Researcher Portfolio

 
   

Czarnecki, Oliver

Schulman, Brenda / Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Max Planck Society  

 

Researcher Profile

 
Position: Schulman, Brenda / Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Max Planck Society
Researcher ID: https://pure.mpg.de/cone/persons/resource/persons276000

External references

 

Publications

 
 
 : Chrustowicz, J., Sherpa, D., Li, J., Langlois, C. R., Papadopoulou, E. C., Tung Vu, D., Hehl, L. A., Karayel, Ö., Beier, V., Gronau, S. v., Müller, J., Prabu, J. R., Mann, M., Kleiger, G., Alpi, A. F., & Schulman, B. A. (2024). Multisite phosphorylation dictates selective E2-E3 pairing as revealed by Ubc8/UBE2H-GID/CTLH assemblies. Molecular Cell, 84(2), 293-308. doi:10.1016/j.molcel.2023.11.027. [PubMan] : Langlois, C. R., Beier, V., Karayel, O., Chrustowicz, J., Sherpa, D., Mann, M., & Schulman, B. A. (2022). A GID E3 ligase assembly ubiquitinates an Rsp5 E3 adaptor and regulates plasma membrane transporters. EMBO Reports, 23(6): e53835. doi:10.15252/embr.202153835. [PubMan] : Sherpa, D., Chrustowicz, J., Qiao, S., Langlois, C. R., Hehl, L. A., Gottemukkala, K. V., Hansen, F. M., Karayel, O., von Gronau, S., Prabu, J. R., Mann, M., Alpi, A. F., & Schulman, B. A. (2021). GID E3 ligase supramolecular chelate assembly configures multipronged ubiquitin targeting of an oligomeric metabolic enzyme. Molecular Cell, 81(11), 2445-2459.e13. doi:10.1016/j.molcel.2021.03.025. [PubMan] : Karayel, O., Michaelis, A. C., Mann, M., Schulman, B. A., & Langlois, C. R. (2020). DIA-based systems biology approach unveils E3 ubiquitin ligase-dependent responses to a metabolic shift. Proceedings of the National Academy of Sciences of the United States of America, 117(51): 202020197. doi:10.1073/pnas.2020197117. [PubMan] : Langlois, C. R., Qiao, S., Sherpa, D., Chrustowicz, J., Beier, V., Karayel, O., & Schulman, B. (2020). The GID E3 Ubiquitin Ligase Converts Between Anticipatory and Active States Through the Incorporation of Swappable Substrate Receptors. The FASEB Journal, 34, 1-1. [PubMan] : Qiao, S., Langlois, C. R., Chrustowicz, J., Sherpa, D., Karayel, O., Hansen, F. M., Beier, V., von Gronau, S., Bollschweiler, D., Schäfer, T., Alpi, A. F., Mann, M., Prabu, J. R., & Schulman, B. (2020). Interconversion between Anticipatory and Active GID E3 Ubiquitin Ligase Conformations via Metabolically Driven Substrate Receptor Assembly. MOLECULAR CELL, 77(1), 150-163.e9. doi:10.1016/j.molcel.2019.10.009. [PubMan] : Banks, H. T., Flores, K. B., Langlois, C. R., Serio, T. R., & Sindi, S. S. (2018). Estimating the rate of prion aggregate amplification in yeast with a generation and structured population model. Inverse Problems in Science and Engineering, 26(2), 257-279. doi:10.1080/17415977.2017.1316498. [PubMan] : Langlois, C. R., Pei, F., Sindi, S. S., & Serio, T. R. (2016). Distinct Prion Domain Sequences Ensure Efficient Amyloid Propagation by Promoting Chaperone Binding or Processing In Vivo. PLoS Genetics, 12(11): e1006417. doi:10.1371/journal.pgen.1006417. [PubMan] : Langlois, C. R., & Wollert, T. (2016). Digesting cytotoxic stressors - an unconventional mechanism to induce autophagy. The FEBS Journal, 283(21), 3886-3888. doi:10.1111/febs.13919. [PubMan]