Researcher Portfolio

 
   

Tang, Dora

Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society  

 

Researcher Profile

 
Position: Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society
Researcher ID: https://pure.mpg.de/cone/persons/resource/persons219723

External references

 

Publications

 
  (1 - 25 of 46)
 : Tang, T.-Y.-D., & Huang, X. (2023). Artificial Cells: From Basic Assembly to Directed Functionality. Small methods, 7(12): e2301446. doi:10.1002/smtd.202301446. [PubMan] : Gonzales, D. T., Suraritdechachai, S., Zechner, C., & Tang, T.-Y.-D. (2023). Bidirectional Communication between Droplet Interface Bilayers Driven by Cell-Free Quorum Sensing Gene Circuits. ChemSystemsChem, 5: e20230002, pp. 1-1. doi:10.1002/syst.202300029. [PubMan] : Lauber, N., Tichacek, O., Bose, R., Flamm, C., Leuzzi, L., Tang, T.-Y.-D., Ruiz-Mirazo, K., & Martino, D. D. (2023). Statistical mechanics of biomolecular condensates via cavity methods. iScience, 26(4): 106300. doi:10.1016/j.isci.2023.106300. [PubMan] : Mayr, C., Mittag, T., Tang, T.-Y.-D., Wen, W., Zhang, H., & Zhang, H. (2023). Frontiers in biomolecular condensate research. Nature cell biology, 25(4), 512-514. doi:10.1038/s41556-023-01102-2. [PubMan] : Wang, X., Wu, S., Tang, T.-Y.-D., & Tian, L. (2022). Engineering strategies for sustainable synthetic cells. Trends in Chemistry, 4(12), 1106-1120. [PubMan] : Zambrano, A., Fracasso, G., Gao, M., Ugrinic, M., Wang, D., Appelhans, D., deMello, A., & Tang, T.-Y.-D. (2022). Programmable synthetic cell networks regulated by tuneable reaction rates. Nature communications, 13(1): 3885. doi:10.1038/s41467-022-31471-5. [PubMan] : Wollny, D., Vernot, B., Wang, J., Hondele, M., Safrastyan, A., Aron, F., Micheel, J., He, Z., Hyman, A., Weis, K., Camp, J. G., Tang, T.-Y.-D., & Treutlein, B. (2022). Characterization of RNA content in individual phase-separated coacervate microdroplets. Nature communications, 13(1): 2626. doi:10.1038/s41467-022-30158-1. [PubMan] : Iglesias-Artola, J. M., Drobot, B., Kar, M., Fritsch, A., Mutschler, H., Tang, T.-Y.-D., & Kreysing, M. (2022). Charge-density reduction promotes ribozyme activity in RNA-peptide coacervates via RNA fluidization and magnesium partitioning. Nature chemistry, 14(4), 407-416. doi:10.1038/s41557-022-00890-8. [PubMan] : Tang, D. (2022). Cell scientist to watch - Dora Tang. Journal of cell science, 135(5): jcs259851. doi:10.1242/jcs.259851. [PubMan] : Gonzales, D. T., Yandrapalli, N., Robinson, T., Zechner, C., & Tang, T.-Y.-D. (2022). Cell-Free Gene Expression Dynamics in Synthetic Cell Populations. ACS synthetic biology, 11(1), 205-215. doi:10.1021/acssynbio.1c00376. [PubMan] : Ianeselli, A., Tetiker, D., Stein, J., Kühnlein, A., Mast, C., Braun, D., & Tang, T.-Y.-D. (2022). Non-equilibrium conditions inside rock pores drive fission, maintenance and selection of coacervate protocells. Nature chemistry, 14(1), 32-39. doi:10.1038/s41557-021-00830-y. [PubMan] : Vay, K. L., Song, E. Y., Ghosh, B., Tang, T.-Y.-D., & Mutschler, H. (2021). Enhanced Ribozyme-Catalyzed Recombination and Oligonucleotide Assembly in Peptide-RNA Condensates. Angewandte Chemie (International ed. in English), 60(50), 26096-26104. doi:10.1002/anie.202109267. [PubMan] : Ghosh, B., Bose, R., & Tang, T.-Y.-D. (2021). Can coacervation unify disparate hypotheses in the origin of cellular life? Current Opinion in Colloid & Interface Science, 52: 101415. doi:10.1016/j.cocis.2020.101415. [PubMan] : Moreau, N. G., Martin, N., Gobbo, P., Tang, T.-Y.-D., & Mann, S. (2020). Spontaneous membrane-less multi-compartmentalization via aqueous two-phase separation in complex coacervate micro-droplets. Chemical communications (Cambridge, England), 56(84), 12717-12720. doi:10.1039/d0cc05399f. [PubMan] : Gonzales, D. T., Zechner, C., & Tang, T.-Y.-D. (2020). Building synthetic multicellular systems usingbottom–up approaches. Current Opinion in Systems Biology, 24, 56-63. doi:10.1016/j.coisb.2020.10.005. [PubMan] : Gorochowski, T. E., Hauert, S., Kreft, J.-U., Marucci, L., Stillman, N. R., Tang, T.-Y.-D., Bandiera, L., Bartoli, V., Dixon, D. O., Fedorec, A. J., Fellermann, H., Fletcher, A. G., Foster, T., Giuggioli, L., Matyjaszkiewicz, A., McCormick, S., Olivas, S. M., Naylor, J., Denniss, A. R., & Ward, D. (2020). Toward Engineering Biosystems With Emergent Collective Functions. Frontiers in bioengineering and biotechnology, 8: 705. doi:10.3389/fbioe.2020.00705. [PubMan] : Beneyton, T., Love, C., Girault, M., Tang, T.-Y.-D., & Baret, J.-C. (2020). High-Throughput Synthesis and Screening of Functional Coacervates Using Microfluidics. ChemSystemsChem, 2(6): e2000022, pp. 1-1. doi:10.1002/syst.202000022. [PubMan] : Love, C., Steinkühler, J., Gonzales, D. T., Yandrapalli, N., Robinson, T., Dimova, R., & Tang, T.-Y.-D. (2020). Reversible pH-Responsive Coacervate Formation in Lipid Vesicles Activates Dormant Enzymatic Reactions. Angewandte Chemie (International ed. in English), 59(15), 5950-5957. doi:10.1002/anie.201914893. [PubMan] : Beneyton, T., Krafft, D., Love, C., Girault, M., Bednarz, C., Kleineberg, C., Wölfer, C., Ivanov, I., Vidaković-Koch, T., Sundmacher, K., Tang, D., & Baret, J.-C. (2020). Droplet-based microfluidics for bottom-up synthetic biology. In 23rd International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2019) (pp. 14-15). Red Hook NY USA: Curran Associates. [PubMan] : Love, C., Steinkühler, J., Gonzales, D., Yandrapalli, N., Robinson, T., Dimova, R., & Tang, D. (2020). Reversible pH responsive coacervate formation in lipid vesicles activates dormant enzymatic reactions. Angewandte Chemie, 132(15), 6006-6013. doi:10.1002/ange.201914893. [PubMan] : Gorochowski, T. E., Hauert, S., Kreft, J.-U., Marucci, L., Stillman, N. R., Tang, T.-Y.-D., Bandiera, L., Bartoli, V., Dixon, D. O., Fedorec, A. J., Fellermann, H., Fletcher, A. G., Foster, T., Giuggioli, L., Matyjaszkiewicz, A., McCornick, S., Montes Olivas, S., Naylor, J., Denniss, A. R., & Ward, D. (2020). Towards engineering biosystems with emergent collective functions. Preprints. doi:10.20944/preprints202005.0058.v1. [PubMan] : Love, C., Steinkühler, J., Gonzales, D., Yandrapalli, N., Robinson, T., Dimova, R., & Tang, D. (2020). Reversible pH responsive coacervate formation in lipid vesicles activates dormant enzymatic reactions. Angewandte Chemie, International Edition in English. doi:10.1002/anie.201914893. [PubMan] : Gonzales, D. T., Tang, T.-Y.-D., & Zechner, C. (2019). Moment-based analysis of biochemical networks in a heterogeneous population of communicating cells. In C. A. Canudas de Wit (Ed.), 2019 IEEE 58th Conference on Decision and Control (CDC) (pp. 939-944). Piscataway, N.J.: IEEE. [PubMan] : Mutschler, H., Robinson, T., Tang, T.-Y.-D., & Wegner, S. (2019). Special Issue on Bottom-Up Synthetic Biology. Chembiochem: a European journal of chemical biology, 20(20), 2533-2534. doi:10.1002/cbic.201900507. [PubMan] : Mutschler, H., Robinson, T., Tang, D., Wegner, S., & Wegner, S. (2019). Special Issue on Bottom-Up Synthetic Biology. ChemBioChem: A European Journal of Chemical Biology, 20(20), 2533-2534. doi:10.1002/cbic.201900507. [PubMan]