Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Proximity enhanced quantum spin Hall state in graphene

Kou, L., Hu, F., Yan, B., Wehling, T., Felser, C., Frauenheim, T., et al. (2015). Proximity enhanced quantum spin Hall state in graphene. Carbon, 87, 418-423. doi:10.1016/j.carbon.2015.02.057.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Kou, Liangzhi1, Autor
Hu, Feiming1, Autor
Yan, Binghai2, Autor           
Wehling, Tim1, Autor
Felser, Claudia3, Autor           
Frauenheim, Thomas1, Autor
Chen, Changfeng1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Binghai Yan, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863427              
3Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863429              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Graphene is the first model system of two-dimensional topological insulator (TI), also known as quantum spin Hall (QSH) insulator. The QSH effect in graphene, however, has eluded direct experimental detection because of its extremely small energy gap due to the weak spin-orbit coupling. Here we predict by ab initio calculations a giant (three orders of magnitude) proximity induced enhancement of the TI energy gap in the graphene layer that is sandwiched between thin slabs of Sb2Te3 (or MoTe2). This gap (1.5 meV) is accessible by existing experimental techniques, and it can be further enhanced by tuning the interlayer distance via compression. We reveal by a tight-binding study that the QSH state in graphene is driven by the Kane-Mele interaction in competition with Kekule deformation and symmetry breaking. The present work identifies a new family of graphene-based TIs with an observable and controllable bulk energy gap in the graphene layer, thus opening a new avenue for direct verification and exploration of the long-sought QSH effect in graphene. (C) 2015 Elsevier Ltd. All rights reserved.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2015-05-112015-05-11
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000352332900044
DOI: 10.1016/j.carbon.2015.02.057
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Carbon
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Amsterdam : Elsevier
Seiten: - Band / Heft: 87 Artikelnummer: - Start- / Endseite: 418 - 423 Identifikator: Anderer: 0008-6223
CoNE: https://pure.mpg.de/cone/journals/resource/954925388220