Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Light-matter interactions within the Ehrenfest–Maxwell–Pauli–Kohn–Sham framework: fundamentals, implementation, and nano-optical applications

Jestädt, R., Ruggenthaler, M., Oliveira, M. J. T., Rubio, A., & Appel, H. (2019). Light-matter interactions within the Ehrenfest–Maxwell–Pauli–Kohn–Sham framework: fundamentals, implementation, and nano-optical applications. Advances in Physics, 68(4), 225-333. doi:10.1080/00018732.2019.1695875.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
1812.05049.pdf (Preprint), 8MB
Name:
1812.05049.pdf
Beschreibung:
Downloaded from arxiv.org: 2019-11-27
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2018
Copyright Info:
© the Author(s)
:
Light_matter_interactions_within_the_Ehrenfest_Maxwell_Pauli_Kohn_Sham_framework_fundamentals_implementation_and_nano_optical_applications.pdf (Verlagsversion), 6MB
 
Datei-Permalink:
-
Name:
Light_matter_interactions_within_the_Ehrenfest_Maxwell_Pauli_Kohn_Sham_framework_fundamentals_implementation_and_nano_optical_applications.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://arxiv.org/abs/1812.05049 (Preprint)
Beschreibung:
-
OA-Status:
Keine Angabe
externe Referenz:
https://dx.doi.org/10.1080/00018732.2019.1695875 (Verlagsversion)
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Jestädt, R.1, 2, Autor           
Ruggenthaler, M.1, 2, Autor           
Oliveira, M. J. T.1, 2, Autor           
Rubio, A.1, 2, 3, 4, Autor           
Appel, H.1, 2, Autor           
Affiliations:
1Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_2266715              
2Center for Free-Electron Laser Science, ou_persistent22              
3Center for Computational Quantum Physics (CCQ), Flatiron Institute, ou_persistent22              
4Nano-Bio Spectroscopy Group and ETSF, Dpto. Fisica de Materiales, Universidad del País Vasco, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: In recent years significant experimental advances in nano-scale fabrication techniques and in available light sources have opened the possibility to study a vast set of novel light-matter interaction scenarios, including strong coupling cases. In many situations nowadays, classical electromagnetic modeling is insufficient as quantum effects, both in matter and light, start to play an important role. Instead, a fully self-consistent and microscopic coupling of light and matter becomes necessary. We provide here a critical review of current approaches for electromagnetic modeling, highlighting their limitations. We show how to overcome these limitations by introducing the theoretical foundations and the implementation details of a density-functional approach for coupled photons, electrons, and effective nuclei in non-relativistic quantum electrodynamics. Starting point of the formalism is a generalization of the Pauli–Fierz field theory for which we establish a one-to-one correspondence between external fields and internal variables. Based on this correspondence, we introduce a Kohn-Sham construction which provides a computationally feasible approach for ab-initio light-matter interactions. In the mean-field limit, the formalism reduces to coupled Ehrenfest–Maxwell–Pauli–Kohn–Sham equations. We present an implementation of the approach in the real-space real-time code Octopus using the Riemann–Silberstein formulation of classical electrodynamics to rewrite Maxwell's equations in Schrödinger form. This allows us to use existing very efficient time-evolution algorithms developed for quantum-mechanical systems also for Maxwell's equations. We show how to couple the time-evolution of the electromagnetic fields self-consistently with the quantum time-evolution of the electrons and nuclei. This approach is ideally suited for applications in nano-optics, nano-plasmonics, (photo) electrocatalysis, light-matter coupling in 2D materials, cases where laser pulses carry orbital angular momentum, or light-tailored chemical reactions in optical cavities just to name but a few.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2019-11-072020-01-212019
 Publikationsstatus: Erschienen
 Seiten: 109
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: arXiv: 1812.05049
DOI: 10.1080/00018732.2019.1695875
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Advances in Physics
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Taylor & Francis.
Seiten: - Band / Heft: 68 (4) Artikelnummer: - Start- / Endseite: 225 - 333 Identifikator: ISSN: 0001-8732
CoNE: https://pure.mpg.de/cone/journals/resource/954928504566