Researcher Portfolio
Al-Naji, Majd
External Organizations, Majd Al-Naji, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society
Researcher Profile
Position: Majd Al-Naji, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society
Position: External Organizations
Additional IDs: ORCID:
https://orcid.org/0000-0001-5024-0449
Researcher ID: https://pure.mpg.de/cone/persons/resource/persons227951
Publications
: Al-Naji, M., & Antonietti, M. (2023). Turning polyethylene waste to hydrocarbons using a sustainable acidic carbocatalyst. ChemSusChem, 16(9): e202201991. doi:10.1002/cssc.202201991. [PubMan] : Brandi, F., Pandalone, B., & Al-Naji, M. (2023). Flow-through reductive catalytic fractionation of beech wood sawdust. RSC Sustainability, 1(3), 459-469. doi:10.1039/D2SU00076H. [PubMan] : Al-Naji, M., Brandi, F., Kumru, B., & Antonietti, M. (2023). Plant-based basic carbocatalyst for lactone ring-opening polymerization and isosorbide transesterification with high efficiency. ChemCatChem, 15(1): e202201095. doi:10.1002/cctc.202201095. [PubMan] : Brandi, F., & Al-Naji, M. (2022). Sustainable sorbitol dehydration to isosorbide using solid acid catalysts: transition from batch reactor to continuous flow system. ChemSusChem, 15(5): e202102525. doi:10.1002/cssc.202102525. [PubMan] : Bauer, F., Meyer, R., Bertmer, M., Naumov, S., Al-Naji, M., Wissel, J., Steinhart, M., & Enke, D. (2021). Silanization of siliceous materials, part 3: modification of surface energy and acid-base properties of silica nanoparticles determined by inverse gas chromatography (IGC). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 618: 126472. doi:10.1016/j.colsurfa.2021.126472. [PubMan] : Al-Naji, M., Schlaad, H., & Antonietti, M. (2021). New (and old) monomers from biorefineries to make polymer chemistry more sustainable. Macromolecular Rapid Communications, 42(3): 2000485. doi:10.1002/marc.202000485. [PubMan] : Brandi, F., Khalil, I., Antonietti, M., & Al-Naji, M. (2021). Continuous-flow production of isosorbide from aqueous-cellulosic derivable feed over sustainable heterogeneous catalysts. ACS Sustainable Chemistry & Engineering, 9(2), 927-935. doi:10.1021/acssuschemeng.0c08167. [PubMan] : Smith, C. A., Brandi, F., Al-Naji, M., & Guterman, R. (2021). Resin-supported iridium complex for low-temperature vanillin hydrogenation using formic acid in water. RSC Advances, 11(26), 15835-15840. doi:10.1039/D1RA01460A. [PubMan] : Brandi, F., Antonietti, M., & Al-Naji, M. (2021). Controlled lignosulfonate depolymerization via solvothermal fragmentation coupled with catalytic hydrogenolysis/hydrogenation in continuous flow reactor. Green Chemistry, 23(24), 9894-9905. doi:10.1039/D1GC01714D. [PubMan] : Qin, Q., Brandi, F., Badamdorj, B., Oschatz, M., & Al-Naji, M. (2021). Preparation and functionalization of free-standing nitrogen-doped carbon-based catalyst electrodes for electrocatalytic N2 fixation. Molecular Catalysis, 515: 111935. doi:10.1016/j.mcat.2021.111935. [PubMan] : Al-Naji, M., Van Aelst, J., Liao, Y., d'Halluin, M., Tian, Z., Wang, C., Gläser, R., & Sels, B. F. (2020). Pentanoic acid from γ-valerolactone and formic acid using bifunctional catalysis. Green Chemistry, 22(4), 1171-1181. doi:10.1039/C9GC02627D. [PubMan] : Brandi, F., Bäumel, M., Shekova, I., Molinari, V., & Al-Naji, M. (2020). 5-Hydroxymethylfurfural hydrodeoxygenation to 2,5-dimethylfuran in continuous-flow system over Ni on nitrogen-doped carbon. Sustainable Chemistry, 1(2), 106-115. doi:10.3390/suschem1020009. [PubMan] : Mendoza Mesa, J. A., Brandi, F., Shekova, I., Antonietti, M., & Al-Naji, M. (2020). p-Xylene from 2,5-dimethylfuran and acrylic acid using zeolite in continuous flow system. Green Chemistry, 22(21), 7389-7405. doi:10.1039/D0GC01517B. [PubMan] : Klemm, M., Kröger, M., Görsch, K., Lange, R., Hilpmann, G., Lali, F., Haase, S., Krusche, M., Ullrich, F., Chen, Z., Wilde, N., Al-Naji, M., & Gläser, R. (2020). Experimental evaluation of a new approach for a two-stage hydrothermal biomass liquefaction process. Energies, 13(14): 3692. doi:10.3390/en13143692. [PubMan] : Al-Naji, M., Popova, M., Chen, Z., Wilde, N., & Gläser, R. (2020). Aqueous-phase hydrogenation of levulinic acid using formic acid as a sustainable reducing agent over Pt catalysts supported on mesoporous zirconia. ACS Sustainable Chemistry & Engineering, 8(1), 393-402. doi:10.1021/acssuschemeng.9b05546. [PubMan] : Brandi, F., Bäumel, M., Molinari, V., Shekova, I., Lauermann, I., Heil, T., Antonietti, M., & Al-Naji, M. (2020). Nickel on nitrogen-doped carbon pellets for continuous flow hydrogenation of biomass derived-compounds in water. Green Chemistry, 22(9), 2755-2766. doi:10.1039/C9GC03826D. [PubMan] : Kumru, B., Mendoza Mesa, J., Antonietti, M., & Al-Naji, M. (2019). Metal-free visible-light-induced dithiol–ene clicking via carbon nitride to valorize 4-pentenoic acid as a functional monomer. ACS Sustainable Chemistry & Engineering, 7(21), 17574-17579. doi:10.1021/acssuschemeng.9b05351. [PubMan] : Al-Naji, M., Puértola, B., Kumru, B., Cruz, D., Bäumel, M., Schmidt, B. V. K. J., Tarakina, N. V., & Pérez‐Ramírez, J. (2019). Sustainable continuous flow valorization of γ‐valerolactone with trioxane to α‐methylene‐γ‐valerolactone over basic beta zeolite. ChemSusChem, 12(12), 2628-2636. doi:10.1002/cssc.201900418. [PubMan] : Chmelik, C., Liebau, M., Al-Naji, M., Möllmer, J., Enke, D., Gläser, R., & Kärger, J. (2018). One-shot measurement of effectiveness factors of chemical conversion in porous catalysts. ChemCatChem, 10(24), 5602-5609. doi:10.1002/cctc.201801530. [PubMan] : Zhang, W., Chen, Z., Al-Naji, M., Guo, P., Cwik, S., Halbherr, O., Wang, Y., Muhler, M., Wilde, N., Glaeser, R., & Fischer, R. A. (2016). Simultaneous introduction of various palladium active sites into MOF via one-pot synthesis: Pd@[Cu3-xPdx(BTC)2]n. Dalton Transactions, 45(38), 14883-14887. doi:10.1039/c6dt02893d. [PubMan] : Al-Naji, M., Yepez, A., Balu, A. M., Romero, A. A., Chen, Z., Wilde, N., Li, H., Shih, K., Glaeser, R., & Luqueb, R. (2016). Insights into the selective hydrogenation of levulinic acid to gamma-valerolactone using supported mono- and bimetallic catalysts. Journal of Molecular Catalysis A, 417, 145-152. doi:10.1016/j.molcata.2016.03.015. [PubMan] : Al-Naji, M., Balu, A. M., Roibu, A., Goepel, M., Einicke, W.-D., Luquec, R., & Glaeser, R. (2015). Mechanochemical preparation of advanced catalytically active bifunctional Pd-containing nanomaterials for aqueous phase hydrogenation. Catalysis Science & Technology, 5(4), 2085-2091. doi:10.1039/c4cy01174k. [PubMan] : Goepel, M., Al-Naji, M., Carozza, C. F., With, P. C., & Gläser, R. (2014). Hydrierreaktionen in der chemischen Technik: Effiziente Testung hydrieraktiver Edelmetall-Trägerkatalysatoren. GIT Labor-Fachzeitschrift, 58(2), 44-46. [PubMan] : Goepel, M., Al-Naji, M., With, P., Wagner, G., Oeckler, O., Enke, D., & Glaeser, R. (2014). Hydrogenation of p-Nitrophenol to p-Aminophenol as a test reaction for the catalytic activity of supported Pt catalysts. Chemical Engineering and Technology, 37(3), 551-554. doi:10.1002/ceat.201300731. [PubMan] : Goepel, M., Al-Naji, M., With, P., Wagner, G., Oeckler, O., Enke, D., & Glaeser, R. (2013). Hydrierung von p‐Nitrophenol zu p‐Aminophenol als Testreaktion für die katalytische Aktivität von Pt‐Trägerkatalysatoren. Chemie-Ingenieur-Technik, 85(11), 1774-1778. doi:10.1002/cite.201300075. [PubMan]