Researcher Portfolio

 
   

Yandrapalli, Naresh

Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society, Tom Robinson, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society  

 

Researcher Profile

 
Position: Tom Robinson, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society
Position: Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society
Position: Guest Tang (Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society)
Researcher ID: https://pure.mpg.de/cone/persons/resource/persons228896

External references

 

Publications

 
 
 : Gonzales, D. T., Yandrapalli, N., Robinson, T., Zechner, C., & Tang, T.-Y.-D. (2024). Correction to "Cell-Free Gene Expression Dynamics in Synthetic Cell Populations". ACS synthetic biology, 13(10), 3471-3484. doi:10.1021/acssynbio.4c00583. [PubMan] : Yandrapalli, N. (2024). Complex Emulsions as an Innovative Pharmaceutical Dosage form in Addressing the Issues of Multi-Drug Therapy and Polypharmacy Challenges. Pharmaceutics, 16(6): 707. doi:10.3390/pharmaceutics16060707. [PubMan] : Ernits, M., Reinsalu, O., Yandrapalli, N., Kopanchuk, S., Moradpur-Tari, E., Sanka, I., Scheler, O., Rinken, A., Kurg, R., Kyritsakis, A., Linko, V., & Zadin, V. (2024). Microfluidic production, stability and loading of synthetic giant unilamellar vesicles. Scientific Reports, 14(1): 14071. doi:10.1038/s41598-024-64613-4. [PubMan] : Yandrapalli, N., Kumru, B., Robinson, T., & Antonietti, M. (2023). Rainbows in a bottle: realizing microoptic effects by polymerizable multiple emulsion particle design. arXiv, arXiv:2301.02005. doi:10.48550/arXiv.2301.02005. [PubMan] : Aleksanyan, M., Grafmüller, A., Crea, F., Georgiev, V., Yandrapalli, N., Block, S., Heberle, J., & Dimova, R. (2023). Photomanipulation of minimal synthetic cells: area increase, softening and interleaflet coupling of membrane models doped with azobenzene-lipid photoswitches. Advanced Science, 10(31): 2304336. doi:10.1002/advs.202304336. [PubMan] : Gonzales, D. T., Yandrapalli, N., Robinson, T., Zechner, C., & Tang, T.-Y.-D. (2022). Cell-free gene expression dynamics in synthetic cell populations. ACS Synthetic Biology, 11(1), 205-215. doi:10.1021/acssynbio.1c00376. [PubMan] : Yandrapalli, N., & Antonietti, M. (2022). Dewetting-assisted interface templating: complex emulsions to multicavity particles. Advanced Science, 9(29): 2203265. doi:10.1002/advs.202203265. [PubMan] : Shetty, S., Yandrapalli, N., Pinkwart, K., Krafft, D., Vidaković-Koch, T., Ivanov, I., & Robinson, T. (2021). Directed signaling cascades in monodisperse artificial eukaryotic cells. ACS Nano, 15(10), 15656-15666. doi:10.1021/acsnano.1c04219. [PubMan] : Yandrapalli, N., Petit, J., Bäumchen, O., & Robinson, T. (2021). Surfactant-free production of biomimetic giant unilamellar vesicles using PDMS-based microfluidics. Communications Chemistry, 4: 100. doi:10.1038/s42004-021-00530-1. [PubMan] : Witt, H., Yandrapalli, N., Sari, M., Turco, L., Robinson, T., & Steinem, C. (2020). Precipitation of calcium carbonate inside giant unilamellar vesicles composed of fluid-phase lipids. Langmuir, 36(44), 13244-13250. doi:10.1021/acs.langmuir.0c02175. [PubMan] : Love, C., Steinkühler, J., Gonzales, D., Yandrapalli, N., Robinson, T., Dimova, R., & Tang, D. (2020). Reversible pH responsive coacervate formation in lipid vesicles activates dormant enzymatic reactions. Angewandte Chemie, 132(15), 6006-6013. doi:10.1002/ange.201914893. [PubMan] : Yandrapalli, N., Robinson, T., Antonietti, M., & Kumru, B. (2020). Graphitic carbon nitride stabilizers meet microfluidics: from stable emulsions to photoinduced synthesis of hollow polymer spheres. Small, 16(32): 2001180. doi:10.1002/smll.202001180. [PubMan] : Yandrapalli, N., Seemann, T., & Robinson, T. (2020). On-chip inverted emulsion method for fast giant vesicle production, handling, and analysis. Micromachines, 11(3): 285. doi:10.3390/mi11030285. [PubMan] : Love, C., Steinkühler, J., Gonzales, D., Yandrapalli, N., Robinson, T., Dimova, R., & Tang, D. (2020). Reversible pH responsive coacervate formation in lipid vesicles activates dormant enzymatic reactions. Angewandte Chemie, International Edition in English. doi:10.1002/anie.201914893. [PubMan] : Favard, C., Chojnacki, J., Yandrapalli, N., Mak, J., Eggeling, C., & Muriaux, D. (2020). Specific lipid recruitment by the retroviral gag protein upon HIV-1 assembly: from model membranes to infected cells. Proceedings, 50(1): 102. doi:10.3390/proceedings2020050102. [PubMan] : Love, C., Steinkühler, J., Gonzales, D. T., Yandrapalli, N., Robinson, T., Dimova, R., & Tang, T.-Y.-D. (2020). Reversible pH-responsive coacervate formation in lipid vesicles activates dormant enzymatic reactions. Angewandte Chemie, International Edition, 59(15), 5950-5957. doi:10.1002/anie.201914893. [PubMan] : Yandrapalli, N., & Robinson, T. (2019). Ultra-high capacity microfluidic trapping of giant vesicles for high-throughput membrane studies. Lab on a Chip, 19(4), 626-633. doi:10.1039/C8LC01275J. [PubMan] : Yandrapalli, N., & Robinson, T. (2019). Ultra-high capacity microfluidic trapping of giant vesicles for high-throughput membrane studies. Lab on a Chip, 19(4), 626-633. doi:10.1039/C8LC01275J. [PubMan] : Moga, A., Yandrapalli, N., Dimova, R., & Robinson, T. (2019). Optimization of the inverted emulsion method for high-yield production of biomimetic giant unilamellar vesicles. ChemBioChem: A European Journal of Chemical Biology, 20(20), 2647-2682. doi:10.1002/cbic.201900529. [PubMan] : Moga, A., Yandrapalli, N., Dimova, R., & Robinson, T. (2019). Optimization of the inverted emulsion method for high-yield production of biomimetic giant unilamellar vesicles. ChemBioChem: A European Journal of Chemical Biology, 20(20), 2674-2682. doi:10.1002/cbic.201900529. [PubMan]