Researcher Portfolio

 
   

Antoniadis, Antonios

Algorithms and Complexity, MPI for Informatics, Max Planck Society  

 

Researcher Profile

 
Position: Algorithms and Complexity, MPI for Informatics, Max Planck Society
Researcher ID: https://pure.mpg.de/cone/persons/resource/persons79185

External references

 

Publications

 
  (1 - 25 of 35)
 : Antoniadis, A., Coester, C., Eliáš, M., Polak, A., & Simon, B. (2023). Online Metric Algorithms with Untrusted Predictions. ACM Transactions on Algorithms, 19(2): 19, pp. 1-34. doi:10.1145/3582689. [PubMan] : Antoniadis, A., Coester, C., Eliáš, M., Polak, A., & Simon, B. (2023). Mixing Predictions for Online Metric Algorithms. Retrieved from https://arxiv.org/abs/2304.01781. [PubMan] : Antoniadis, A., Coester, C., Eliáš, M., Polak, A., & Simon, B. (2023). Mixing Predictions for Online Metric Algorithms. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, & J. Scarlett (Eds.), Proceedings of the 40th International Conference on Machine Learning (pp. 969-983). MLResearchPress. Retrieved from https://proceedings.mlr.press/v202/antoniadis23b.html. [PubMan] : Antoniadis, A., Gouleakis, T., Kleer, P., & Kolev, P. (2023). Secretary and Online Matching Problems with Machine Learned Advice. Discrete Optimization, 48(2): 100778. doi:10.1016/j.disopt.2023.100778. [PubMan] : Antoniadis, A., Boyar, J., Elias, M., Favrholdt, L. M., Hoeksma, R., Larsen, K. S., Polak, A., & Simon, B. (2023). Paging with Succinct Predictions. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, & J. Scarlett (Eds.), Proceedings of the 40th International Conference on Machine Learning (pp. 952-968). MLResearchPress. Retrieved from https://proceedings.mlr.press/v202/antoniadis23a.html. [PubMan] : Antoniadis, A., Boyar, J., Eliáš, M., Favrholdt, L. M., Hoeksma, R., Larsen, K. S., Polak, A., & Simon, B. (2022). Paging with Succinct Predictions. Retrieved from https://arxiv.org/abs/2210.02775. [PubMan] : Antoniadis, A., Jabbarzade Ganje, P., & Shahkarami, G. (2022). A Novel Prediction Setup for Online Speed-Scaling. Retrieved from https://arxiv.org/abs/2112.03082. [PubMan] : Antoniadis, A., Jabbarzade, P., & Shahkarami, G. (2022). A Novel Prediction Setup for Online Speed-Scaling. In A. Czumai, & Q. Xin (Eds.), 18th Scandinavian Symposium and Workshops on Algorithm Theory (pp. 1-20). Wadern: Schloss Dagstuhl. doi:10.4230/LIPIcs.SWAT.2022.9. [PubMan] : Antoniadis, A., Hoeksma, R., Kisfaludi-Bak, S., & Schewior, K. (2021). Online Search for a Hyperplane in High-Dimensional Euclidean Space. Retrieved from https://arxiv.org/abs/2109.04340. [PubMan] : Antoniadis, A., Fleszar, K., Hoeksma, R., & Schewior, K. (2020). A PTAS for Euclidean TSP with Hyperplane Neighborhoods. ACM Transactions on Algorithms, 16(3): 38. doi:10.1145/3383466. [PubMan] : Antoniadis, A., Gouleakis, T., Kleer, P., & Kolev, P. (2020). Secretary and Online Matching Problems with Machine Learned Advice. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), Advances in Neural Information Processing Systems 33 (pp. 7933-7944). Curran Associates, Inc. [PubMan] : Antoniadis, A., Coester, C., Eliáš, M., Polak, A., & Simon, B. (2020). Online Metric Algorithms with Untrusted Predictions. In H. Daumé, & A. Singh (Eds.), Proceedings of the 37th International Conference on Machine Learning (pp. 345-355). MLResearchPress. [PubMan] : Antoniadis, A., Kisfaludi-Bak, S., Laekhanukit, B., & Vaz, D. (2020). On the Approximability of the Traveling Salesman Problem with Line Neighborhoods. Retrieved from https://arxiv.org/abs/2008.12075. [PubMan] : Antoniadis, A., Garg, N., Kumar, G., & Kumar, N. (2020). Parallel Machine Scheduling to Minimize Energy Consumption. In S. Chawla (Ed.), Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms (pp. 2758-2769). Philadelphia, PA: SIAM. doi:10.5555/3381089.3381257. [PubMan] : Antoniadis, A., Cristi, A., Oosterwijk, T., & Sgouritsa, A. (2020). A General Framework for Energy-Efficient Cloud Computing Mechanisms. In A. El Fallah Seghruchni, G. Sukthankr, B. An, & N. Yorke-Smith (Eds.), AAMAS'20 (pp. 70-78). New York, NY: ACM. Retrieved from https://dl.acm.org/doi/10.5555/3398761.3398775. [PubMan] : Antoniadis, A., Gouleakis, T., Kleer, P., & Kolev, P. (2020). Secretary and Online Matching Problems with Machine Learned Advice. Retrieved from https://arxiv.org/abs/2006.01026. [PubMan] : Antoniadis, A., Barcelo, N., Nugent, M., Pruhs, K., & Scquizzato, M. (2019). A o(n)-Competitive Deterministic Algorithm for Online Matching on a Line. Algorithmica, 81(7), 2917-2933. doi:10.1007/s00453-019-00565-w. [PubMan] : Antoniadis, A., Biermeier, F., Cristi, A., Damerius, C., Hoeksma, R., Kaaser, D., Kling, P., & Nölke, L. (2019). On the Complexity of Anchored Rectangle Packing. In M. A. Bender, O. Svensson, & G. German (Eds.), 27th Annual European Symposium on Algorithms (pp. 1-14). Wadern: Schloss Dagstuhl. doi:10.4230/LIPIcs.ESA.2019.8. [PubMan] : Antoniadis, A., Fleszar, K., Hoeksma, R., & Schewior, K. (2019). A PTAS for Euclidean TSP with Hyperplane Neighborhoods. In T. M. Chan (Ed.), Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 1089-1105). Philadelphia, PA: SIAM. doi:10.1137/1.9781611975482.67. [PubMan] : Antoniadis, A., Huang, C.-C., & Ott, S. (2019). A Fully Polynomial-Time Approximation Scheme for Speed Scaling with Sleep State. Algorithmica, 81(9), 3725 -3745. doi:10.1007/s00453-019-00596-3. [PubMan] : Antoniadis, A., & Schewior, K. (2018). A Tight Lower Bound for Online Convex Optimization with Switching Costs. In R. Solis-Oba, & R. Fleischer (Eds.), Approximation and Online Algorithms (pp. 164-165). Berlin: Springer. doi:10.1007/978-3-319-89441-6_13. [PubMan] : Antoniadis, A., Fischer, C., & Tonnis, A. (2018). A Collection of Lower Bounds for Online Matching on the Line. In M. A. Bender, M. Farach-Colton, & M. A. Mosteiro (Eds.), LATIN 2018: Theoretical Informatics (pp. 52-65). Berlin: Springer. doi:10.1007/978-3-319-77404-6_5. [PubMan] : Antoniadis, A., & Cristi, A. (2018). Near Optimal Mechanism for Energy Aware Scheduling. In X. Deng (Ed.), Algorithmic Game Theory (pp. 31-42). Berlin: Springer. doi:10.1007/978-3-319-99660-8_4. [PubMan] : Antoniadis, A., Fleszar, K., Hoeksma, R., & Schewior, K. (2018). A PTAS for Euclidean TSP with Hyperplane Neighborhoods. Retrieved from http://arxiv.org/abs/1804.03953. [PubMan] : Adamaszek, A., Antoniadis, A., Kumar, A., & Mömke, T. (2018). Approximating Airports and Railways. In R. Niedermeier, & B. Vallée (Eds.), 35th Symposium on Theoretical Aspects of Computer Science (pp. 1-13). Wadern: Schloss Dagstuhl. doi:10.4230/LIPIcs.STACS.2018.5. [PubMan]