Researcher Portfolio
Perry, Alistair
Center for Lifespan Psychology, Max Planck Institute for Human Development, Max Planck Society, Emmy Noether Group: Lifespan Neural Dynamics Group, Max Planck Institute for Human Development, Max Planck Society, Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, and London, UK, Max Planck Institute for Human Development, Max Planck Society
Researcher Profile
Position: Center for Lifespan Psychology, Max Planck Institute for Human Development, Max Planck Society
Position: Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, and London, UK, Max Planck Institute for Human Development, Max Planck Society
Position: Emmy Noether Group: Lifespan Neural Dynamics Group, Max Planck Institute for Human Development, Max Planck Society
Researcher ID: https://pure.mpg.de/cone/persons/resource/persons220076
Publications
: Garrett, D. D., Kloosterman, N. A., Epp, S. M., Chopurian, V., Kosciessa, J. Q., Waschke, L., Skowron, A., Shine, J. M., Perry, A., Salami, A., Rieckmann, A., Papenberg, G., Wåhlin, A., Karalija, N., Andersson, M., Riklund, K., Lövdén, M., Bäckman, L., Nyberg, L., & Lindenberger, U. (2022). Dynamic regulation of neural variability during working memory reflects dopamine, functional integration, and decision-making. BioRxiv, May 5, 2022. [PubMan] : Li, Q., Dong, C., Liu, T., Chen, X., Perry, A., Jiang, J., Cheng, J., Niu, H., Kochan, N. A., Brodaty, H., Sachdev, P. S., & Wen, W. (2020). Longitudinal changes in whole-brain functional connectivity strength patterns and the relationship with the global cognitive decline in older adults. Frontiers in Aging Neuroscience, 12: 71. doi:10.3389/fnagi.2020.00071. [PubMan] : Irmen, F., Horn, A., Mosley, P., Perry, A., Petry-Schmelzer, J. N., Dafsari, H. S., Barbe, M., Visser-Vandewalle, V., Schneider, G.-H., Li, N., Kübler, D., Wenzel, G., & Kühn, A. A. (2020). Left prefrontal connectivity links subthalamic stimulation with depressive symptoms. Annals of Neurology, 87(6), 962-975. doi:10.1002/ana.25734. [PubMan] : Mosley, P. E., Paliwal, S., Robinson, K., Coyne, T., Silburn, P., Tittgemeyer, M., Stephan, K. E., Perry, A., & Breakspear, M. (2020). The structural connectivity of subthalamic deep brain stimulation correlates with impulsivity in Parkinson's disease. Brain, 143(7), 2235-2254. doi:10.1093/brain/awaa148. [PubMan] : Mosley, P. E., Robinson, K., Coyne, T., Silburn, P., Barker, M. S., Breakspear, M., Robinson, G. A., & Perry, A. (2020). Subthalamic deep brain stimulation identifies frontal networks supporting initiation, inhibition and strategy use in Parkinson’s disease. NeuroImage, 223: 117352. doi:10.1016/j.neuroimage.2020.117352. [PubMan] : Mosley, P. E., Paliwal, S., Robinson, K., Coyne, T., Silburn, P., Tittgemeyer, M., Stephan, K. E., Breakspear, M., & Perry, A. (2019). The structural connectivity of discrete networks underlies impulsivity and gambling in Parkinson's disease. Brain, 142(12), 3917-3935. doi:10.1093/brain/awz327. [PubMan] : Lin, H.-Y., Perry, A., Cocchi, L., Roberts, J., Tseng, W.-Y., Breakspear, M., & Gau, S.-S.-F. (2019). Development of frontoparietal connectivity predicts longitudinal symptom changes in young people with autism spectrum disorder. Translational Psychiatry, 9(1): 86. doi:10.1038/s41398-019-0418-5. [PubMan] : Perry, A., Roberts, G., Mitchell, P. B., & Breakspear, M. (2019). Connectomics of bipolar disorder: A critical review, and evidence for dynamic instabilities within interoceptive networks. Molecular Psychiatry, 24, 1296-1318. doi:10.1038/s41380-018-0267-2. [PubMan] : Zimmermann, J., Perry, A., Breakspear, M., Schirner, M., Sachdev, P., Wen, W., Kochan, N., Mapstone, M., Ritter, P., McIntosh, A. R., & Solodkin, A. (2018). Differentiation of Alzheimer's disease based on local and global parameters in personalized Virtual Brain models. BioRxiv, 277624. [PubMan] : Mosley, P. E., Smith, D., Coyne, T., Silburn, P., Breakspear, M., & Perry, A. (2018). The site of stimulation moderates neuropsychiatric symptoms after subthalamic deep brain stimulation for Parkinson's disease. NeuroImage: Clinical, 18, 996-1006. doi:10.1016/j.nicl.2018.03.009. [PubMan] : Garrett, D. D., Epp, S. M., Perry, A., & Lindenberger, U. (2018). Local temporal variability reflects functional network integration in the human brain: On the crucial role of the thalamus (Version posted online February 20, 2018). BioRxiv, 184739. [PubMan] : Jeganathana, J., Perry, A., Bassett, D. S., Roberts, G., Mitchell, P. B., & Breakspear, M. (2018). Fronto-limbic dysconnectivity leads to impaired brain network controllability in young people with bipolar disorder and those at high genetic risk. BioRxiv, 222216. [PubMan] : Jeganathan, J., Perry, A., Bassett, D. S., Roberts, G., Mitchell, P. B., & Breakspear, M. (2018). Fronto-limbic dysconnectivity leads to impaired brain network controllability in young people with bipolar disorder and those at high genetic risk. NeuroImage: Clinical, 19, 71-81. doi:10.1016/j.nicl.2018.03.032. [PubMan] : Zimmermann, J., Perry, A., Breakspear, M., Schirner, M., Sachdev, P., Wen, W., Kochan, N., Mapstone, M., Ritter, P., McIntosh, A. R., & Solodkin, A. (2018). Differentiation of Alzheimer's disease based on local and global parameters in personalized Virtual Brain models. NeuroImage: Clinical, 19, 240-251. doi:10.1016/j.nicl.2018.04.017. [PubMan] : Garrett, D. D., Epp, S. M., Perry, A., & Lindenberger, U. (2018). Local temporal variability reflects functional integration in the human brain. NeuroImage, 183, 776-787. doi:10.1016/j.neuroimage.2018.08.019. [PubMan]