Researcher Portfolio
Gehrig, Dominik
MP Group Laquai: Organic Optoelectronics, MPI for Polymer Research, Max Planck Society, MPI for Polymer Research, Max Planck Society
Researcher Profile
Position: MP Group Laquai: Organic Optoelectronics, MPI for Polymer Research, Max Planck Society
Position: MPI for Polymer Research, Max Planck Society
Researcher ID: https://pure.mpg.de/cone/persons/resource/persons82251
Publications
(1 - 25 of 130)
: Mentesana, L., Hau, M., D'Amelio, P. B., Adreani, N. M., & Sánchez-Tójar, A. (2025). Do egg hormones have fitness consequences in wild birds? A systematic review and meta-analysis. Ecology Letters, 28(3): e70100. doi:10.1111/ele.70100. [PubMan] : Mentesana, L., Wang, H.-L., Hau, M., Isaksson, C., & Andersson, M. N. (2025). Variation in seed abundance predicts yolk fatty acid composition in a wild population of birds. bioRxiv: the preprint server for biology. doi:10.1101/2025.09.03.673935. [PubMan] : Elderbrock, E. K., Brown, G. M., Dochtermann, N. A., Galante, H., Hau, M., & Greives, T. J. (2025). Daily activity is repeatable but varies across the breeding season in female great tits. Behavioral Ecology, 36(1): arae106. doi:10.1093/beheco/arae106. [PubMan] : Malkoc, K., Hau, M., McWilliams, S., Sadowska, E. T., Dzialo, M., Pierce, B., Trost, L., Bauchinger, U., Udino, E., & Casagrande, S. (2024). Commentary on Thoral et al. (2024) "The relationship between mitochondrial respiration, resting metabolic rate and blood cell count in great tits". Biology Open, 13(11): bio061770. doi:10.1242/bio.061770. [PubMan] : Oefele, M., Hau, M., Ruuskanen, S., & Casagrande, S. (2024). Mitochondrial function is enhanced by thyroid hormones during zebra finch development. Royal Society Open Science, 11(7): 240417. doi:10.1098/rsos.240417. [PubMan] : Mentesana, L., Casagrande, S., & Hau, M. (2024). Baseline glucocorticoids alone do not predict reproductive success across years, but in interaction with enzymatic antioxidants. Ecology and Evolution, 14(4): e11193. doi:10.1002/ece3.11193. [PubMan] : Taff, C. C., Baldan, D., Mentesana, L., Ouyang, J. Q., Vitousek, M. N., & Hau, M. (2024). Endocrine flexibility can facilitate or constrain the ability to cope with global change. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 379(1898): 20220502. doi:10.1098/rstb.2022.0502. [PubMan] : Casagrande, S., Dzialo, M., Trost, L., Malkoc, K., Sadowska, E. T., Hau, M., Pierce, B., McWilliams, S., & Bauchinger, U. (2023). Mitochondrial metabolism in blood more reliably predicts whole-animal energy needs compared to other tissues. iScience, 26(12): 108321. doi:10.1016/j.isci.2023.108321. [PubMan] : Casagrande, S., Loveland, J. L., Oefele, M., Boner, W., Lupi, S., Stier, A., & Hau, M. (2023). Dietary nucleotides can prevent glucocorticoid-induced telomere attrition in a fast-growing wild vertebrate. Molecular Ecology, 32(19), 5429-5447. doi:10.1111/mec.17114. [PubMan] : Hau, M., Deimel, C., & Moiron, M. (2022). Great tits differ in glucocorticoid plasticity in response to spring temperature. Proceedings of the Royal Society B: Biological Sciences, 289(1986): 20221235. doi:10.1098/rspb.2022.1235. [PubMan] : Malkoc, K., Mentesana, L., Casagrande, S., & Hau, M. (2022). Quantifying glucocorticoid plasticity using reaction norm approaches: There still is so much to discover! Integrative and Comparative Biology, 62(1), 58-70. doi:10.1093/icb/icab196. [PubMan] : Mentesana, L., & Hau, M. (2022). Glucocorticoids in a warming world: Do they help birds to cope with high environmental temperatures? Hormones and Behavior, 142: 105178. doi:10.1016/j.yhbeh.2022.105178. [PubMan] : Helm, B., Hau, M., & Goymann, W. (2022). Eberhard Gwinner. In R. J. Nelson, & Z. M. Weil (Eds. ), Biographical history of behavioral neuroendocrinology (pp. 213-228). Cham: Springer. [PubMan] : Greives, T. J., Eshleman, M., Galante, H., Elderbrock, E. K., Deimel, C., & Hau, M. (2021). Early nighttime testosterone peaks are correlated with GnRH-induced testosterone in a diurnal songbird. General and Comparative Endocrinology, 312: 113861. doi:10.1016/j.ygcen.2021.113861. [PubMan] : Culina, A., Adriaensen, F., Bailey, L. D., Burgess, M. D., Charmantier, A., Cole, E. F., Eeva, T., Matthysen, E., Nater, C. R., Sheldon, B. C., Sæther, B., Vriend, S. J. G., Zajkova, Z., Adamík, P., Aplin, L. M., Angulo, E., Artemyev, A., Barba, E., Barišić, S., Belda, E., Bilgin, C. C., Bleu, J., Both, C., Bouwhuis, S., Branston, C., Broggi, J., Burke, T., Bushuev, A., Camacho, C., Campobello, D., Canal, D., Cantarero, A., Caro, S. P., Cauchoix, M., Chaine, A., Cichon, M., Ćiković, D., Cusimano, C. A., Deimel, C., Dhondt, A. A., Dingemanse, N. J., Doligez, B., Dominoni, D. M., Doutrelant, C., Drobniak, S. M., Dubiec, A., Eens, M., Erikstad, K. E., Espín, S., Farine, D. R., Figuerola, J., Gülbeyaz, P. K., Grégoire, A., Hartley, I. R., Hau, M., Hegyi, G., Hille, S., Hinde, C. A., Holtmann, B., Ilyina, T., Isaksson, C., Iserbyt, A., Ivankina, E., Kania, W., Kempenaers, B., Kerimov, A., Komdeur, J., Korsten, P., Král, M., Krist, M., Lambrechts, M., Lara, C. E., Leivits, A., Liker, A., Lodjak, J., Mägi, M., Mainwaring, M. C., Mänd, R., Massa, B., Massemin, S., Martínez‐Padilla, J., Mazgajski, T. D., Mennerat, A., Moreno, J., Mouchet, A., Nakagawa, S., Nilsson, J., Nilsson, J., Norte, A. C., van Oers, K., Orell, M., Potti, J., Quinn, J. L., Réale, D., Reiertsen, T. K., Rosivall, B., Russel, A. F., Rytkönen, S., Sánchez‐Virosta, P., Santos, E. S. A., Schroeder, J., Senar, J. C., Seress, G., Slagsvold, T., Szulkin, M., Teplitsky, C., Tilgar, V., Tolstoguzov, A., Török, J., Valcu, M., Vatka, E., Verhulst, S., Watson, H., Yuta, T., Zamora‐Marín, J. M., & Visser, M. E. (2021). Connecting the data landscape of long‐term ecological studies: The SPI‐Birds data hub. Journal of Animal Ecology, 90(9), 2147-2160. doi:10.1111/1365-2656.13388. [PubMan] : Mentesana, L., Andersson, M. N., Casagrande, S., Goymann, W., Isaksson, C., & Hau, M. (2021). Natural variation in yolk fatty acids, but not androgens, predicts offspring fitness in a wild bird. Frontiers in Zoology, 18: 38. doi:10.1186/s12983-021-00422-z. [PubMan] : Malkoc, K., Casagrande, S., & Hau, M. (2021). Inferring whole-organism metabolic rate from red blood cells in birds. Frontiers in Physiology, 12: 691633. doi:10.3389/fphys.2021.691633. [PubMan] : Husak, J. F., Fuxjager, M. J., Johnson, M. A., Vitousek, M. N., Donald, J. W., Francis, C. D., Goymann, W., Hau, M., Kircher, B. K., Knapp, R., Martin, L. B., Miller, E. T., Schoenle, L. A., & Williams, T. D. (2021). Life history and environment predict variation in testosterone across vertebrates. Evolution: International journal of organic evolution, 75(5), 1003-1010. doi:10.1111/evo.14216. [PubMan] : Elderbrock, E. K., Hau, M., & Greives, T. J. (2021). Sex steroids modulate circadian behavioral rhythms in captive animals, but does this matter in the wild? Hormones and Behavior, 128: 104900. doi:10.1016/j.yhbeh.2020.104900. [PubMan] : Casagrande, S., Stier, A., Monaghan, P., Loveland, J. L., Boner, W., Lupi, S., Trevisi, R., & Hau, M. (2020). Increased glucocorticoid concentrations in early life cause mitochondrial inefficiency and short telomeres. Journal of Experimental Biology, 223(15): jeb222513. doi:10.1242/jeb.222513. [PubMan] : Norte, A. C., Margos, G., Becker, N. S., Ramos, J. A., Núncio, M. S., Fingerle, V., Araújo, P. M., Adamík, P., Alivizatos, H., Barba, E., Barrientos, R., Cauchard, L., Csörgö, T., Diakou, A., Dingemanse, N. J., Doligez, B., Dubiec, A., Eeva, T., Flaisz, B., Grim, T., Hau, M., Heylen, D., Hornok, S., Kazantzidis, S., Kováts, D., Krause, F., Literak, I., Mänd, R., Mentesana, L., Morinay, J., Mutanen, M., Neto, J. M., Nováková, M., Sanz, J. J., da Silva, L. P., Sprong, H., Tirri, I., Török, J., Trilar, T., Tyller, Z., Visser, M. E., & de Carvalho, I. L. (2020). Host dispersal shapes the population structure of a tick‐borne bacterial pathogen. Molecular Ecology, 29(3), 485-501. doi:10.1111/mec.15336. [PubMan] : Injaian, A. S., Francis, C. D., Ouyang, J. Q., Dominoni, D. M., Donald, J. W., Fuxjager, M. J., Goymann, W., Hau, M., Husak, J. F., Johnson, M. A., Kircher, B. K., Knapp, R., Martin, L. B., Miller, E. T., Schoenle, L. A., Williams, T. D., & Vitousek, M. N. (2020). Baseline and stress-induced corticosterone levels across birds and reptiles do not reflect urbanization levels. Conservation Physiology, 8(1): coz110. doi:10.1093/conphys/coz110. [PubMan] : Jimeno, B., Hau, M., Gómez-Díaz, E., & Verhulst, S. (2019). Developmental conditions modulate DNA methylation at the glucocorticoid receptor gene with cascading effects on expression and corticosterone levels in zebra finches. Scientific Reports, 9: 15869. doi:10.1038/s41598-019-52203-8. [PubMan] : Vitousek, M. N., Johnson, M. A., Downs, C. J., Miller, E. T., Martin, L. B., Francis, C. D., Donald, J. W., Fuxjager, M. J., Goymann, W., Hau, M., Husak, J. F., Kircher, B. K., Knapp, R., Schoenle, L. A., & Williams, T. D. (2019). Macroevolutionary patterning in glucocorticoids suggests different selective pressures shape baseline and stress-induced levels. American Naturalist, 193(6), 866-880. doi:10.1086/703112. [PubMan] : Casagrande, S., & Hau, M. (2019). Telomere attrition: Metabolic regulation and signalling function? Biology Letters, 15(3): 20180885. doi:10.1098/rsbl.2018.0885. [PubMan]