English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Giant Faraday rotation in single- and multilayer graphene

Crassee, I., Levallois, J., Walter, A. L., Ostler, M., Bostwick, A., Rotenberg, E., et al. (2011). Giant Faraday rotation in single- and multilayer graphene. Nature Physics, 7(1), 48-51. doi:10.1038/nphys1816.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Crassee, Iris1, Author
Levallois, Julien1, Author
Walter, Andrew L.2, 3, Author           
Ostler, Markus4, Author
Bostwick, Aaron3, Author
Rotenberg, Eli3, Author
Seyller, Thomas4, Author
Marel, Dirk van der1, Author
Kuzmenko, Alexey B.1, Author
Affiliations:
1Département de Physique de la Matière Condensée, Université de Genève, CH-1211 Genève 4, Switzerland, ou_persistent22              
2Molecular Physics, Fritz Haber Institute, Max Planck Society, Berlin, DE, ou_634545              
3E. O. Lawrence Berkeley National Laboratory, Advanced Light Source, MS6-2100, Berkeley, California 94720, USA, ou_persistent22              
4Lehrstuhl für Technische Physik, Universität Erlangen-Nürnberg, Erwin-Rommel-Strasse 1, D-91058 Erlangen, Germany, ou_persistent22              

Content

show
hide
Free keywords: Optical physics;Condensed-matter physics Electronics; photonics and device physics
 Abstract: The rotation of the polarization of light after passing a medium in a magnetic field, discovered by Faraday, is an optical analogue of the Hall effect, which combines sensitivity to the carrier type with access to a broad energy range. Up to now the thinnest structures showing the Faraday rotation were several-nanometre-thick two-dimensional electron gases. As the rotation angle is proportional to the distance travelled by the light, an intriguing issue is the scale of this effect in two-dimensional atomic crystals or films—the ultimately thin objects in condensed matter physics. Here we demonstrate that a single atomic layer of carbon—graphene—turns the polarization by several degrees in modest magnetic fields. Such a strong rotation is due to the resonances originating from the cyclotron effect in the classical regime and the inter-Landau-level transitions in the quantum regime. Combined with the possibility of ambipolar doping, this opens pathways to use graphene in fast tunable ultrathin infrared magneto-optical devices.

Details

show
hide
Language(s): eng - English
 Dates: 2010-05-172010-09-142010-11-072011-01
 Publication Status: Issued
 Pages: 4
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Physics
  Other : Nat. Phys.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Nature Pub. Group
Pages: - Volume / Issue: 7 (1) Sequence Number: - Start / End Page: 48 - 51 Identifier: ISSN: 1745-2473
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000025850