English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Information content of SNR/resolution trade-offs in three-dimensional magnetic resonance imaging

Portnoy, S., Kale, S. C., Feintuch, A., Tardif, C., Pike, G. B., & Henkelman, R. M. (2009). Information content of SNR/resolution trade-offs in three-dimensional magnetic resonance imaging. Medical Physics, 36(4), 1442-1451. doi:10.1118/1.3098124.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Portnoy, S.1, Author
Kale, S. C.1, Author
Feintuch, A.1, Author
Tardif, Christine2, Author           
Pike, G. B.2, Author
Henkelman, R. M.1, Author
Affiliations:
1Mouse Imaging Centre, Toronto Centre for Phenogenomics, Toronto, Ontario M5T 3H7, Canada, ou_persistent22              
2Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC, Canada H3A 2B4, ou_persistent22              

Content

show
hide
Free keywords: Anatomic imaging; biomedical MRI; brain; information content; MRI; SNR; resolution; Medical imaging; Medical image noise; Brain; Medical magnetic resonance imaging; Medical image quality; Medical X‐ray imaging; Neural information; Medical image spatial resolution; Spatial resolution; Magnetic resonance imaging
 Abstract: In MRI, a trade‐off exists between resolution and signal‐to‐noise ratio, since different fractions of the available scan time can be used to acquire data at higher spatial frequencies and to perform signal averaging. By comparing a wide variety of 3D isotropic MR scans with different combinations of SNR, resolution, and scan duration, the impact of this trade‐off on the image information content was assessed. The information content of mouse brain, mouse whole‐body, and human brain images was evaluated using a simple numerical approach, which sums the information contribution of each individual urn:x-wiley:00942405:media:mp8124:mp8124-math-0001‐space data point. Results show that, with a fixed receiver bandwidth and field of view, the information content of trade‐off images is always maximized when the SNR is equal to about 16. The optimal imaging resolution is dependent on the scan duration, as well as certain MR system properties, such as field strength and coil sensitivity. These properties are, however, easily accounted for with the acquisition of a single scout MR image, and the optimal imaging resolution can then be calculated using a simple mathematical relationship. If the imaging task is approached with a predetermined resolution requirement, the same scout scan can be used to calculate the scan duration that will provide the maximum possible information. Using these relationships to maximize the image information content is an excellent technique for guiding the initial selection of imaging parameters.

Details

show
hide
Language(s): eng - English
 Dates: 2009-02-202008-02-282009-02-212009-03-302009-04
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1118/1.3098124
PMID: 19472651
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Medical Physics
  Other : Med. Phys.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: New York, etc. : Published for the American Association of Physicists in Medicine by the American Institute of Physics
Pages: - Volume / Issue: 36 (4) Sequence Number: - Start / End Page: 1442 - 1451 Identifier: ISSN: 0094-2405
CoNE: https://pure.mpg.de/cone/journals/resource/991042742884000