Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Optically excited structural transition in atomic wires on surfaces at the quantum limit

Frigge, T., Hafke, B., Witte, T., Krenzer, B., Streubühr, C., Syed, A. S., et al. (2017). Optically excited structural transition in atomic wires on surfaces at the quantum limit. Nature, 544(7649), 207-211. doi:10.1038/nature21432.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Frigge, Tim1, Autor           
Hafke, B.2, Autor           
Witte, T.2, Autor           
Krenzer, Boris1, Autor           
Streubühr, Carla2, Autor           
Syed, A. Samad2, Autor           
Trontl, Vesna Mikšić2, Autor           
Avigo, Isabella2, Autor           
Zhou, P.2, Autor           
Ligges, Manuel2, Autor           
von der Linde, Dietrich D.2, Autor           
Bovensiepen, Uwe2, Autor           
Horn-von Hoegen, M.3, Autor           
Wippermann, Stefan Martin4, Autor           
Lücke, Andreas5, Autor           
Gerstmann, Uwe6, Autor           
Schmidt, W. G.6, Autor           
Affiliations:
1Department of Physics, Center for Nanointegration (CENIDE), University of Duisburg-Essen, Lotharstraße 1, 47048 Duisburg, Germany, ou_persistent22              
2Fakultät für Physik und Center for Nanointegration (CENIDE), Universität Duisburg-Essen, Lotharstrasse 1, Duisburg, Germany, persistent22              
3Department of Physics, Center for Nanointegration (CENIDE), University of Duisburg-Essen, Lotharstraße 1, 47048 Duisburg, Germany , ou_persistent22              
4Atomistic Modelling, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863350              
5Lehrstuhl für Theoretische Physik, Universität Paderborn, Paderborn, Germany, ou_persistent22              
6Lehrstuhl für Theoretische Physik, Universität Paderborn, 33095 Paderborn, Germany, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: CHARGE-DENSITY-WAVE; ULTRAFAST ELECTRON CRYSTALLOGRAPHY; DIFFRACTION; PHASE; MOTIONS;
 Zusammenfassung: Transient control over the atomic potential-energy landscapes of solids could lead to new states of matter and to quantum control of nuclear motion on the timescale of lattice vibrations. Recently developed ultrafast time-resolved diffraction techniques(1) combine ultrafast temporal manipulation with atomic-scale spatial resolution and femtosecond temporal resolution. These advances have enabled investigations of photo-induced structural changes in bulk solids that often occur on timescales as short as a few hundred femtoseconds(2-6). In contrast, experiments at surfaces and on single atomic layers such as graphene report timescales of structural changes that are orders of magnitude longer(7-9). This raises the question of whether the structural response of low-dimensional materials to femtosecond laser excitation is, in general, limited. Here we show that a photo-induced transition from the low-to high-symmetry state of a charge density wave in atomic indium (In) wires supported by a silicon (Si) surface takes place within 350 femtoseconds. The optical excitation breaks and creates In-In bonds, leading to the non-thermal excitation of soft phonon modes, and drives the structural transition in the limit of critically damped nuclear motion through coupling of these soft phonon modes to a manifold of surface and interface phonons that arise from the symmetry breaking at the silicon surface. This finding demonstrates that carefully tuned electronic excitations can create non-equilibrium potential energy surfaces that drive structural dynamics at interfaces in the quantum limit (that is, in a regime in which the nuclear motion is directed and deterministic)(8). This technique could potentially be used to tune the dynamic response of a solid to optical excitation, and has widespread potential application, for example in ultrafast detectors(10,11).

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2017-04-13
 Publikationsstatus: Erschienen
 Seiten: 9
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: ISI: 000398897900032
DOI: 10.1038/nature21432
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature
  Kurztitel : Nature
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Nature Publishing Group
Seiten: - Band / Heft: 544 (7649) Artikelnummer: - Start- / Endseite: 207 - 211 Identifikator: ISSN: 0028-0836
CoNE: https://pure.mpg.de/cone/journals/resource/954925427238