Researcher Portfolio

 
   

Heckel, David G.

Department of Entomology, Prof. D. G. Heckel, MPI for Chemical Ecology, Max Planck Society  

 

Researcher Profile

 
Position: Department of Entomology, Prof. D. G. Heckel, MPI for Chemical Ecology, Max Planck Society
Additional IDs: ORCID: https://orcid.org/0000-0001-8991-2150
IRIS: 2185
Researcher ID: https://pure.mpg.de/cone/persons/resource/persons3916

External references

 

Publications

 
  (1 - 25 of 274)
 : Dam, M. I., Ding, B.-J., Brauburger, K., Wang, H.-L., Powell, D., Groot, A. T., Heckel, D. G., & Löfstedt, C. (2025). Sex pheromone biosynthesis in the Oriental fruit moth Grapholita molesta involves Δ8 desaturation. Insect Biochemistry and Molecular Biology, 180: 104307. doi:10.1016/j.ibmb.2025.104307. [PubMan] : Amado, D., Koch, E. L., Cordeiro, E. M. G., Araujo, W. A., Garcia, A. A. F., Heckel, D. G., Montejo-Kovacevich, G., North, H. L., Corrêa, A. S., Jiggins, C. D., & Omoto, C. (2025). The genetic architecture of resistance to flubendiamide insecticide in Helicoverpa armigera (Hübner). PLOS ONE, 20(1): e0318154. doi:10.1371/journal.pone.0318154. [PubMan] : Liu, Z., Liao, C., Zou, L., Jin, M., Shan, Y., Quan, Y., Yao, H., Zhang, L., Wang, P., Liu, Z., Wang, N., Li, A., Liu, K., Heckel, D. G., Wu, K., & Xiao, Y. (2024). Retrotransposon-mediated disruption of a chitin synthase gene confers insect resistance to Bacillus thuringiensis Vip3Aa toxin. PLOS Biology, 22(7): e3002704. doi:10.1371/journal.pbio.3002704. [PubMan] : Roy, A., Wäschke, N., Chattington, S., Modlinger, R., Chakraborty, A., Chirere, T. E., Larsson, M. C., Heckel, D. G., Anderson, P., & Schlyter, F. (2024). Diet breadth in two polyphagous Spodoptera moths in a wide range of host and non-host plants and the potential for range expansion. bioRxiv: the preprint server for biology. doi:10.1101/2024.07.25.605058. [PubMan] : Beran, F., & Heckel, D. G. (2024). Escalation by duplication: Milkweed bug trumps Monarch butterfly. Molecular Ecology, 33(14): e17443. doi:10.1111/mec.17443. [PubMan] : Güney, G., Cedden, D., Hänniger, S., Hegedus, D. D., Heckel, D. G., & Toprak, U. (2024). Peritrophins are involved in the defense against Bacillus thuringiensis and nucleopolyhedrovirus formulations in Spodoptera littoralis (Lepidoptera: Noctuidae). Insect Biochemistry and Molecular Biology, 166: 104073. doi:10.1016/j.ibmb.2024.104073. [PubMan] : de Fouchier, A., Fruitet, E., Lievers, R., Kuperus, P., Emerson, J., Gould, F., Heckel, D. G., & Groot, A. T. (2023). Lipases and carboxylesterases affect moth sex pheromone compounds involved in interspecific mate recognition. Nature Communications, 14: 7505. doi:10.1038/s41467-023-43100-w. [PubMan] : Jin, M., Shan, Y., Peng, Y., Wang, W., Zhang, H., Liu, K., Heckel, D. G., Wu, K., Tabashnik, B. E., & Xiao, Y. (2023). Downregulation of a transcription factor associated with resistance to Bt toxin Vip3Aa in the invasive fall armyworm. Proceedings of the National Academy of Sciences of the United States of America, 120(44): e2306932120. doi:10.1073/pnas.2306932120. [PubMan] : Mazumdar, T., Hänniger, S., Shukla, S. P., Murali, A., Bartram, S., Heckel, D. G., & Boland, W. (2023). 8-HQA adjusts the number and diversity of bacteria in the gut microbiome of Spodoptera littoralis. Frontiers in Microbiology, 14: 1075557. doi:10.3389/fmicb.2023.1075557. [PubMan] : Badenes-Pérez, F. R., & Heckel, D. G. (2023). Intraspecific and interstage similarities in host-plant preference in the diamondback moth (Lepidoptera: Plutellidae). Horticulturae, 9(1): 39. doi:10.3390/horticulturae9010039. [PubMan] : Wortel, M. T., Agashe, D., Bailey, S. F., Bank, C., Bisschop, K., Blankers, T., Cairns, J., Colizzi, E. S., Cusseddu, D., Desai, M. M., van Dijk, B., Egas, M., Ellers, J., Groot, A. T., Heckel, D. G., Johnson, M. L., Kraaijeveld, K., Krug, J., Laan, L., Lässig, M., Lind, P. A., Meijer, J., Noble, L. M., Okasha, S., Rainey, P. B., Rozen, D. E., Shitut, S., Tans, S. J., Tenaillon, O., Teotónio, H., de Visser, J. A. G. M., Visser, M. E., Vroomans, R. M. A., Werner, G. D. A., Wertheim, B., & Pennings, P. S. (2023). Towards evolutionary predictions: Current promises and challenges. Evolutionary Applications, 16(1), 3-21. doi:10.1111/eva.13513. [PubMan] : Bras, A., Roy, A., Heckel, D. G., Anderson, P., & Green, K. K. (2022). Pesticide resistance in arthropods: Ecology matters too. Ecology Letters, 25(8), 1746-1759. doi:10.1111/ele.14030. [PubMan] : Fu, J., Xu, S., Lu, H., Li, F., Li, S., Chang, L., Heckel, D. G., Bock, R., & Zhang, J. (2022). Resistance to RNA interference by plant-derived double-stranded RNAs but not plant-derived short interfering RNAs in Helicoverpa armigera. Plant, Cell and Environment, 45(6), 1930-1941. doi:10.1111/pce.14314. [PubMan] : Heckel, D. G. (2022). Perspectives on gene copy number variation and pesticide resistance. Pest Management Science, 78(1), 12-18. doi:10.1002/ps.6631. [PubMan] : Walsh, T., Heckel, D. G., Wu, Y., Downes, S., Gordon, K., & Oakeshott, J. (2022). Determinants of insecticide resistance evolution: Comparative analysis among Heliothines. Annual Review of Entomology, 67, 387-406. doi:10.1146/annurev-ento-080421-071655. [PubMan] : Ward, C. M., Perry, K. D., Baker, G., Powis, K., Heckel, D. G., & Baxter, S. W. (2021). A haploid diamondback moth (Plutella xylostella L.) genome assembly resolves 31 chromosomes and identifies a diamide resistance mutation. Insect Biochemistry and Molecular Biology, 138: 103622. doi:10.1016/j.ibmb.2021.103622. [PubMan] : Krempl, C., Joußen, N., Reichelt, M., Kai, M., Vogel, H., & Heckel, D. G. (2021). Consumption of gossypol increases fatty acid-amino acid conjugates in the cotton pests Helicoverpa armigera and Heliothis virescens. Archives of Insect Biochemistry and Physiology, 108(3): e21843. doi:10.1002/arch.21843. [PubMan] : Güney, G., Cedden, D., Hänniger, S., Heckel, D. G., Coutu, C., Hegedus, D. D., Mutlu, D. A., Suludere, Z., Sezen, K., Güney, E., & Toprak, U. (2021). Silencing of an ABC transporter, but not a cadherin, decreases the susceptibility of Colorado potato beetle larvae to Bacillus thuringiensis ssp. tenebrionis Cry3Aa toxin. Archives of Insect Biochemistry and Physiology, 108(2): e21834. doi:10.1002/arch.21834. [PubMan] : Nam, H. Y., Kim, J. H., Lee, S. H., Heckel, D. G., & Kim, J. (2021). Development of a LAMP-based molecular species diagnosis method for four major agricultural pests in the genus Spodoptera (Lepidoptera: Noctuidae). Insects, 12(10): 883. doi:10.3390/insects12100883. [PubMan] : Gao, K., van Wijk, M., Dang, Q. T. D., Heckel, D. G., Zalucki, M. P., & Groot, A. T. (2021). How healthy is your mate? Sex-specific consequences of parasite infections in the moth Helicoverpa armigera. Animal Behaviour, 178, 105-113. doi:10.1016/j.anbehav.2021.06.005. [PubMan] : Kim, J., Nam, H. Y., Kwon, M., Kim, H. J., Yi, H.-J., Hänniger, S., Unbehend, M., & Heckel, D. G. (2021). Development of a simple and accurate molecular tool for Spodoptera frugiperda species identification using LAMP. Pest Management Science, 77(7), 3145-3153. doi:10.1002/ps.6350. [PubMan] : Joußen, N., & Heckel, D. G. (2021). Saltational evolution of a pesticide-metabolizing cytochrome P450 in a global crop pest. Pest Management Science, 77(7), 3325-3332. doi:10.1002/ps.6376. [PubMan] : Sell, M. P., Amezian, D., Heckel, D. G., & Pauchet, Y. (2021). Biological function of solanaceous withanolides and their effects on herbivorous insects. Annual Plant Reviews, 4(2), 625-648. doi:10.1002/9781119312994.apr0779. [PubMan] : Doğan, C., Hänniger, S., Heckel, D. G., Coutu, C., Hegedus, D. D., Crubaug, L., Groves, R. L., Mutlu, D. A., Suludere, Z., Bayram, Ş., & Toprak, U. (2021). Characterization of calcium signaling proteins from the fat body of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae): Implications for diapause and lipid metabolism. Insect Biochemistry and Molecular Biology, 133: 103549. doi:10.1016/j.ibmb.2021.103549. [PubMan] : Güney, G., Toprak, U., Hegedus, D. D., Bayram, Ş., Coutu, C., Bekkaoui, D., Baldwin, D., Heckel, D. G., Hänniger, S., Cedden, D., Mutlu, D. A., & Suludere, Z. (2021). A look into Colorado potato beetle lipid metabolism through the lens of lipid storage droplet proteins. Insect Biochemistry and Molecular Biology, 133: 103473. doi:10.1016/j.ibmb.2020.103473. [PubMan]