Researcher Portfolio
Schneider, Bernd
Research Group Biosynthesis / NMR, MPI for Chemical Ecology, Max Planck Society
Researcher Profile
Position: Research Group Biosynthesis / NMR, MPI for Chemical Ecology, Max Planck Society
Additional IDs: IRIS: 2469
Researcher ID: https://pure.mpg.de/cone/persons/resource/persons4159
Publications
(1 - 25 of 312)
: Prieto, A., Paetz, C., Schneider, B., & Otalvaro, F. (2024). Synthesis of 5-phenyl-1,8-naphthalic anhydrides: An exercise in acenaphthene chemistry. Tetrahedron Letters, 135: 154907. doi:10.1016/j.tetlet.2024.154907. [PubMan] : Chen, Y., Dahse, H.-M., Paetz, C., & Schneider, B. (2022). Precursor-directed synthesis of apoptosis-initiating N-hydroxyalkyl phenylbenzoisoquinolindione alkaloids. ChemistryOpen, 11(12): e202200157. doi:10.1002/open.202200157. [PubMan] : Noorbakhsh, F., Zare, S., Firuzi, O., Sakhteman, A., Chandran, J. N., Schneider, B., & Jassbi, A. R. (2022). Phytochemical analysis and biological activity of Salvia compressa Vent. Iranian Journal of Pharmaceutical Research, 21(1): e127031. doi:10.5812/ijpr-127031. [PubMan] : Napagoda, M., Gerstmeier, J., Butschek, H., Lorenz, S., Soyza, S. D., Qader, M., Nagahawatte, A., Wijayaratne, G. B., Schneider, B., Svatoš, A., Jayasinghe, L., Koeberle, A., & Werz, O. (2022). Plectranthus zeylanicus: A rich source of secondary metabolites with antimicrobial, disinfectant and anti-inflammatory activities. Pharmaceuticals / Molecular Diversity Preservation International, 15(4): 436. doi:10.3390/ph15040436. [PubMan] : Förster, C., Handrick, V., Ding, Y., Nakamura, Y., Paetz, C., Schneider, B., Castro-Falcón, G., Hughes, C. C., Luck, K., Poosapati, S., Kunert, G., Huffaker, A., Gershenzon, J., Schmelz, E. A., & Köllner, T. G. (2022). Biosynthesis and antifungal activity of fungus-induced O-methylated flavonoids in maize. Plant Physiology, 188(1), 167-190. doi:10.1093/plphys/kiab496. [PubMan] : Jassbi, A. R., Mirzaei, H. H., Firuzi, O., Pirhadi, S., Asadollahi, M., Chandran, J. N., & Schneider, B. (2021). Cytotoxic abietane-type diterpenoids from roots of Salvia spinosa and their in Silico pharmacophore modeling. Natural Product Research, 3183-3188. doi:10.1080/14786419.2021.1952202. [PubMan] : Heiling, S., Cortés Llorca, L., Li, J., Gase, K., Schmidt, A., Schaefer, M., Schneider, B., Halitschke, R., Gaquerel, E., & Baldwin, I. T. (2021). Specific decorations of 17-hydroxygeranyllinalool diterpene glycosides solve the autotoxicity problem of chemical defense in Nicotiana attenuata. The Plant Cell, 33(5), 1748-1770. doi:10.1093/plcell/koab048. [PubMan] : Dudek, B., Warskulat, A.-C., Vogel, H., Wielsch, N., Menezes, R. C., Hupfer, Y., Paetz, C., Gebauer-Jung, S., Svatoš, A., & Schneider, B. (2021). An integrated—omics/chemistry approach unravels enzymatic and spontaneous steps to form flavoalkaloidal nudicaulin pigments in flowers of Papaver nudicaule L. International Journal of Molecular Sciences, 22(8): 4129. doi:10.3390/ijms22084129. [PubMan] : Soh, D., Icon, N. E., Satchet, E. M. T., Defokou, U. D., Schneider, B., Vidari, G., & Nyassé, B. (2021). Antiproliferative activity of semisynthetic xylopic acid derivatives. Natural Product Research, 36(5), 1288-1295. doi:10.1080/14786419.2021.1876045. [PubMan] : Jamebozorgi, F. H., Yousefzadi, M., Firuzi, O., Nazemi, M., Zare, S., Chandran, J. N., Schneider, B., Baldwin, I. T., & Jassbi, A. R. (2021). Cytotoxic furanosesquiterpenoids and steroids from Ircinia mutans sponges. Pharmaceutical Biology, 59(1), 575-583. doi:10.1080/13880209.2021.1920620. [PubMan] : Zare, S., Hatam, G., Firuzi, O., Bagheri, A., Chandran, J. N., Schneider, B., Paetz, C., Pirhadi, S., & Jassbi, A. R. (2021). Antileishmanial and pharmacophore modeling of abietane-type diterpenoids extracted from the roots of Salvia hydrangea. Journal of Molecular Structure, 1228: 129447. doi:10.1016/j.molstruc.2020.129447. [PubMan] : Zare, S., Mirkhani, H., Firuzi, O., Moheimanian, N., Asadollahi, M., Pirhadi, S., Chandran, J. N., Schneider, B., & Jassbi, A. R. (2020). Antidiabetic and cytotoxic polyhydroxylated oleanane and ursane type triterpenoids from Salvia grossheimii. Bioorganic Chemistry, 104: 104297. doi:10.1016/j.bioorg.2020.104297. [PubMan] : Dudek, B., Schneider, B., Hilger, H. H., Stavenga, D. G., & Martínez-Harms, J. (2020). Highly different flavonol content explains geographic variations in the UV reflecting properties of flowers of the corn poppy, Papaver rhoeas (Papaveraceae). Phytochemistry, 178: 112457. doi:10.1016/j.phytochem.2020.112457. [PubMan] : Scognamiglio, M., & Schneider, B. (2020). Identification of potential allelochemicals from donor plants and their synergistic effects on the metabolome of Aegilops geniculata. Frontiers in Plant Science, 11: 1046. doi:10.3389/fpls.2020.01046. [PubMan] : Rodriguez, H. A., Hidalgo, W. F., Sanchez, J. D., Menezes, R. C., Schneider, B., Arango, R. E., & Morales, J. G. (2020). Differential regulation of jasmonic acid pathways in resistant (Calcutta 4) and susceptible (Williams) banana genotypes during the interaction with Pseudocercospora fijiensis. Plant Pathology, 69(5), 872-882. doi:10.1111/ppa.13165. [PubMan] : Désiré, S., Ernestine, N., Bruno, T. B., Lazare, S. S., Ulrich, D. D., Lateef, M., Schneider, B., Ali, M. S., & Barthélemy, N. (2019). A new dammarane type triterpene glucoside from the aerial parts of Gouania longipetala (Rhamnaceae). Natural Product Research, 35(19), 3192-3203. doi:10.1080/14786419.2019.1690483. [PubMan] : Sree, K. S., Dahse, H.-M., Chandran, J. N., Schneider, B., Jahreis, G., & Appenroth, K. J. (2019). Duckweed for human nutrition: No cytotoxic and no anti-proliferative effects on human cell lines. Plant Foods for Human Nutrition, 74(2), 223-224. doi:10.1007/s11130-019-00725-x. [PubMan] : Mirzaei, H. H., Firuzi, O., Chandran, J. N., Schneider, B., & Jassbi, A. R. (2019). Two antiproliferative seco-4,5-abietane diterpenoids from roots of Salvia ceratophylla L. Phytochemistry Letters, 29, 129-133. doi:10.1016/j.phytol.2018.11.017. [PubMan] : Chen, Y., Paetz, C., & Schneider, B. (2019). Organ-specific distribution and non-enzymatic conversions indicate a metabolic network of phenylphenalenones in Xiphidium caeruleum. Phytochemistry, 159, 30-38. doi:10.1016/j.phytochem.2018.12.004. [PubMan] : Dudek, B., Schnurrer, F., Dahse, H.-M., Paetz, C., Warskulat, A.-C., Weigel, C., Voigt, K., & Schneider, B. (2018). Formation of nudicaulins in vivo and in vitro and the biomimetic synthesis and bioactivity of O-methylated nudicaulin derivatives. Molecules, 23(12): 3357. doi:10.3390/molecules23123357. [PubMan] : Krieger, C., Roselli, S., Galati, G., Kellner-Thielmann, S., Schneider, B., Grosjean, J., Orly, A., Ritchie, D., Matern, U., Bourgaud, F., & Hehn, A. (2018). The CYP71AZ P450 subfamily: a driving factor for the diversification of coumarin biosynthesis in apiaceous plants. Frontiers in Plant Science, 9: 820. doi:10.3389/fpls.2018.00820. [PubMan] : Martínez-Harms, J., Warskulat, A.-C., Dudek, B., Kunert, G., Lorenz, S., Hansson, B. S., & Schneider, B. (2018). Biosynthetic and functional color-scent associations in flowers of Papaver nudicaule and its impact on pollinators. Chembiochem, 19(14), 1553-1562. doi:10.1002/cbic.201800155. [PubMan] : Stavrinides, A. K., Tatsis, E. C., Dang, T.-T., Caputi, L., Stevenson, C. E. M., Lawson, D. M., Schneider, B., & O'Connor, S. E. (2018). Discovery of a short-chain dehydrogenase from Catharanthus roseus that produces a new monoterpene indole alkaloid. Chembiochem, 19(9), 940-948. doi:10.1002/cbic.201700621. [PubMan] : Carqueijeiro, I., de Bernonville, T. D., Lanoue, A., Dang, T.-T., Teijaro, C., Paetz, C., Billet, K., Mosquera, A., Oudin, A., Besseau, S., Papon, N., Glévarec, G., Atehortùa, L., Clastre, M., Giglioli-Guivarc'h, N., Schneider, B., St-Pierre, B., Andrade, R. B., O’Connor, S. E., & Courdavault, V. (2018). A BAHD acyltransferase catalyzing 19-O-acetylation of tabersonine derivatives in roots of Catharanthus roseus enables combinatorial synthesis of monoterpene indole alkaloids. The Plant Journal, 49(3), 469-484. doi:10.1111/tpj.13868. [PubMan] : Feistel, F., Paetz, C., Menezes, R. C., Veit, D., & Schneider, B. (2018). Acylated quinic acids are the main salicortin metabolites in the lepidopteran specialist herbivore Cerura vinula. Journal of Chemical Ecology, 44, 497-509. doi:10.1007/s10886-018-0945-1. [PubMan]