Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Gravitational Radiation from Hydrodynamic Turbulence in a Differentially Rotating Neutron Star

Melatos, A., & Peralta, C. (2010). Gravitational Radiation from Hydrodynamic Turbulence in a Differentially Rotating Neutron Star. Astrophysical Journal, 709, 77-87. doi:10.1088/0004-637X/709/1/77.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
0911.1609 (Preprint), 499KB
Name:
0911.1609
Beschreibung:
File downloaded from arXiv at 2010-06-03 12:45
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
:
APJ_709_1_77.pdf (beliebiger Volltext), 643KB
Name:
APJ_709_1_77.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Melatos, A., Autor
Peralta, Carlos1, Autor           
Affiliations:
1Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_24013              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Astrophysics, High Energy Astrophysical Phenomena, astro-ph.HE,General Relativity and Quantum Cosmology, gr-qc
 Zusammenfassung: (Abridged.) The mean-square current quadrupole moment associated with vorticity fluctuations in high-Reynolds-number turbulence in a differentially rotating neutron star is calculated analytically, as are the amplitude and decoherence time of the resulting, stochastic gravitational wave signal. The calculation resolves the subtle question of whether the signal is dominated by the smallest or largest turbulent eddies: for the Kolmogorov-like power spectrum observed in superfluid spherical Couette simulations, the wave strain is controlled by the largest eddies, and the decoherence time approximately equals the maximum eddy turnover time. For a neutron star with spin frequency $\nu_s$ and Rossby number $Ro$, at a distance $d$ from Earth, the root-mean-square wave strain reaches $h_{RMS} \approx 3\times 10^{-24} Ro^3 (\nu_s / 30 Hz)^3 (d/1 kpc)^{-1}$. A cross-correlation search can detect such a source in principle, because the signal decoheres over the time-scale $\tau_c \approx 10^{-3} Ro^{-1} (\nu_s / 30 Hz)^{-1} s$, which is adequately sampled by existing long-baseline interferometers. Hence hydrodynamic turbulence imposes a fundamental noise floor on gravitational wave observations of neutron stars, although its polluting effect may be muted by partial decoherence in the hectohertz band, where current continuous-wave searches are concentrated, for the highest frequency (and hence most powerful) sources.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2009-11-092010
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 0911.1609
DOI: 10.1088/0004-637X/709/1/77
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Astrophysical Journal
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Chicago, IL : University of Chicago Press for the American Astronomical Society
Seiten: - Band / Heft: 709 Artikelnummer: - Start- / Endseite: 77 - 87 Identifikator: Anderer: 954922828215
Anderer: 0004-637X