Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Inferring neuronal dynamics from calcium imaging data using biophysical models and bayesian inference

Rahmati, V., Kirmse, K., Markovic, D., Holthoff, K., & Kiebel, S. J. (2016). Inferring neuronal dynamics from calcium imaging data using biophysical models and bayesian inference. PLoS Computational Biology, 12(2): e1004736. doi:10.1371/journal.pcbi.1004736.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Rahmati_2016.PDF (Verlagsversion), 5MB
Name:
Rahmati_2016.PDF
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Rahmati, Vahid1, 2, Autor
Kirmse, Knut2, Autor
Markovic, Dimitrije1, 2, 3, Autor           
Holthoff, Knut2, Autor
Kiebel, Stefan J.1, 2, 3, Autor           
Affiliations:
1Department of Psychology, TU Dresden, Germany, ou_persistent22              
2Department of Neurology, Biomagnetic Center, Jena University Hospital, Germany, ou_persistent22              
3Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society, ou_634549              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Calcium imaging has been used as a promising technique to monitor the dynamic activity of neuronal populations. However, the calcium trace is temporally smeared which restricts the extraction of quantities of interest such as spike trains of individual neurons. To address this issue, spike reconstruction algorithms have been introduced. One limitation of such reconstructions is that the underlying models are not informed about the biophysics of spike and burst generations. Such existing prior knowledge might be useful for constraining the possible solutions of spikes. Here we describe, in a novel Bayesian approach, how principled knowledge about neuronal dynamics can be employed to infer biophysical variables and parameters from fluorescence traces. By using both synthetic and in vitro recorded fluorescence traces, we demonstrate that the new approach is able to reconstruct different repetitive spiking and/or bursting patterns with accurate single spike resolution. Furthermore, we show that the high inference precision of the new approach is preserved even if the fluorescence trace is rather noisy or if the fluorescence transients show slow rise kinetics lasting several hundred milliseconds, and inhomogeneous rise and decay times. In addition, we discuss the use of the new approach for inferring parameter changes, e.g. due to a pharmacological intervention, as well as for inferring complex characteristics of immature neuronal circuits.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2015-06-182016-01-052016-02-19
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1371/journal.pcbi.1004736
PMID: 26894748
PMC: PMC4760968
Anderer: eCollection 2016
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: PLoS Computational Biology
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: San Francisco, CA : Public Library of Science
Seiten: - Band / Heft: 12 (2) Artikelnummer: e1004736 Start- / Endseite: - Identifikator: ISSN: 1553-734X
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000017180_1