English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Terahertz Spin Currents and Inverse Spin Hall Effect in Thin-Film Heterostructures Containing Complex Magnetic Compounds

Seifert, T., Martens, U., Günther, S., Schoen, M. A. W., Radu, F., Chen, X. Z., et al. (2017). Terahertz Spin Currents and Inverse Spin Hall Effect in Thin-Film Heterostructures Containing Complex Magnetic Compounds. SPIN, 7(3): 1740010. doi:10.1142/S2010324717400100.

Item is

Files

show Files
hide Files
:
s2010324717400100.pdf (Publisher version), 493KB
Name:
s2010324717400100.pdf
Description:
-
OA-Status:
Hybrid
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2017
Copyright Info:
© The Author(s)

Locators

show

Creators

show
hide
 Creators:
Seifert, Tom1, Author           
Martens, U.2, Author
Günther, S.3, Author
Schoen, M. A. W.4, Author
Radu, F.5, Author
Chen, X. Z.6, Author
Lucas, I.7, Author
Ramos, R.8, Author
Aguirre, M. H.9, Author
Algarabel, P. A.10, Author
Anadón, A.9, Author
Körner, H.4, Author
Walowski, J.2, Author
Back, C.4, Author
Ibarra, M. R.7, Author
Morellón, L.7, Author
Saitoh, E.8, Author
Wolf, Martin1, Author           
Song, C.6, Author
Uchida, K.11, Author
Münzenberg, M.2, AuthorRadu, I.5, AuthorKampfrath, Tobias1, Author            more..
Affiliations:
1Physical Chemistry, Fritz Haber Institute, Max Planck Society, ou_634546              
2Institute of Physics, Ernst Moritz Arndt University, 17489 Greifswald, Germany, ou_persistent22              
3Multifunctional Ferroic Materials Group, ETH Zürich, 8093 Zürich, Switzerland, ou_persistent22              
4Institute for Experimental and Applied Physics, University of Regensburg, 93053 Regensburg, Germany, ou_persistent22              
5Max-Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany, ou_persistent22              
6Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, 100084 Beijing, China, ou_persistent22              
7Instituto de Nanociencia de Aragón, Universidad de Zaragoza, E-50018 Zaragoza, Spain, ou_persistent22              
8WPI Advanced Institute for Materials Research, Tohoku University, 980-8577 Sendai, Japan, ou_persistent22              
9Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain, ou_persistent22              
10Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza and Consejo Superior de Investigaciones Científicas, E-50009 Zaragoza, Spain, ou_persistent22              
11National Institute for Materials Science, 305-0047 Tsukuba, Japan, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Terahertz emission spectroscopy of ultrathin multilayers of magnetic and heavy metals has recently attracted much interest. This method not only provides fundamental insights into photoinduced spin transport and spin-orbit interaction at highest frequencies but has also paved the way to applications such as efficient and ultrabroadband emitters of terahertz electromagnetic radiation. So far, predominantly standard ferromagnetic materials have been exploited. Here, by introducing a suitable figure of merit, we systematically compare the strength of terahertz emission from X/Pt bilayers with X being a complex ferro-, ferri- and antiferromagnetic metal, that is, Dysprosium Cobalt (DyCo5), Gadolinium Iron (Gd24Fe76), Magnetite (Fe3O4) and Iron Rhodium (FeRh). We find that the performance in terms of spin-current generation not only depends on the spin polarization of the magnet's conduction electrons but also on the specific interface conditions, thereby suggesting terahertz emission spectroscopy to be a highly surface-sensitive technique. In general, our results are relevant for all applications that rely on the optical generation of ultrafast spin currents in spintronic metallic multilayers.

Details

show
hide
Language(s): eng - English
 Dates: 2017-03-012017-06-232017-08-232017-09
 Publication Status: Issued
 Pages: 11
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1142/S2010324717400100
 Degree: -

Event

show

Legal Case

show

Project information

show hide
Project name : SPICOLOST - Spin conversion, logic storage in oxide-based electronics
Grant ID : 734187
Funding program : Horizon 2020 (H2020)
Funding organization : European Commission (EC)

Source 1

show
hide
Title: SPIN
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : World Scientific
Pages: 11 Volume / Issue: 7 (3) Sequence Number: 1740010 Start / End Page: - Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/SPIN