Researcher Portfolio
Fabri, Andreas
Algorithms and Complexity, MPI for Informatics, Max Planck Society
Researcher Profile
Position: Algorithms and Complexity, MPI for Informatics, Max Planck Society
Researcher ID: https://pure.mpg.de/cone/persons/resource/persons44397
Publications
(1 - 25 of 50)
: Choudhary, A., Kerber, M., & Raghvendra, S. (2019). Polynomial-Sized Topological Approximations Using the Permutahedron. Discrete & Computational Geometry, 61(1), 42-80. doi:10.1007/s00454-017-9951-2. [PubMan] : Pritam, S., & Kerber, M. (2016). Homotopy Equivalence Between Voronoi Medusa and Delaunay Medusa. Retrieved from http://arxiv.org/abs/1604.03302. [PubMan] : Choudhary, A., Kerber, M., & Raghvendra, S. (2016). Polynomial-Sized Topological Approximations Using The Permutahedron. Retrieved from http://arxiv.org/abs/1601.02732. [PubMan] : Kerber, M., Morozov, D., & Nigmetov, A. (2016). Geometry Helps to Compare Persistence Diagrams. In M. Goodrich, & M. Mitzenmacher (Eds. ), Proceedings of the Eighteenth Workshop on Algorithm Engineering and Experiments (pp. 103-112). Philadelphia, PA: SIAM. doi:10.1137/1.9781611974317.9. [PubMan] : Kerber, M., Morozov, D., & Nigmetov, A. (2016). Geometry Helps to Compare Persistence Diagrams. Retrieved from http://arxiv.org/abs/1606.03357. [PubMan] : Kerber, M., Sheehy, D. R., & Skraba, P. (2016). Persistent Homology and Nested Dissection. In R. Krauthgamer (Ed. ), Proceedings of the Twenty-Seventh ACM-SIAM Annual Symposium on Discrete Algorithms (pp. 1234-1245). Philadelphia, PA: SIAM. doi:10.1137/1.9781611974331.ch86. [PubMan] : Choudhary, A., Kerber, M., & Raghvendra, S. (2016). Polynomial-Sized Topological Approximations Using the Permutahedron. In S. Fekete, & A. Lubiw (Eds. ), 32nd International Symposium on Computational Geometry. Wadern: Schloss Dagstuhl. doi:10.4230/LIPIcs.SoCG.2016.31. [PubMan] : Halperin, D., Kerber, M., & Shaharabani, D. (2015). The Offset Filtration of Convex Objects. In N. Bansal, & I. Finocchi (Eds. ), Algorithms -- ESA 2015 (pp. 705-716). Berlin: Springer. doi:10.1007/978-3-662-48350-3_59. [PubMan] : Kerber, M., & Sagraloff, M. (2015). Root Refinement for Real Polynomials using Quadratic Interval Refinement. Journal of Computational and Applied Mathematics, 280, 377-395. doi:10.1016/j.cam.2014.11.031. [PubMan] : Choudhary, A., & Kerber, M. (2015). Local Doubling Dimension of Point Sets. In Proceedings of the 27th Canadian Conference on Computational Geometry (pp. 156-164). Kingston: Queen’s University School of Computing. [PubMan] : Halperin, D., Kerber, M., & Shaharabani, D. (2014). The Offset Filtration of Convex Objects. Retrieved from http://arxiv.org/abs/1407.6132. [PubMan] : Kerber, M., & Raghvendra, S. (2014). Approximation and Streaming Algorithms for Projective Clustering via Random Projections. Retrieved from http://arxiv.org/abs/1407.2063. [PubMan] : Choudhary, A., & Kerber, M. (2014). Local Doubling Dimension of Point Sets. Retrieved from http://arxiv.org/abs/1406.4822. [PubMan] : Iglesias-Ham, M., Kerber, M., & Uhler, C. (2014). Sphere Packing with Limited Overlap. Retrieved from http://arxiv.org/abs/1401.0468. [PubMan] : Bauer, U., Kerber, M., Reininghaus, J., & Wagner, H. (2014). PHAT - Persistent Homology Algorithms Toolbox. In H. Hong, & C. Yap (Eds. ), Mathematical Software - ICMS 2014 (pp. 137-143). Berlin: Springer. doi:10.1007/978-3-662-44199-2_24. [PubMan] : Iglesias-Ham, M., Kerber, M., & Uhler, C. (2014). Sphere Packing with Limited Overlap. In Proceedings of the 2014 Canadian Conference on Computational Geometry (pp. 155-161). [PubMan] : Bauer, U., Kerber, M., & Reininghaus, J. (2014). Clear and Compress: Computing Persistent Homology in Chunks. In P.-T. Bremer, I. Hotz, V. Pascucci, & R. Peikert (Eds. ), Topological Methods in Data Analysis and Visualization III (pp. 103-117). Cham: Springer International. doi:10.1007/978-3-319-04099-8_7. [PubMan] : Gu, C., Guibas, L. J., & Kerber, M. (2014). Topology-driven Trajectory Synthesis with an Example on Retinal Cell Motions. In D. Brown, & B. Morgenstern (Eds. ), Algorithms in Bioinformatics (pp. 326-339). Berlin: Springer. doi:10.1007/978-3-662-44753-6_24. [PubMan] : Bauer, U., Kerber, M., & Reininghaus, J. (2014). Distributed Computation of Persistent Homology. In C. C. McGeoch, & U. Meyer (Eds. ), ALENEX14 (pp. 31-38). Philadelphia, PA: SIAM. doi:10.1137/1.9781611973198.4. [PubMan] : Kerber, M. (2013). Embedding the Dual Complex of Hyper-rectangular Partitions. Retrieved from http://arxiv.org/abs/1207.3202. [PubMan] : Kerber, M., & Edelsbrunner, H. (2013). 3D Kinetic Alpha Complexes and their Implementation. In P. Sanders (Ed. ), Proceedings of the 15th Meeting on Algorithm Engineering and Experiments (pp. 70-77). Philadelphia, PA: SIAM. doi:10.1137/1.9781611972931.6. [PubMan] : Kerber, M., Sheehy, D. R., & Skraba, P. (2013). Persistent Homology and Nested Dissection. In 23rd Fall Workshop on Computational Geometry 2013. [PubMan] : Tang, H., Kerber, M., Huang, Q., & Guibas, L. J. (2013). Locating Lucrative Passengers for Taxicab Drivers. In C. A. Knoblock, P. Kröger, J. Krumm, M. Schneider, & P. Widmayer (Eds. ), 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (pp. 494-497). New York, NY: ACM. doi:10.1145/2525314.2525471. [PubMan] : Kerber, M. (2013). Embedding the Dual Complex of Hyper-rectangular Partitions. Journal of Computational Geometry, 4(1), 13-37. Retrieved from https://journals.carleton.ca/jocg/index.php/jocg/article/view/104/39. [PubMan] : Chen, C., & Kerber, M. (2013). An Output-sensitive Algorithm for Persistent Homology. Computational Geometry: Theory and Applications, 46(4), 435-447. doi:10.1016/j.comgeo.2012.02.010. [PubMan]