Researcher Portfolio

 
   

Jiang, Yuanyuan

Max Planck Institute for Biological Cybernetics, Max Planck Society, Research Group Translational Neuroimaging and Neural Control, Max Planck Institute for Biological Cybernetics, Max Planck Society  

 

Researcher Profile

 
Position: Max Planck Institute for Biological Cybernetics, Max Planck Society
Position: Research Group Translational Neuroimaging and Neural Control, Max Planck Institute for Biological Cybernetics, Max Planck Society
Additional IDs: MPIKYB: yjiang
Researcher ID: https://pure.mpg.de/cone/persons/resource/persons214544

External references

 

Publications

 
  (1 - 25 of 35)
 : Akrami, H., Alon, N., Ray Chaudhury, B., Garg, J., Mehlhorn, K., & Mehta, R. (2024). EFX: A Simpler Approach and an (Almost) Optimal Guarantee via Rainbow Cycle Number. Operations Research, 1-14. doi:10.1287/opre.2023.0433. [PubMan] : Akrami, H., & Garg, J. (2024). Breaking the 3/4 Barrier for Approximate Maximin Share. In D. P. Woodruff (Ed.), Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 74-91). Philadelphia, PA: SIAM. doi:10.1137/1.9781611977912. [PubMan] : Ray Chaudhury, B., Garg, J., & Mehlhorn, K. (2024). EFX Exists for Three Agents. Journal of the ACM, 71(1): 4, pp. 1-27. doi:10.1145/3616009. [PubMan] : Akrami, H., Garg, J., Sharma, E., & Taki, S. (in press). Improving Approximation Guarantees for Maximin Share. In EC '24. New York, NY: ACM. [PubMan] : Akrami, H., Ray Chaudhury, B., Garg, J., Mehlhorn, K., & Mehta, R. (2023). Fair and Efficient Allocation of Indivisible Chores with Surplus. In E. Elkind (Ed.), Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (pp. 2494-2502). IJCAI. doi:10.24963/ijcai.2023/277. [PubMan] : Akrami, H., Garg, J., Sharma, E., & Taki, S. (2023). Simplification and Improvement of MMS Approximation. In E. Elkind (Ed.), Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (pp. 2485-2493). IJCAI. doi:10.24963/ijcai.2023/276. [PubMan] : Garg, J., Hoefer, M., & Mehlhorn, K. (2023). Satiation in Fisher Markets and Approximation of Nash Social Welfare. Mathematics of Operations Research. doi:10.1287/moor.2019.0129. [PubMan] : Ray Chaudhury, B., Garg, J., Mehlhorn, K., Mehta, R., & Misra, P. (2023). Improving EFX Guarantees through Rainbow Cycle Number. Mathematics of Operations Research. doi:10.1287/moor.2021.0252. [PubMan] : Akrami, H., Alon, N., Ray Chaudhury, B., Garg, J., Mehlhorn, K., & Mehta, R. (2023). EFX: A Simpler Approach and an (Almost) Optimal Guarantee via Rainbow Cycle Number. In EC 2023 (pp. 61-61). New York, NY: ACM. [PubMan] : Ray Chaudhury, B., Cheung, Y. K., Garg, J., Garg, N., Hoefer, M., & Mehlhorn, K. (2022). Fair Division of Indivisible Goods for a Class of Concave Valuations. Journal of Artificial Intelligence Research, 74, 111-142. doi:10.1613/jair.1.12911. [PubMan] : Akrami, H., Alon, N., Ray Chaudhury, B., Garg, J., Mehlhorn, K., & Mehta, R. (2022). EFX Allocations: Simplifications and Improvements. Retrieved from https://arxiv.org/abs/2205.07638. [PubMan] : Ray Chaudhury, B., Garg, J., McGlaughlin, P., & Mehta, R. (2021). Competitive Allocation of a Mixed Manna. In D. Marx (Ed.), Proceedings of the Thirty-Second ACM-SIAM Symposium on Discrete Algorithms (pp. 1405-1424). Philadelphia, PA: SIAM. doi:10.1137/1.9781611976465.85. [PubMan] : Ray Chaudhury, B., Garg, J., Mehlhorn, K., Mehta, R., & Misra, P. (2021). Improving EFX Guarantees through Rainbow Cycle Number. Retrieved from https://arxiv.org/abs/2103.01628. [PubMan] : Chaudhury, B. R., Garg, J., Mehlhorn, K., Mehta, R., & Misra, P. (2021). Improving EFX Guarantees through Rainbow Cycle Number. In P. Biró, S. Chawla, F. Echenique, & E. Sodomka (Eds.), EC '21 (pp. 310-311). New York, NY: ACM. doi:10.1145/3465456.3467605. [PubMan] : Ray Chaudhury, B., Garg, J., & Mehta, R. (2021). Fair and Efficient Allocations under Subadditive Valuations. In AAAI Technical Track on Game Theory and Economic Paradigms (pp. 5269-5276). Palo Alto, CA: AAAI. Retrieved from https://ojs.aaai.org/index.php/AAAI/article/view/16665. [PubMan] : Ray Chaudhury, B., Garg, J., McGlaughlin, P., & Mehta, R. (2020). Competitive Allocation of a Mixed Manna. Retrieved from https://arxiv.org/abs/2008.02753. [PubMan] : Ray Chaudhury, B., Garg, J., & Mehlhorn, K. (2020). EFX exists for three agents. Retrieved from http://arxiv.org/abs/2002.05119. [PubMan] : Ray Chaudhury, B., Garg, J., & Mehta, R. (2020). Fair and Efficient Allocations under Subadditive Valuations. Retrieved from https://arxiv.org/abs/2005.06511. [PubMan] : Ray Chaudhury, B., Garg, J., & Mehlhorn, K. (2020). EFX Exists for Three Agents. In P. Biró, & J. Hartline (Eds.), EC '20 (pp. 1-19). New York, NY: ACM. doi:10.1145/3391403.3399511. [PubMan] : Bei, X., Garg, J., Hoefer, M., & Mehlhorn, K. (2019). Earning and Utility Limits in Fisher Markets. ACM Transactions on Economics and Computation, 7(2): 10. doi:10.1145/3340234. [PubMan] : Ray Chaudhury, B., Cheung, Y. K., Garg, J., Garg, N., Hoefer, M., & Mehlhorn, K. (2018). On Fair Division for Indivisible Items. In S. Ganguly, & P. Pandya (Eds.), 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (pp. 1-17). Wadern: Schloss Dagstuhl. doi:10.4230/LIPIcs.FSTTCS.2018.25. [PubMan] : Ray Chaudhury, B., Cheung, Y. K., Garg, J., Garg, N., Hoefer, M., & Mehlhorn, K. (2018). On Fair Division of Indivisible Items. Retrieved from http://arxiv.org/abs/1805.06232. [PubMan] : Garg, J., Hoefer, M., & Mehlhorn, K. (2018). Approximating the Nash Social Welfare with Budget-Additive Valuations. In A. Czumaj (Ed.), Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 2326-2340). Philadelphia, PA: SIAM. doi:10.1137/1.9781611975031.150. [PubMan] : Garg, J., Hoefer, M., & Mehlhorn, K. (2017). Approximating the Nash Social Welfare with Budget-Additive Valuations. Retrieved from http://arxiv.org/abs/1707.04428. [PubMan] : Bei, X., Garg, J., Hoefer, M., & Mehlhorn, K. (2017). Earning Limits in Fisher Markets with Spending-Constraint Utilities. In Algorithmic Game Theory (pp. 67-79). Berlin: Springer. doi:10.1007/978-3-319-66700-3_6. [PubMan]