English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Early diagenetic quartz formation at a deep iron oxidation front in the Eastern Equatorial Pacific - A modern analogue for banded iron/chert formations?

Meister, P., Chapligin, B., Picard, A., Meyer, H., Fischer, C., Rettenwander, D., et al. (2014). Early diagenetic quartz formation at a deep iron oxidation front in the Eastern Equatorial Pacific - A modern analogue for banded iron/chert formations? Geochimica et Cosmochimica Acta, 137: 1, pp. 188-207.

Item is

Files

show Files
hide Files
:
Meister14.pdf (Publisher version), 5MB
 
File Permalink:
-
Name:
Meister14.pdf
Description:
-
OA-Status:
Visibility:
Restricted ( Max Planck Society (every institute); )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Meister, P.1, Author           
Chapligin, B., Author
Picard, A.2, Author           
Meyer, H., Author
Fischer, C., Author
Rettenwander, D., Author
Amthauer, G., Author
Vogt, C., Author
Aiello, I., Author
Affiliations:
1Permanent Research Group Microsensor, Max Planck Institute for Marine Microbiology, Max Planck Society, ou_2481711              
2Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society, ou_2481693              

Content

show
hide
Free keywords: -
 Abstract: The mechanisms of early diagenetic quartz formation under low-temperature conditions are still poorly understood. In this study we investigated lithified cherts consisting of microcrystalline quartz recovered near the base of a 420 m thick Miocene-Holocene sequence of nannofossil and diatom ooze at a drill site in the Eastern Equatorial Pacific (Ocean Drilling Program Site 1226). Precipitation seems still ongoing based on a sharp depletion in dissolved silica at the depth of the cherts. Also, palaeo-temperatures reconstructed from delta O-18 values in the cherts are in the range of adjacent porewater temperatures. Opal-A dissolution appears to control silica concentration throughout the sequence, while the solution remains oversaturated with respect to quartz. However, at the depth of the sharp depletion in dissolved silica, quartz is still saturated while the more soluble silica phases are strongly undersaturated. Hence, precipitation of quartz was initiated by an auxiliary process. A process, previously observed to assist in the nucleation of quartz is the adsorption of silica on freshly precipitated iron oxides. Indeed, a deep iron oxidation front is present at 400 m below seafloor, which is caused by upward diffusing nitrate from an oxic seawater aquifer in the underlying oceanic crust. Sequential iron extraction showed a higher content of the adsorbed iron hydroxide fraction in the chert than in the adjacent nannofossil and diatom ooze. X-ray absorption near-edge structure (XANES) spectroscopy revealed that iron in the cherts predominantly occurs in illite and amorphous iron oxide, whereas iron in the nannofossil and diatom ooze occurs mainly in smectite. Mossbauer spectroscopy also indicated the presence of illite that is to 97% oxidized. Two possible mechanisms may be operative during early diagenetic chert formation at iron oxidation fronts: (1) silica precipitation is catalysed by adsorption to freshly precipitated iron oxide surfaces, and (2) porewater silica concentration is locally decreased below opal-A and opal-CT saturation allowing for precipitation of the thermodynamically more stable phase: quartz. This mechanism of chert formation at the iron oxidation front in suboxic zones may explain why early-diagenetic microcrystalline chert only occurs sporadically in modern marine sediments. It may also serve as a modern analogue for the deposition of much more abundant banded iron/chert formations at the time of the great oxidation event around 2.4 Ga BP, which was probably the largest iron oxidation front in Earth's history. (C) 2014 Elsevier Ltd. All rights reserved.

Details

show
hide
Language(s): eng - English
 Dates: 2014-07-15
 Publication Status: Issued
 Pages: 20
 Publishing info: -
 Table of Contents: -
 Rev. Type: Internal
 Identifiers: eDoc: 700933
ISI: 000338424000012
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Geochimica et Cosmochimica Acta
  Abbreviation : Geochim. Cosmochim. Acta
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Oxford : Pergamon
Pages: - Volume / Issue: 137 Sequence Number: 1 Start / End Page: 188 - 207 Identifier: ISSN: 0016-7037
CoNE: https://pure.mpg.de/cone/journals/resource/954925401558