Researcher Portfolio
Dr. Schmitt, Susanne
Algorithms and Complexity, MPI for Informatics, Max Planck Society
Researcher Profile
Position: Algorithms and Complexity, MPI for Informatics, Max Planck Society
Researcher ID: https://pure.mpg.de/cone/persons/resource/persons45404
Publications
: Burnikel, C., Funke, S., Mehlhorn, K., Schirra, S., & Schmitt, S. (2009). A Separation Bound for Real Algebraic Expressions. Algorithmica, 55, 14-28. doi:10.1007/s00453-007-9132-4. [PubMan] : Mourrain, B., Pion, S., Schmitt, S., Técourt, J.-P., Tsigaridas, E., & Wolpert, N. (2007). Algebraic Issues in Computational Geometry. In J.-D. Boissonnat, & M. Teillaud (Eds. ), Effective Computational Geometry for Curves and Surfaces (pp. 117-155). Berlin, Germany: Springer. [PubMan] : Funke, S., Klein, C., Mehlhorn, K., & Schmitt, S.(2006). Controlled Perturbation for Delaunay Triangulations (ACS-TR-121103-03). Instituut voor Wiskunde en Informatica, Groningen, NETHERLANDS: Algorithms for Complex Shapes with certified topology and numerics. [PubMan] : Berberich, E., Eigenwillig, A., Hemmer, M., Hert, S., Kettner, L., Mehlhorn, K., Reichel, J., Schmitt, S., Schömer, E., & Wolpert, N. (2005). EXACUS: Efficient and Exact Algorithms for Curves and Surfaces. In G. Stølting Brodal, & S. Leonardi (Eds. ), Algorithms -- ESA 2005 (pp. 155-166). Berlin, Germany: Springer. doi:10.1007/11561071_16. [PubMan] : Funke, S., Klein, C., Mehlhorn, K., & Schmitt, S. (2005). Controlled Perturbation for Delaunay Triangulations. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 1047-1056). Philadelphia, PA: SIAM. Retrieved from http://dl.acm.org/citation.cfm?id=1070432.1070582. [PubMan] : Schmitt, S. (2005). The diamond operator - Implementation of exact real algebraic numbers. In Computer Algebra in Scientific Computing, 8th International Workshop, CASC 2005 (pp. 355-366). Berlin, Germany: Springer. [PubMan] : Eigenwillig, A., Kettner, L., Krandick, W., Mehlhorn, K., Schmitt, S., & Wolpert, N. (2005). A Descartes Algorithm for Polynomials with Bit-Stream Coefficients. In V. G. Ganzha, E. W. Mayr, & E. V. Vorozhtsov (Eds. ), Computer Algebra in Scientific Computing (pp. 138-149). Berlin, Germany: Springer. doi:10.1007/11555964_12. [PubMan] : Schmitt, S., & Fousse, L.(2004). A comparison of polynomial evaluation schemes (MPI-I-2004-1-005). Saarbrücken: Max-Planck-Institut für Informatik. [PubMan] : Berberich, E., Eigenwillig, A., Hemmer, M., Hert, S., Kettner, L., Mehlhorn, K., Reichel, J., Schmitt, S., Schömer, E., Weber, D., & Wolpert, N.(2004). EXACUS: Efficient and Exact Algorithms for Curves and Surfaces (ECG-TR-361200-02). Sophia Antipolis: INRIA. [PubMan] : Schmitt, S.(2004). Common subexpression search in LEDA_reals: a study of the diamond-operator (ECG-TR-363109-01). Sophia Antipolis: INRIA. [PubMan] : Schmitt, S.(2004). Improved separation bounds for the diamond operator (ECG-TR-363108-01). Sophia Antipolis: INRIA. [PubMan] : Funke, S., Mehlhorn, K., Schmitt, S., Burnikel, C., Fleischer, R., & Schirra, S.(2004). The LEDA class real number - extended version (ECG-TR-363110-01). Sophia Antipolis: INRIA. [PubMan] : Schmitt, S., & Zimmer, H. G. (2003). Elliptic Curves: A Computational Approach. Berlin, Germany: de Gruyter. [PubMan] : Schmitt, S.(2003). The Diamond Operator for Real Algebraic Numbers (ECG-TR-243107-01). Sophia Antipolis, FRANCE: Effective Computational Geometry for Curves and Surfaces. [PubMan] : Burnikel, C., Funke, S., Mehlhorn, K., Schirra, S., & Schmitt, S. (2001). A Separation Bound for Real Algebraic Expressions. In Proceedings of the 9th Annual European Symposium on Algorithms (ESA-01) (pp. 254-265). Berlin, Germany: Springer. [PubMan]