English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Evidence for tautomerisation of glutamine in BLUF blue light receptors by vibrational spectroscopy and computational chemistry

Domratcheva, T., Hartmann, E., Schlichting, I., & Kottke, T. (2016). Evidence for tautomerisation of glutamine in BLUF blue light receptors by vibrational spectroscopy and computational chemistry. Scientific Reports, 6: 22669, pp. 1-14. doi:10.1038/srep22669.

Item is

Files

show Files
hide Files
:
ScientificRep_epub_2016_22669.pdf (Any fulltext), 2MB
 
File Permalink:
-
Name:
ScientificRep_epub_2016_22669.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Medical Research, MHMF; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-
OA-Status:
Locator:
https://dx.doi.org/10.1038/srep22669 (Any fulltext)
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Domratcheva, Tatiana1, Author           
Hartmann, Elisabeth1, Author           
Schlichting, Ilme1, Author           
Kottke, Tilman, Author
Affiliations:
1Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society, ou_1497700              

Content

show
hide
Free keywords: -
 Abstract: BLUF (blue light sensor using flavin) domains regulate the activity of various enzymatic effector domains in bacteria and euglenids. BLUF features a unique photoactivation through restructuring of the hydrogen-bonding network as opposed to a redox reaction or an isomerization of the chromophore. A conserved glutamine residue close to the flavin chromophore plays a central role in the light response, but the underlying modification is still unclear. We labelled this glutamine with 15N in two representative BLUF domains and performed time-resolved infrared double difference spectroscopy. The assignment of the signals was conducted by extensive quantum chemical calculations on large models with 187 atoms reproducing the UV-vis and infrared signatures of BLUF photoactivation. In the dark state, the comparatively low frequency of 1,667 cm−1 is assigned to the glutamine C=O accepting a hydrogen bond from tyrosine. In the light state, the signature of a tautomerised glutamine was extracted with the C=N stretch at ~1,691 cm−1 exhibiting the characteristic strong downshift by 15N labelling. Moreover, an indirect isotope effect on the flavin C4=O stretch was found. We conclude that photoactivation of the BLUF receptor does not only involve a rearrangement of hydrogen bonds but includes a change in covalent bonds of the protein.

Details

show
hide
Language(s): eng - English
 Dates: 2015-12-042016-02-162016-03-07
 Publication Status: Published online
 Pages: 14
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Scientific Reports
  Abbreviation : Sci. Rep.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London, UK : Nature Publishing Group
Pages: - Volume / Issue: 6 Sequence Number: 22669 Start / End Page: 1 - 14 Identifier: Other: 2045-2322
CoNE: https://pure.mpg.de/cone/journals/resource/2045-2322