English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Investigating the Impact of Assistive Technologies on Working Memory Load in Manual Assembly through Electroencephalography

Kosch, T., & Chuang, L. (2018). Investigating the Impact of Assistive Technologies on Working Memory Load in Manual Assembly through Electroencephalography. Poster presented at 2nd International Neuroergonomics Conference: The brain at work and in everyday life, Philadelphia, PA, USA.

Item is

Files

show Files

Creators

show
hide
 Creators:
Kosch, T, Author
Chuang, LL1, 2, 3, Author           
Affiliations:
1Project group: Cognition & Control in Human-Machine Systems, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_2528703              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              
3Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797              

Content

show
hide
Free keywords: -
 Abstract: Introduction & Aim: Mentally demanding tasks are often, but not always, those that place a high load on working memory. In fact, the N-back task is often relied on as the "ground truth" for evaluating brain-computer interfaces that seek to infer user experienced workload [Brouwer2011]. Manual production lines is a real-world example that requires workers to memorize complex assembly instructions, an aspect that is becoming more demanding in recent times as production lot sizes decrease. To assist manual assembly, in-situ displays have been developed that provide just-in-time instructions for assembly [Funk2016]. The utility of this in alleviating mental workload has been validated with measures such as questionnaires or semi-structured interviews, but never with neuroimaging. In this work, we employ electroencephalography (EEG) to evaluate the extent to which in-situ displays alleviate visuospatial working memory during manual assembly. Methods: An Emotiv Epoc was used to record EEG data throughout the whole experiment. In a within-subject study design (N=12), participants were instructed to use either paper or projected in-situ instructions to assemble a Lego Duplo construction [Funk2016]. Paper instructions were printed on A4 sized sheets of paper. In-situ instructions were projected directly into the workplace (see Figure 1). Before the start of the assembly task, participants performed a one-minute eyes-opened/eyes-closed task followed by two N-back tasks (N=0 and N=2) to ensure a correct setup of the Emotiv Epoc through alpha desynchronization and to determine the individual bandwidth for alpha power. Afterward, participants started to assemble two different Lego Duplo starting with either paper or projected in-situ instructions based on the balanced Latin square. Ground truth for perceived workload is measured via NASA-TLX questionnaires filled out by participants after every N-back and assembly trial. Results: Alpha power was derived and noise suppressed by using a spatio-spectral decomposition filter [Nikulin2011]. Our findings show significantly higher alpha desynchronization when conducting an N-back task with N=2 than N=0, F(1, 11) = 34.82, p < 0.001. By comparing projected in-situ and paper instructions, projected in-situ instructions showed significantly less alpha desynchronization than paper instructions, F(1, 11) = 14.92, p < 0.003. This converges with collected NASA-TLX questionnaires evaluating perceived workload levels. We also found that item selection errors have significantly increased when using paper instructions instead of projected in-situ instructions, F(1, 11) = 10.75, p < 0.007. Discussion and Conclusion: Our study shows encouraging results of using a low-cost EEG to evaluate assembly instruction system. Possible reasons for paper instructions causing higher alpha desynchronization, and thus working memory load, might be that every step (e.g. picking and placing a brick) has to be remembered by participants while projected in-situ instructions obviate the need for remembering single steps. This is backed up by a reduced number of item selection errors and supported by NASA-TLX questionnaires. This provides insights for developers to evaluate the feasibility of their assistive system design on a cognitive basis.

Details

show
hide
Language(s):
 Dates: 2018-08
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: KoschC2018
DOI: 10.3389/conf.fnhum.2018.227.00114
 Degree: -

Event

show
hide
Title: 2nd International Neuroergonomics Conference: The brain at work and in everyday life
Place of Event: Philadelphia, PA, USA
Start-/End Date: 2018-06-27 - 2018-06-29

Legal Case

show

Project information

show

Source 1

show
hide
Title: Frontiers in Human Neuroscience
  Abbreviation : Front Hum Neurosci
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Lausanne, Switzerland : Frontiers Research Foundation
Pages: - Volume / Issue: 2018 (Conference Abstract: 2nd International Neuroergonomics Conference) Sequence Number: - Start / End Page: - Identifier: ISSN: 1662-5161
CoNE: https://pure.mpg.de/cone/journals/resource/1662-5161