Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  In-Si(111)(4 x 1)/(8 x 2) nanowires: Electron transport, entropy, and metal-insulator transition

Schmidt, W. G., Wippermann, S. M., Sanna, S., Babilon, M., Vollmers, N. J., & Gerstmann, U. (2012). In-Si(111)(4 x 1)/(8 x 2) nanowires: Electron transport, entropy, and metal-insulator transition. Physica Status Solidi B, 249(2), 343-359. doi:10.1002/pssb.201100457.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Schmidt, W. G.1, Autor           
Wippermann, Stefan Martin2, Autor           
Sanna, Simone3, Autor           
Babilon, M.1, Autor           
Vollmers, N. J.1, Autor           
Gerstmann, Uwe1, Autor           
Affiliations:
1Lehrstuhl für Theoretische Physik, Universität Paderborn, 33095 Paderborn, Germany, ou_persistent22              
2Chemistry Department, University of California, Davis, Davis CA 95616, USA, ou_persistent22              
3Department of Theoretical Physics, Paderborn University, 33095 Paderborn, Germany, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Charge-density wave; Electron transport; Entropy; In adsorption; Nanowire; Peierls transition; Si(111) surface
 Zusammenfassung: In this paper the recent experimental and theoretical progress in understanding the properties of the In-Si(111)(4 x 1)/(8 x 2) nanowire array a prototypical model system for exploring electron transport at the atomic scale is reviewed. Density functional theory (DFT) calculations illustrate how strongly structural, vibrational, and electronic properties of atomic-scale wires are intertwined. Numerical simulations of the nanowire optical response in comparison with recent measurements settle eventually the long-standing debate on the nanowire ground-state geometry in favor of hexagons. Soft phonon modes are found to transform the nanowire structurally between the insulating hexagon structure and metallic In zigzag chains. The subtle balance between the lower energy of the insulating phase and the larger vibrational entropy of the metallic wires is demonstrated to cause the temperature-dependent phase transition. The dynamic fluctuation model proposed earlier to explain the phase transition is shown to contradict the experimental information on the metal insulator transition of the nanowires. The influence of adatoms on the quantum transport and phase transition is discussed.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2012-02
 Publikationsstatus: Erschienen
 Seiten: 17
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000300696000014
DOI: 10.1002/pssb.201100457
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Physica Status Solidi B
  Kurztitel : Phys. Stat. Sol. B
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Weinheim : Wiley-VCH
Seiten: - Band / Heft: 249 (2) Artikelnummer: - Start- / Endseite: 343 - 359 Identifikator: ISSN: 0370-1972
CoNE: https://pure.mpg.de/cone/journals/resource/958480240330