Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Enhancing gravitational waveform models through dynamic calibration

Setyawati, Y. E., Ohme, F., & Khan, S. (2019). Enhancing gravitational waveform models through dynamic calibration. Physical Review D, 99: 024010. doi:10.1103/PhysRevD.99.024010.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
1810.07060.pdf (Preprint), 709KB
Name:
1810.07060.pdf
Beschreibung:
File downloaded from arXiv at 2018-11-05 11:54
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
:
PRD.98.104010.pdf (Verlagsversion), 975KB
 
Datei-Permalink:
-
Name:
PRD.98.104010.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (Max Planck Institute for Gravitational Physics (Albert Einstein Institute), MPGR; )
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Setyawati, Yoshinta Eka1, Autor           
Ohme, Frank2, Autor           
Khan, Sebastian1, Autor           
Affiliations:
1Binary Merger Observations and Numerical Relativity, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society, ou_2461691              
2Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_24013              

Inhalt

einblenden:
ausblenden:
Schlagwörter: General Relativity and Quantum Cosmology, gr-qc
 Zusammenfassung: Strategies to model the inspiral, merger and ringdown gravitational waveform
of coalescing binaries are restricted in parameter space by the coverage of
available numerical-relativity simulations. When more numerical waveforms
become available, substantial efforts to manually (re-)calibrate models are
required. The aim of this study is to overcome these limitations. We explore a
method to combine the information of two waveform models: an accurate, but
computationally expensive target model, and a fast but less accurate
approximate model. In an automatic process we systematically update the basis
representation of the approximate model using information from the target model
and call the new model as the enriched basis. This new model can be evaluated
anywhere in the parameter space jointly covered by either the approximate or
target model, and the enriched basis model is considerably more accurate in
regions where the sparse target signals were available. Here we show a
proof-of-concept construction of signals from non-precessing, spinning
black-hole binaries based on the phenomenological waveform family. We show that
obvious shortcomings of the previous PhenomB being the approximate model in the
region of unequal masses and unequal spins can be corrected by combining its
basis with interpolated projection coefficients derived from the more recent
and accurate PhenomD as the target model. Our success in building such a model
constitutes an major step towards dynamically combining numerical relativity
data and analytical waveform models in the computationally demanding analysis
of LIGO and Virgo data.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2018-10-162019
 Publikationsstatus: Erschienen
 Seiten: 14 pages, 13 figures
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Physical Review D
  Andere : Phys. Rev. D.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Lancaster, Pa. : American Physical Society
Seiten: - Band / Heft: 99 Artikelnummer: 024010 Start- / Endseite: - Identifikator: ISSN: 0556-2821
CoNE: https://pure.mpg.de/cone/journals/resource/111088197762258