English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source

Eberle, T., Händchen, V., Duhme, J., Franz, T., Werner, R. F., & Schnabel, R. (2011). Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source. Phys. Rev. A 83, 052329 (2011), 83(5): 052329. doi:10.1103/PhysRevA.83.052329.

Item is

Files

show Files
hide Files
:
1103.1817 (Preprint), 279KB
Name:
1103.1817
Description:
File downloaded from arXiv at 2012-01-16 10:53
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
PRA83_052329.pdf (Any fulltext), 505KB
Name:
PRA83_052329.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Eberle, Tobias1, Author           
Händchen, Vitus, Author
Duhme, Jörg, Author
Franz, Torsten, Author
Werner, Reinhard F., Author
Schnabel, Roman1, Author           
Affiliations:
1Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society, ou_24010              

Content

show
hide
Free keywords: Quantum Physics, quant-ph
 Abstract: Einstein-Podolsky-Rosen (EPR) entanglement is a criterion that is more demanding than just certifying entanglement. We theoretically and experimentally analyze the low resource generation of bi-partite continuous variable entanglement, as realized by mixing a squeezed mode with a vacuum mode at a balanced beam splitter, i.e. the generation of so-called vacuum-class entanglement. We find that in order to observe EPR entanglement the total optical loss must be smaller than 33.3 %. However, arbitrary strong EPR entanglement is generally possible with this scheme. We realize continuous wave squeezed light at 1550 nm with up to 9.9 dB of non-classical noise reduction, which is the highest value at a telecom wavelength so far. Using two phase controlled balanced homodyne detectors we observe an EPR co-variance product of 0.502 \pm 0.006 < 1, where 1 is the critical value. We discuss the feasibility of strong Gaussian entanglement and its application for quantum key distribution in a short-distance fiber network.

Details

show
hide
Language(s):
 Dates: 2011-03-092011-05-302011
 Publication Status: Issued
 Pages: 4 pages, 4 figures
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: arXiv: 1103.1817
DOI: 10.1103/PhysRevA.83.052329
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Phys. Rev. A 83, 052329 (2011)
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 83 (5) Sequence Number: 052329 Start / End Page: - Identifier: -