English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Alpha-synuclein affects neurite morphology, autophagy, vesicle transport and axonal degeneration in CNS neurons.

Koch, J. C., Bitow, F., Haack, J., d'Hedouville, Z., Zhang, J. N., Tonges, L., et al. (2015). Alpha-synuclein affects neurite morphology, autophagy, vesicle transport and axonal degeneration in CNS neurons. Cell Death and Disease, 6: e1811. doi:10.1038/cddis.2015.169.

Item is

Files

show Files
hide Files
:
2181642.pdf (Publisher version), 4MB
Name:
2181642.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
2181642_Suppl_1.jpg (Supplementary material), 3MB
Name:
2181642_Suppl_1.jpg
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
image/jpeg / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
2181642_Suppl_2.jpg (Supplementary material), 2MB
Name:
2181642_Suppl_2.jpg
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
image/jpeg / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
2181642_Suppl_3.jpg (Supplementary material), 88KB
Name:
2181642_Suppl_3.jpg
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
image/jpeg / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Koch, J. C., Author
Bitow, F., Author
Haack, J., Author
d'Hedouville, Z., Author
Zhang, J. N., Author
Tonges, L., Author
Michel, U., Author
Oliveira, L. M. A., Author
Jovin, T. M.1, Author           
Liman, J., Author
Tatenhorst, L., Author
Bähr, M., Author
Lingor, P., Author
Affiliations:
1Emeritus Group Laboratory of Cellular Dynamics, MPI for Biophysical Chemistry, Max Planck Society, ou_578629              

Content

show
hide
Free keywords: -
 Abstract: Many neuropathological and experimental studies suggest that the degeneration of dopaminergic terminals and axons precedes the demise of dopaminergic neurons in the substantia nigra, which finally results in the clinical symptoms of Parkinson disease (PD). The mechanisms underlying this early axonal degeneration are, however, still poorly understood. Here, we examined the effects of overexpression of human wildtype alpha-synuclein (alpha Syn-WT), a protein associated with PD, and its mutant variants alpha Syn-A30P and -A53T on neurite morphology and functional parameters in rat primary midbrain neurons (PMN). Moreover, axonal degeneration after overexpression of alpha Syn-WT and -A30P was analyzed by live imaging in the rat optic nerve in vivo. We found that overexpression of alpha Syn-WT and of its mutants A30P and A53T impaired neurite outgrowth of PMN and affected neurite branching assessed by Sholl analysis in a variant-dependent manner. Surprisingly, the number of primary neurites per neuron was increased in neurons transfected with alpha Syn. Axonal vesicle transport was examined by live imaging of PMN co-transfected with EGFP-labeled synaptophysin. Overexpression of all alpha Syn variants significantly decreased the number of motile vesicles and decelerated vesicle transport compared with control. Macroautophagic flux in PMN was enhanced by alpha Syn-WT and -A53T but not by alpha Syn-A30P. Correspondingly, colocalization of alpha Syn and the autophagy marker LC3 was reduced for alpha Syn-A30P compared with the other alpha Syn variants. The number of mitochondria colocalizing with LC3 as a marker for mitophagy did not differ among the groups. In the rat optic nerve, both alpha Syn-WT and -A30P accelerated kinetics of acute axonal degeneration following crush lesion as analyzed by in vivo live imaging. We conclude that alpha Syn overexpression impairs neurite outgrowth and augments axonal degeneration, whereas axonal vesicle transport and autophagy are severely altered.

Details

show
hide
Language(s): eng - English
 Dates: 2015-07-09
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1038/cddis.2015.169
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Cell Death and Disease
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: 12 Volume / Issue: 6 Sequence Number: e1811 Start / End Page: - Identifier: -