Researcher Portfolio

 
   

Skopos, Charalampos

Max Planck Institute for the Physics of Complex Systems, Max Planck Society  

 

Researcher Profile

 
Position: Max Planck Institute for the Physics of Complex Systems, Max Planck Society
Researcher ID: https://pure.mpg.de/cone/persons/resource/persons184972

External references

 

Publications

 
 
 : Danieli, C., Manda, B. M., Mithun, T., & Skopos, C. (2019). Computational efficiency of numerical integration methods for the tangent dynamics of many-body Hamiltonian systems in one and two spatial dimensions. Mathematics in Engineering, 1(3), 447-488. doi:10.3934/mine.2019.3.447. [PubMan] : Ngapasare, A., Theocharis, G., Richoux, O., Skopos, C., & Achilleos, V. (2019). Chaos and Anderson localization in disordered classical chains: Hertzian versus Fermi-Pasta-Ulam-Tsingou models. Physical Review E, 99(3): 032211. doi:10.1103/PhysRevE.99.032211. [PubMan] : Hillebrand, M., Kalosakas, G., Schwellnus, A., & Skopos, C. (2019). Heterogeneity and chaos in the Peyrard-Bishop-Dauxois DNA model. Physical Review E, 99(2): 022213. doi:10.1103/PhysRevE.99.022213. [PubMan] : Senyange, B., Manda, B. M., & Skopos, C. (2018). Characteristics of chaos evolution in one-dimensional disordered nonlinear lattices. Physical Review E, 98(5): 052229. doi:10.1103/PhysRevE.98.052229. [PubMan] : Tieleman, O., Skokos, C., & Lazarides, A. (2014). Chaoticity without thermalisation in disordered lattices. EPL, 105(2): 20001. doi:10.1209/0295-5075/105/20001. [PubMan] : Gerlach, E., Eggl, S., & Skokos, C. (2012). Efficient Integration of the Variational Equations of Multidimensional Hamiltonian Systems: Application to the Fermi-Pasta-Ulam Lattice. International Journal of Bifurcation and Chaos, 22(9): 1250216. doi:10.1142/S0218127412502161. [PubMan] : Manos, T., Skokos, C., & Antonopoulos, C. (2012). Probing the Local Dynamics of Periodic Orbits by the Generalized Alignment Index (GALI) Method. International Journal of Bifurcation and Chaos, 22(9): 1250218. doi:10.1142/S0218127412502185. [PubMan] : Boreux, J., Carletti, T., Skokos, C., Papaphilippou, Y., & Vittot, M. (2012). Efficient control of accelerator maps. International Journal of Bifurcation and Chaos, 22(9): 1250219. doi:10.1142/S0218127412502197. [PubMan] : Boreux, J., Carletti, T., Skokos, C., & Vittot, M. (2012). Hamiltonian control used to improve the beam stability in particle accelerator models. Communications in Nonlinear Science and Numerical Simulation, 17(4), 1725-1738. doi:10.1016/j.cnsns.2011.09.037. [PubMan] : Bodyfelt, J. D., Laptyeva, T. V., Gligoric, G., Krimer, D. O., Skokos, C., & Flach, S. (2011). WAVE INTERACTIONS IN LOCALIZING MEDIA - A COIN WITH MANY FACES. International Journal of Bifurcation and Chaos, 21(8), 2107-2124. [PubMan] : Bodyfelt, J. D., Laptyeva, T. V., Skokos, C., Krimer, D. O., & Flach, S. (2011). Nonlinear waves in disordered chains: Probing the limits of chaos and spreading. Physical Review E, 84(1): 016205. [PubMan] : Skokos, C., & Gerlach, E. (2010). Numerical integration of variational equations. Physical Review E, 82(3): 036704. [PubMan] : Laptyeva, T. V., Bodyfelt, J. D., Krimer, D. O., Skokos, C., & Flach, S. (2010). The crossover from strong to weak chaos for nonlinear waves in disordered systems. EPL, 91(3): 30001. [PubMan] : Skokos, C., & Flach, S. (2010). Spreading of wave packets in disordered systems with tunable nonlinearity. Physical Review E, 82(1): 016208. [PubMan] : Skokos, C. (2010). The Lyapunov characteristic exponents and their computation. In J. Souchay, & R. Dvorak (Eds.), Dynamics of Small Solar System Bodies and Exoplanets (pp. 63-135). Berlin: Springer. [PubMan] : Skokos, C., Krimer, D. O., Komineas, S., & Flach, S. (2009). Delocalization of wave packets in disordered nonlinear chains. Physical Review E, 79(5): 056211. [PubMan] : Flach, S., Krimer, D. O., & Skokos, C. (2009). Universal Spreading of Wave Packets in Disordered Nonlinear Systems. Physical Review Letters, 102(2): 024101. [PubMan] : Flach, S., Krimer, D., & Skokos, C. (2009). Erratum: Universal spreading of wave packets in disordered nonlinear systems [Phys. Rev. Lett. 102, 024101 (2009)]. Physical Review Letters, 102(2): 209903. [PubMan] : Skokos, C., & Papaphilippou, Y. (2008). Non linear dynamics study of the CLIC damping rings using sympletic integrators. In Proceedings of EPAC08 (pp. 682-684). [PubMan]