Researcher Portfolio
Ochoukov, Roman
Tokamak Scenario Development (E1), Max Planck Institute for Plasma Physics, Max Planck Society
Researcher Profile
Position: Tokamak Scenario Development (E1), Max Planck Institute for Plasma Physics, Max Planck Society
Additional IDs: ORCID:
https://orcid.org/0000-0002-5936-113X
Researcher ID: https://pure.mpg.de/cone/persons/resource/persons132282
Publications
: Alipour, A., Reese, S., Svendsen, B., & Wulfinghoff, S. (2020). A grain boundary model considering the grain misorientation within a geometrically nonlinear gradient-extended crystal viscoplasticity theory. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 476(2235): 20190581. doi:10.1098/rspa.2019.0581. [PubMan] : Kochmann, J., Brepols, T., Wulfinghoff, S., Svendsen, B., & Reese, S. (2020). On the computation of the exact overall consistent algorithmic tangent moduli for non-linear finite strain homogenization problems using six finite perturbations. In Proceedings of the 6th European Conference on Computational Mechanics (ECCM6) and 7th European Conference on Computational Fluid Dynamics (ECFD7) (pp. 1938-1949). [PubMan] : Kochmann, J., Manjunatha, K., Gierden, C., Wulfinghoff, S., Svendsen, B., & Reese, S. (2019). A simple and flexible model order reduction method for FFT-based homogenization problems using a sparse sampling technique. Computer Methods in Applied Mechanics and Engineering, 347, 622-638. doi:10.1016/j.cma.2018.11.032. [PubMan] : Rezaei, S., Jaworek, D., Mianroodi, J. R., Wulfinghoff, S., & Reese, S. (2019). Atomistically motivated interface model to account for coupled plasticity and damage at grain boundaries. Journal of the Mechanics and Physics of Solids, 124, 325-349. doi:10.1016/j.jmps.2018.10.015. [PubMan] : Rezaei, S., Mianroodi, J. R., Brepols, T., Wulfinghoff, S., & Reese, S. (2019). An interface model to account for damage and plasticity at grain boundaries. Proceedings of Applied Mathematics and Mechanics, Special Issue: 90th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), 19(1): e201900214. doi:10.1002/pamm.201900214. [PubMan] : Kochmann, J., Wulfinghoff, S., Ehle, L., Mayer, J., & Svendsen, B. (2018). Efficient and accurate two-scale FE-FFT-based prediction of the effective material behavior of elasto-viscoplastic polycrystals. Computational Mechanics, 61, 751-764. doi:10.1007/s00466-017-1476-2. [PubMan] : Alipour, A., Wulfinghoff, S., Bayat, H. R., Reese, S., & Svendsen, B. (2018). The concept of control points in hybrid discontinuous Galerkin methods—Application to geometrically nonlinear crystal plasticity. International Journal for Numerical Methods in Engineering, 114(5), 557-579. doi:10.1002/nme.5754. [PubMan] : Kochmann, J., Ehle, L., Wulfinghoff, S., Mayer, J., Svendsen, B., & Reese, S. (2018). Efficient multiscale FE-FFT-based modeling and simulation of macroscopic deformation processes with non-linear heterogeneous microstructures. In P. Wriggers, O. Allix, & J. Soric (Eds. ), Lecture Notes in Applied and Computational Mechanics (pp. 129-146). Springer Verlag. doi:10.1007/978-3-319-65463-8_7. [PubMan] : Kochmann, J., Wulfinghoff, S., Svendsen, B., & Reese, S. (2017). Efficient and accurate two-scale simulation of non-linear heterogeneous microstructures. In Proceeding in Applied Mathematics and Mechanics PAMM (pp. 803-804). [PubMan] : Kochmann, J., Ehle, L., Wulfinghoff, S., Svendsen, B., & Reese, S. (2016). Linking macroscopic deformation processes to microstructure evolution using an FE-FFT-based micro-macro transition and non-conserved phase-fields. In Proceedings of Applied Mathematics and Mechanics (Special Issue) (pp. 535-536). [PubMan] : Kochmann, J., Ehle, L., Wulfinghoff, S., Svendsen, B., & Reese, S. (2016). Multiscale FE-FFT-based analysis of macroscopic material behavior and microstructural modifications in polycrystalline materials. Talk presented at Special Workshop Multiscale modeling of Heterogeneous Structures. Dubrovnik, Croatia. 2016-09-21 - 2016-09-23. [PubMan] : Kochmann, J., Wulfinghoff, S., Reese, S., & Svendsen, B. (2016). A multiscale FE-FFT-and phase-field-based computational approach to predict the structural and local response of polycrystalline materials. Talk presented at European Mechanics of Materials Conference. Brussels, Belgium. 2016-09-07 - 2016-09-09. [PubMan] : Reese, S., Kochmann, J., Mianroodi, J. R., Wulfinghoff, S., & Svendsen, B. (2016). Two-scale FE-FFT phase-field-based computational modeling of bulk microstructural evolution and nanolaminates. Talk presented at 12th World Congress on Computational Mechanics. Seoul, South Korea. 2016-07-24 - 2016-07-29. [PubMan] : Kochmann, J., Wulfinghoff, S., Reese, S., Mianroodi, J. R., & Svendsen, B. (2016). Two-scale FE–FFT- and phase-field-based computational modeling of bulk microstructural evolution and macroscopic material behavior. Computer Methods in Applied Mechanics and Engineering, 305, 89-110. doi:10.1016/j.cma.2016.03.001. [PubMan] : Ziemann, M., Chen, Y., Wulfinghoff, S., Kirchlechner, C., Tamura, N., Böhlke, T., Walter, M. H., & Gruber, P. A. (2015). Deformation patterns in cross-sections of twisted bamboo-structured Au microwires. Acta Materialia, 97: 12194, pp. 216-222. doi:10.1016/j.actamat.2015.06.012. [PubMan]