English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Helix-coil dynamics of a Z-helix hairpin.

Antosiewicz, J., German, M. W., Van De Sande, J. H., & Porschke, D. (1988). Helix-coil dynamics of a Z-helix hairpin. Biopolymers, 27(8), 1319-1327. doi:10.1002/bip.360270810.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Antosiewicz, J.1, Author           
German, M. W., Author
Van De Sande, J. H., Author
Porschke, D.1, Author           
Affiliations:
1Abteilung Biochemische Kinetik, MPI for biophysical chemistry, Max Planck Society, ou_578616              

Content

show
hide
Free keywords: -
 Abstract: The helix–coil transition of a Z-helix hairpin formed from d(C-G)5T4(C-G)5 has been characterized by equilibrium melting and temperature jump experiments in 5M NaClO4 and 10 mM Na2HPO4, pH 7.0. The melting curve can be represented by a simple all-or-none transition with a midpoint at 81.6 ± 0.4°C and an enthalpy change of 287 ± 15 kJ/mole. The temperature jump relaxation can be described by single exponentials at a reasonable accuracy. Amplitudes measured as a function of temperature provide equilibrium parameters consistent with those derived from equilibrium melting curves. The rate constants of Z-helix formation are found in the range from 1800 s−1 at 70°C to 800 s−1 at 90°C and are associated with an activation enthalpy of −(50 ± 10) kJ/mole, whereas the rate constants of helix dissociation are found in the range from 200 s−1 at 70°C to 4500 s−1 at 90°C with an activation enthalpy +235 kJ/mole. These parameters are consistent with a requirement of 3–4 base pairs for helix nucleation. Apparently nucleation occurs in the Z-helix conformation, because a separate slow step corresponding to a B to Z transition has not been observed. In summary, the dynamics of the Z-helix–coil transition is very similar to that of previously investigated right-handed double helices.

Details

show
hide
Language(s): eng - English
 Dates: 1988-08
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1002/bip.360270810
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Biopolymers
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 27 (8) Sequence Number: - Start / End Page: 1319 - 1327 Identifier: -