Researcher Portfolio
Prabu, Jesuraj Rajan
Conti, Elena / Structural Cell Biology, Max Planck Institute of Biochemistry, Max Planck Society, Schulman, Brenda / Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Max Planck Society
Researcher Profile
Position: Conti, Elena / Structural Cell Biology, Max Planck Institute of Biochemistry, Max Planck Society
Position: Schulman, Brenda / Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Max Planck Society
Researcher ID: https://pure.mpg.de/cone/persons/resource/persons131140
External references
WorldCat
Search for Prabu, Jesuraj Rajan
Google Scholar
Search for Prabu, Jesuraj Rajan
Publications
: Horn-Ghetko, D., Hopf, L. V. M., Tripathi-Giesgen, I., Du, J., Kostrhon, S., Tung Vu, D., Beier, V., Steigenberger, B., Prabu, J. R., Stier, L., Bruss, E. M., Mann, M., Xiong, Y., & Schulman, B. A. (2024). Noncanonical assembly, neddylation and chimeric cullin-RING/RBR ubiquitylation by the 1.8 MDa CUL9 E3 ligase complex. Nature Structural & Molecular Biology, 31(7), 1083-1094. doi:10.1038/s41594-024-01257-y. [PubMan] : Li, J., Purser, N., Liwocha, J., Scott, D. C., Byers, H. A., Steigenberger, B., Hill, S., Tripathi-Giesgen, I., Hinkle, T., Hansen, F. M., Prabu, J. R., Radhakrishnan, S. K., Kirkpatrick, D. S., Reichermeier, K. M., Schulman, B. A., & Kleiger, G. (2024). Cullin-RING ligases employ geometrically optimized catalytic partners for substrate targeting. Molecular Cell, 84(7), 1304-1320. doi:10.1016/j.molcel.2024.01.022. [PubMan] : Liwocha, J., Li, J., Purser, N., Rattanasopa, C., Maiwald, S., Krist, D. T., Scott, D. C., Steigenberger, B., Prabu, J. R., Schulman, B. A., & Kleiger, G. (2024). Mechanism of millisecond Lys48-linked poly-ubiquitin chain formation by cullin-RING ligases. Nature Structural & Molecular Biology, 31(2), 378-389. doi:10.1038/s41594-023-01206-1. [PubMan] : Hehl, L. A., Horn-Ghetko, D., Prabu, J. R., Vollrath, R., Tung Vu, D., Pérez Berrocal, D. A., Mulder, M. P. C., van der Heden van Noort, G. J., & Schulman, B. A. (2024). Structural snapshots along K48-linked ubiquitin chain formation by the HECT E3 UBR5. Nature Chemical Biology, 20, 190-200. doi:10.1038/s41589-023-01414-2. [PubMan] : Chrustowicz, J., Sherpa, D., Li, J., Langlois, C. R., Papadopoulou, E. C., Tung Vu, D., Hehl, L. A., Karayel, Ö., Beier, V., Gronau, S. v., Müller, J., Prabu, J. R., Mann, M., Kleiger, G., Alpi, A. F., & Schulman, B. A. (2024). Multisite phosphorylation dictates selective E2-E3 pairing as revealed by Ubc8/UBE2H-GID/CTLH assemblies. Molecular Cell, 84(2), 293-308. doi:10.1016/j.molcel.2023.11.027. [PubMan] : Wallace, I., Baek, K., Prabu, J. R., Vollrath, R., von Gronau, S., Schulman, B. A., & Swatek, K. N. (2023). Insights into the ISG15 transfer cascade by the UBE1L activating enzyme. Nature Communications, 14(1): 7970. doi:10.1038/s41467-023-43711-3. [PubMan] : Chrustowicz, J., Sherpa, D., Teyra, J., Loke, M. S., Popowicz, G. M., Basquin, J., Sattler, M., Prabu, J. R., Sidhu, S. S., & Schulman, B. (2022). Multifaceted N-Degron Recognition and Ubiquitylation by GID/CTLH E3 Ligases. Journal of Molecular Biology, 434(2): 167347. doi:10.1016/j.jmb.2021.167347. [PubMan] : Ferguson, C. J., Urso, O., Bodrug, T., Gassaway, B. M., Watson, E. R., Prabu, J. R., Lara-Gonzalez, P., Martinez-Chacin, R. C., Wu, D. Y., Brigatti, K. W., Puffenberger, E. G., Taylor, C. M., Haas-Givler, B., Jinks, R. N., Strauss, K. A., Desai, A., Gabel, H. W., Gygi, S. P., Schulman, B. A., Brown, N. G., & Bonni, A. (2022). APC7 mediates ubiquitin signaling in constitutive heterochromatin in the developing mammalian brain. Molecular Cell, 82(1), 90-105. doi:10.1016/j.molcel.2021.11.031. [PubMan] : Horn-Ghetko, D., Krist, D. T., Prabu, J. R., Baek, K., Mulder, M. P. C., Kluegel, M., Scott, D. C., Ovaa, H., Kleiger, G., & Schulman, B. (2021). Ubiquitin ligation to F-box protein targets by SCF–RBR E3–E3 super-assembly. Nature, 590(7847), 671-676. doi:10.1038/s41586-021-03197-9. [PubMan] : Sherpa, D., Chrustowicz, J., Qiao, S., Langlois, C. R., Hehl, L. A., Gottemukkala, K. V., Hansen, F. M., Karayel, O., von Gronau, S., Prabu, J. R., Mann, M., Alpi, A. F., & Schulman, B. A. (2021). GID E3 ligase supramolecular chelate assembly configures multipronged ubiquitin targeting of an oligomeric metabolic enzyme. Molecular Cell, 81(11), 2445-2459.e13. doi:10.1016/j.molcel.2021.03.025. [PubMan] : Kostrhon, S., Prabu, J. R., Baek, K., Horn-Ghetko, D., Gronau, S. v., Klügel, M., Basquin, J., Alpi, A. F., & Schulman, B. A. (2021). CUL5-ARIH2 E3-E3 ubiquitin ligase structure reveals cullin-specific NEDD8 activation. Nature Chemical Biology, 17(10), 1075-1083. doi:10.1038/s41589-021-00858-8. [PubMan] : Miller-Vedam, L. E., Bräuning, B., Popova, K. D., Oakdale, N. T. S., Bonnar, J. L., Prabu, J. R., Boydston, E. A., Sevillano, N., Shurtleff, M. J., Stroud, R. M., Craik, C. S., Schulman, B. A., Frost, A., & Weissman, J. S. (2020). Structural and mechanistic basis of the EMC-dependent biogenesis of distinct transmembrane clients. eLife, 9: e62611. doi:10.7554/eLife.62611. [PubMan] : Oh, E., Mark, K. G., Mocciaro, A., Watson, E. R., Prabu, J. R., Cha, D. D., Kampmann, M., Gamarra, N., Zhou, C. Y., & Rape, M. (2020). Gene expression and cell identity controlled by anaphase-promoting complex. Nature, 579, 136-140. doi:10.1038/s41586-020-2034-1. [PubMan] : Baek, K., Krist, D. T., Prabu, J. R., Hill, S., Klügel, M., Neumaier, L.-M., von Gronau, S., Kleiger, G., & Schulman, B. A. (2020). NEDD8 nucleates a multivalent cullin-RING-UBE2D ubiquitin ligation assembly. Nature, 578, 461-466. doi:10.1038/s41586-020-2000-y. [PubMan] : Schuller, S. K., Schuller, J. M., Prabu, J. R., Baumgärtner, M., Bonneau, F., Basquin, J., & Conti, E. (2020). Structural insights into the nucleic acid remodeling mechanisms of the yeast THO-Sub2 complex. eLife, 9: e61467. doi:10.7554/eLife.61467. [PubMan] : Qiao, S., Langlois, C. R., Chrustowicz, J., Sherpa, D., Karayel, O., Hansen, F. M., Beier, V., von Gronau, S., Bollschweiler, D., Schäfer, T., Alpi, A. F., Mann, M., Prabu, J. R., & Schulman, B. (2020). Interconversion between Anticipatory and Active GID E3 Ubiquitin Ligase Conformations via Metabolically Driven Substrate Receptor Assembly. MOLECULAR CELL, 77(1), 150-163.e9. doi:10.1016/j.molcel.2019.10.009. [PubMan] : Watson, E. R., Grace, C. R. R., Zhang, W., Miller, D. J., Davidson, I. F., Prabu, J. R., Yu, S., Bolhuis, D. L., Kulko, E. T., Vollrath, R., Haselbach, D., Stark, H., Peters, J.-M., Brown, N. G., Sidhu, S. S., & Schulman, B. A. (2019). Protein engineering of a ubiquitin-variant inhibitor of APC/C identifies a cryptic K48 ubiquitin chain binding site. Proceedings of the National Academy of Sciences of the United States of America, 116(35), 17280-17289. doi:10.1073/pnas.1902889116. [PubMan] : Ozgur, S., Buchwald, G., Falk, S., Chakrabarti, S., Prabu, J. R., & Conti, E. (2015). The conformational plasticity of eukaryotic RNA-dependent ATPases. The FEBS Journal, 282(5), 850-863. doi:10.1111/febs.13198. [PubMan] : Prabu, J. R., Müller, M., Thomae, A. W., Schüssler, S., Bonneau, F., Becker, P. B., & Conti, E. (2015). Structure of the RNA Helicase MLE Reveals the Molecular Mechanisms for Uridine Specificity and RNA-ATP Coupling. MOLECULAR CELL, 60(3), 487-499. doi:10.1016/j.molcel.2015.10.011. [PubMan] : Schmalen, I., Reischl, S., Wallach, T., Klemz, R., Grudziecki, A., Prabu, J. R., Benda, C., Kramer, A., & Wolf, E. (2014). Interaction of Circadian Clock Proteins CRY1 and PER2 Is Modulated by Zinc Binding and Disulfide Bond Formation. CELL, 157(5), 1203-1215. doi:10.1016/j.cell.2014.03.057. [PubMan]