Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Hf2B2Ir5: A Self-Optimizing Catalyst for the Oxygen Evolution Reaction

Barrios Jiménez, A. M., Burkhardt, U., Cardoso-Gil, R., Höfer, K., Altendorf, S. G., Schlögl, R., et al. (2020). Hf2B2Ir5: A Self-Optimizing Catalyst for the Oxygen Evolution Reaction. ACS Appl. Energy Mater. doi:10.1021/acsaem.0c02022.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Barrios Jiménez, Ana M.1, Autor           
Burkhardt, Ulrich2, Autor           
Cardoso-Gil, Raul3, Autor           
Höfer, Katharina4, Autor           
Altendorf, Simone G.5, Autor           
Schlögl, Robert6, Autor
Grin, Yuri7, Autor           
Antonyshyn, Iryna8, Autor           
Affiliations:
1Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863405              
2Ulrich Burkhardt, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863422              
3Raul Cardoso, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863420              
4Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863445              
5Simone Altendorf, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863458              
6External Organizations, ou_persistent22              
7Juri Grin, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863413              
8Iryna Antonyshyn, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863412              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The ternary compound Hf2B2Ir5 was assessed as an electrocatalyst for the oxygen evolution reaction (OER) in 0.1 M H2SO4. The oxidative environment restructures the studied material in the near-surface region, creating cavities in which agglomerates of IrOx(OH)y(SO4)z particles are incorporated. These in situ generated particles result from the oxidation of secondary phases in the matrix as well as from self-controlled near-surface oxidation of the ternary compound itself. The oxidation is controlled by the structural and chemical bonding features of Hf2B2Ir5. The cage-like motif, exhibiting mostly ionic interactions between positively charged Hf atoms and a covalently bonded Ir–B network, selectively controls the extent and kinetics of the transformation process induced during the operation of the electrocatalyst. The resulting self-optimized composite material, formed by a Hf2B2Ir5 matrix surrounding IrOx(OH)y(SO4)z particles, was used in the OER over 240 h at 100 mA cm–2 current density. The chemical changes, as well as the OER performance, were studied via a combination of bulk- and surface-sensitive experimental techniques as well as by employing a quantum-chemical bonding analysis.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-10-072020-10-07
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1021/acsaem.0c02022
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: ACS Appl. Energy Mater.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: American Chemical Society
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: - Identifikator: -

Quelle 2

einblenden:
ausblenden:
Titel: ACS Applied Energy Materials
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: American Chemical Society
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: 1 - 11 Identifikator: -