Researcher Portfolio

 
   

Meyer, Randall J.

Chemical Physics, Fritz Haber Institute, Max Planck Society  

 

Researcher Profile

 
Position: Chemical Physics, Fritz Haber Institute, Max Planck Society
Researcher ID: https://pure.mpg.de/cone/persons/resource/persons242588

External references

 

Publications

 
  (1 - 25 of 95)
 : Dixit, S., Noé, F., & Weikl, T. R. (2025). Conformational changes, excess area, and elasticity of the Piezo protein-membrane nanodome from coarse-grained and atomistic simulations. eLife, 14: RP105138. doi:10.7554/eLife.105138.2. [PubMan] : Bonazzi, F., & Weikl, T. R. (2025). Membrane-mediated interactions between arc-shaped particles strongly depend on membrane curvature. Nanoscale, 17(11), 6841-6853. doi:10.1039/D4NR04674A. [PubMan] : Asadollahi, K., Gooley, P. R., & Weikl, T. R. (2025). The allosteric mechanism of G-protein-coupled receptors is induced fit, not conformational selection. bioRxiv: the preprint server for biology, 2025.01.28.635241. doi:10.26434/chemrxiv-2025-bm72c. [PubMan] : Ledvinka, J., Kullmann, R., Reuber, E., Weikl, T. R., Garcia Ricardo, M., & Seeberger, P. H. (2025). Stapling of β-glucans increases antibody binding. Journal of the American Chemical Society, 147(41), 37634-37640. doi:10.1021/jacs.5c12690. [PubMan] : Gao, J., Hou, R., Hu, W., Weikl, T. R., & Hu, J. (2024). Which coverages of arc-shaped proteins are required for membrane tubulation? The Journal of Physical Chemistry B, 128(19), 4735-4740. doi:10.1021/acs.jpcb.4c01019. [PubMan] : Kullmann, R., Delbianco, M., Roth, C., & Weikl, T. R. (2024). Role of van der Waals, electrostatic, and hydrogen-bond interactions for the relative stability of cellulose Iβ and II crystals. The Journal of Physical Chemistry B, 128(49), 12114-12121. doi:10.1021/acs.jpcb.4c06841. [PubMan] : Azadbakht, A., Weikl, T. R., & Kraft, D. J. (2024). Nonadditivity in many-body interactions between membrane-deforming spheres increases disorder. ACS Nano, 18(34), 23067-23076. doi:10.1021/acsnano.4c05222. [PubMan] : Groza, R., Schmidt, K., Müller, P. M., Ronchi, P., Schlack-Leigers, C., Neu, U., Puchkov, D., Dimova, R., Matthaeus, C., Taraska, J., Weikl, T. R., & Ewers, H. (2024). Adhesion energy controls lipid binding-mediated endocytosis. Nature Communications, 15: 2767. doi:10.1038/s41467-024-47109-7. [PubMan] : Pettmann, J., Awada, L., Różycki, B., Huhn, A., Faour, S., Kutuzov, M., Limozin, L., Weikl, T. R., van der Merwe, P. A., Robert, P., & Dushek, O. (2023). Mechanical forces impair antigen discrimination by reducing differences in T-cell receptor/peptide–MHC off-rates. The EMBO Journal, 42(7): e111841. doi:10.15252/embj.2022111841. [PubMan] : Kav, B., Weikl, T. R., & Schneck, E. (2023). Measuring pico-Newton forces with lipid anchors as force sensors in molecular dynamics simulations. The Journal of Physical Chemistry B, 127(18), 4081-4089. doi:10.1021/acs.jpcb.3c00063. [PubMan] : Asadollahi, K., Rajput, S., de Zhang, L. A., Ang, C.-S., Nie, S., Williamson, N. A., Griffin, M. D. W., Bathgate, R. A. D., Scott, D. J., Weikl, T. R., Jameson, G. N. L., & Gooley, P. R. (2023). Unravelling the mechanism of neurotensin recognition by neurotensin receptor 1. Nature Communications, 14: 8155. doi:10.1038/s41467-023-44010-7. [PubMan] : Weikl, T. R. (2022). A protein curvature for sensing touch. Proceedings of the National Academy of Sciences of the United States of America, 119(42): e2214536119. doi:10.1073/pnas.2214536119. [PubMan] : Chakrabarti, K. S., Olsson, S., Pratihar, S., Giller, K., Overkamp, K., Lee, K. O., Gapsys, V., Ryu, K.-S., de Groot, B. L., Noé, F., Becker, S., Lee, D., Weikl, T. R., & Griesinger, C. (2022). A litmus test for classifying recognition mechanisms of transiently binding proteins. Nature Communications, 13: 3792. doi:10.1038/s41467-022-31374-5. [PubMan] : Bonazzi, F., Hall, C., & Weikl, T. R. (2021). Membrane morphologies induced by mixtures of arc-shaped particles with opposite curvature. Soft Matter, 17(2), 268-275. doi:10.1039/C9SM02476J. [PubMan] : Pandey, P. R., Różycki, B., Lipowsky, R., & Weikl, T. R. (2021). Structural variability and concerted motions of the T cell receptor - CD3 complex. eLife, 10: e67195. doi:10.7554/eLife.67195. [PubMan] : Różycki, B., & Weikl, T. R. (2021). Cooperative stabilization of close-contact zones leads to sensitivity and selectivity in T-cell recognition. Cells, 10(5): 1023. doi:10.3390/cells10051023. [PubMan] : Kav, B., Demé, B., Gege, C., Tanaka, M., Schneck, E., & Weikl, T. R. (2021). Interplay of trans- and cis-interactions of glycolipids in membrane adhesion. Frontiers in Molecular Biosciences, 8 (1047): 754654. doi:10.3389/fmolb.2021.754654. [PubMan] : Zhou, R., Weikl, T. R., & Ma, Y.-q. (2020). Theoretical modeling of interactions at the bio-nano interface. Nanoscale, 12(19), 10426-10429. doi:10.1039/D0NR90092C. [PubMan] : Kav, B., Grafmüller, A., Schneck, E., & Weikl, T. R. (2020). Weak carbohydrate-carbohydrate interactions in membrane adhesion are fuzzy and generic. Nanoscale, 12(33), 17342-17353. doi:10.1039/D0NR03696J. [PubMan] : Weikl, T. R., & Hemmateenejad, B. (2020). Accessory mutations balance the marginal stability of the HIV-1 protease in drug resistance. Proteins: Structure, Function, and Bioinformatics, 88(3), 476-484. doi:10.1002/prot.25826. [PubMan] : Bonazzi, F., & Weikl, T. R. (2019). Membrane morphologies induced by arc-shaped scaffolds are determined by arc angle and coverage. Biophysical Journal, 116(7), 1239-1247. doi:10.1016/j.bpj.2019.02.017. [PubMan] : Mobaraki, N., Hemmateenejad, B., Weikl, T. R., & Sakhteman, A. (2019). On the relationship between docking scores and protein conformational changes in HIV-1 protease. Journal of molecular graphics and modelling, 91, 186-193. doi:10.1016/j.jmgm.2019.06.011. [PubMan] : Weikl, T. R., Hu, J., Kav, B., & Różycki, B. (2019). Binding and segregation of proteins in membrane adhesion: theory, modeling, and simulations. Advances in Biomembranes and Lipid Self-Assembly, 30, 159-194. doi:10.1016/bs.abl.2019.10.004. [PubMan] : Steinkühler, J., Różycki, B., Alvey, C., Lipowsky, R., Weikl, T. R., Dimova, R., & Discher, D. E. (2019). Membrane fluctuations and acidosis regulate cooperative binding of “marker of self” CD47 with macrophage checkpoint receptor SIRPα. Journal of Cell Science, 132: JCS216770. doi:10.1242/jcs.216770. [PubMan] : Steinkühler, J., Różycki, B., Alvey, C., Lipowsky, R., Weikl, T. R., Dimova, R., & Discher, D. E. (2019). Membrane fluctuations and acidosis regulate cooperative binding of “marker of self” CD47 with macrophage checkpoint receptor SIRPα. Journal of Cell Science, 132(4): JCS216770. doi:10.1242/jcs.216770. [PubMan]