Researcher Portfolio
Dr. Kordus, David
Interface Science, Fritz Haber Institute, Max Planck Society
Researcher Profile
Position: Interface Science, Fritz Haber Institute, Max Planck Society
Additional IDs: ORCID:
https://orcid.org/0000-0002-9481-2194
Researcher ID: https://pure.mpg.de/cone/persons/resource/persons227605
Publications
: Timoshenko, J., Kordus, D., Mathiesen, J., Hejral, U., Zeller, P., Behrendt, G., Öztuna, E., Wang, J., Gheisari, Z., Eckert, R., Reitmeier, S., Reitzmann, A., Ruland, H., Folke, J., Lunkenbein, T., & Roldan Cuenya, B. (2025). X-ray absorption by a microgranular sample. Physical Review B, 112(2): 024105. doi:10.1103/bqg7-kb24. [PubMan] : Dembélé, K., Wang, J., Boniface, M., Folke, J., Sandoval Diaz, L., Girgsdies, F., Hammud, A., Kordus, D., Koch, G., Gheisari, Z., Blume, R., Jiang, W., Knop-Gericke, A., Eckert, R., Reitmeier, S., Reitzmann, A., Schlögl, R., Roldan Cuenya, B., Timoshenko, J., Ruland, H., & Lunkenbein, T. (2025). The Haber Bosch Catalyst from Solid state Chemistry to Mesotechnology. Advanced Energy Materials, 2500159. doi:10.1002/aenm.202500159. [PubMan] : Li, R.-J., Lewis, R. J., López-Martín, Á., Morgan, D. J., Davies, T. E., Kordus, D., Dugulan, A. I., Roldan Cuenya, B., & Hutchings, G. J. (2025). Promoting H2O2 direct synthesis through Fe incorporation into AuPd catalysts. Green Chemistry, 27(7), 2065-2077. doi:10.1039/D5GC00134J. [PubMan] : Herzog, A., Rüscher, M., Jeon, H., Timoshenko, J., Rettenmaier, C., Hejral, U., Davis, E., Haase, F., Kordus, D., Kühl, S., Frandsen, W., Bergmann, A., & Roldan Cuenya, B. (2024). Time-resolved operando insights into the tunable selectivity of Cu–Zn nanocubes during pulsed CO2 electroreduction. Energy & Environmental Science, 17(19), 7081-7096. doi:10.1039/D4EE02308K. [PubMan] : Etxebarria, A., Lopez-Luna, M., Martini, A., Hejral, U., Rüscher, M., Zhan, C., Herzog, A., Jamshaid, A., Kordus, D., Bergmann, A., Kuhlenbeck, H., & Roldan Cuenya, B. (2024). Effect of Iron Doping in Ordered Nickel Oxide Thin Film Catalyst for the Oxygen Evolution Reaction. ACS Catalysis, 14(18), 14219-14232. doi:10.1021/acscatal.4c02572. [PubMan] : Kordus, D., Widrinna, S., Timoshenko, J., Lopez-Luna, M., Rettenmaier, C., Chee, S. W., Ortega, E., Karslıoğlu, O., Kühl, S., & Roldan Cuenya, B. (2024). Enhanced Methanol Synthesis from CO2 Hydrogenation Achieved by Tuning the Cu-ZnO Interaction in ZnO/Cu2O Nanocube Catalysts Supported on ZrO2 and SiO2. Journal of the American Chemical Society, 146(12), 8677-8687. doi:10.1021/jacs.4c01077. [PubMan] : Rettenmaier, C., Herzog, A., Casari, D., Rüscher, M., Jeon, H., Kordus, D., Lopez-Luna, M., Kühl, S., Hejral, U., Davis, E., Chee, S. W., Timoshenko, J., Alexander, D. T., Bergmann, A., & Roldan Cuenya, B. (2024). Operando insights into correlating CO coverage and Cu-Au alloying with the selectivity of Au NP-decorated Cu2O nanocubes during the electrocatalytic CO2 reduction. EES Catalysis, 2(1), 311-323. doi:10.1039/D3EY00162H. [PubMan] : Kordus, D. (2023). Investigations on structure and chemical state of catalysts for CO2 hydrogenation. PhD Thesis, Ruhr Universität, Bochum. [PubMan] : Kordus, D., Jelic, J., Lopez-Luna, M., Divins, N. J., Timoshenko, J., Chee, S. W., Rettenmaier, C., Kröhnert, J., Kühl, S., Trunschke, A., Schlögl, R., Studt, F., & Roldan Cuenya, B. (2023). Shape-Dependent CO2 Hydrogenation to Methanol over Cu2O Nanocubes Supported on ZnO. Journal of the American Chemical Society, 145(5), 3016-3030. doi:10.1021/jacs.2c11540. [PubMan] : Hejral, U., Timoshenko, J., Kordus, D., Lopez-Luna, M., Divins, N. J., Widrinna, S., Zegkinoglou, I., Pielsticker, L., Mistry, H., Boscoboinik, J. A., Kühl, S., & Roldan Cuenya, B. (2022). Tracking the phase changes in micelle-based NiGa nanocatalysts for methanol synthesis under activation and working conditions. Journal of Catalysis, 405, 183-198. doi:10.1016/j.jcat.2021.11.024. [PubMan] : Lopez-Luna, M., Timoshenko, J., Kordus, D., Rettenmaier, C., Chee, S. W., Hoffman, A. S., Bare, S. R., Shaikhutdinov, S. K., & Roldan Cuenya, B. (2021). Role of the Oxide Support on the Structural and Chemical Evolution of Fe Catalysts during the Hydrogenation of CO2. ACS Catalysis, 11(10), 6175-6185. doi:10.1021/acscatal.1c01549. [PubMan] : Divins, N. J., Kordus, D., Timoshenko, J., Sinev, I., Zegkinoglou, I., Bergmann, A., Chee, S. W., Widrinna, S., Karslıoğlu, O., Mistry, H., Lopez Luna, M., Zhong, J., Hoffmann, A. S., Boubnov, A., Boscoboinik, J. A., Heggen, M., Dunin-Borkowski, R. E., Bare, S. R., & Roldan Cuenya, B. (2021). Operando high-pressure investigation of size-controlled CuZn catalysts for the methanol synthesis reaction. Nature Communications, 12: 1435. doi:10.1038/s41467-021-21604-7. [PubMan]