English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Recovery of subsurface profiles of supergranular flows via iterative inversion of synthetic travel times

Bhattacharya, J., Hanasoge, S. M., Birch, A., & Gizon, L. (2017). Recovery of subsurface profiles of supergranular flows via iterative inversion of synthetic travel times. Astronomy and Astrophysics, 607: A 129. doi:10.1051/0004-6361/201731095.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Bhattacharya, Jishnu, Author
Hanasoge, Shravan M., Author
Birch, Aaron1, Author           
Gizon, Laurent1, Author           
Affiliations:
1Department Solar and Stellar Interiors, Max Planck Institute for Solar System Research, Max Planck Society, ou_1832287              

Content

show
hide
Free keywords: -
 Abstract: Aims. We develop a helioseismic inversion algorithm that can be used to recover subsurface vertical profiles of two-dimensional supergranular flows from surface measurements of synthetic wave travel times. Methods. We carried out seismic wave-propagation simulations with a two-dimensional section of a flow profile that resembles an average supergranule and a starting model that only has flows at the surface. We assumed that the wave measurements are entirely without realization noise for the purpose of our test. We expanded the vertical profile of the supergranule stream function on a basis of B-splines. We iteratively updated the B-spline coefficients of the supergranule model to reduce the travel-time differences observed between the two simulations. We performed the exercise for four different vertical profiles peaking at different depths below the solar surface. Results. We are able to accurately recover depth profiles of four supergranule models at depths up to 8−10 Mm below the solar surface using f−p4 modes under the assumption that there is no realization noise. We are able to obtain the peak depth and the depth of the return flow for each model. Conclusions. A basis-resolved inversion performs significantly better than an inversion in which the flow field is inverted at each point in the radial grid. This is an encouraging result and might act as a guide in developing more realistic inversion strategies that can be applied to supergranular flows in the Sun.

Details

show
hide
Language(s): eng - English
 Dates: 2017
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1051/0004-6361/201731095
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Astronomy and Astrophysics
  Other : Astron. Astrophys.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Berlin : Springer-Verlag
Pages: - Volume / Issue: 607 Sequence Number: A 129 Start / End Page: - Identifier: ISSN: 0004-6361
CoNE: https://pure.mpg.de/cone/journals/resource/954922828219_1