eLife.34334. [PubMan] : Leidecker, O., Bonfiglio, J. J., Colby, T., Zhang, Q., Atanassov, I., Zaja, R., Palazzo, L., Stockum, A., Ahel, I., & Matić, I. (2016). Serine is a new target residue for endogenous ADP-ribosylation on histones. Nat Chem Biol, 12(12), 998-1000. doi:10.1038/nchembio.2180. [PubMan] : Rack, J. G., Morra, R., Barkauskaite, E., Kraehenbuehl, R., Ariza, A., Qu, Y., Ortmayer, M., Leidecker, O., Cameron, D. R., Matić, I., Peleg, A. Y., Leys, D., Traven, A., & Ahel, I. (2015). Identification of a Class of Protein ADP-Ribosylating Sirtuins in Microbial Pathogens. Mol Cell, 59(2), 309-20. doi:10.1016/j.molcel.2015.06.013. [PubMan] : Palazzo, L., Thomas, B., Jemth, A. S., Colby, T., Leidecker, O., Feijs, K. L., Zaja, R., Loseva, O., Puigvert, J. C., Matić, I., Helleday, T., & Ahel, I. (2015). Processing of protein ADP-ribosylation by Nudix hydrolases. Biochem J, 468(2), 293-301. doi:10.1042/BJ20141554. [PubMan] : Leidecker, O., Matić, I., Mahata, B., Pion, E., & Xirodimas, D. P. (2012). The ubiquitin E1 enzyme Ube1 mediates NEDD8 activation under diverse stress conditions. Cell Cycle, 11(6), 1142-50. doi:10.4161/cc.11.6.19559. [PubMan]